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Preface

Recent years have seen impressive progress in computational biology. To an in-
creasing extent, this is owed to the use of modern machine learning techniques for
the analysis of high-dimensional or structured data. In the early days of machine
learning in computational biology, a substantial number of relatively straightfor-
ward applications of existing techniques to interesting data analysis problems were
carried out. However, because the problems that can be dealt with in this way
are gradually running out, it has become increasingly important to actively de-
velop learning algorithms that can deal with the difficult aspects of biological data,
such as their high dimensionality (e.g., in the case of microarray measurements),
their representation as discrete and structured data (e.g., DNA and amino acid
sequences), and the need to combine heterogeneous sources of information.

A recent branch of machine learning, called kernel methods, lends itself particu-
larly well to the study of these aspects, making it rather suitable for problems of
computational biology. A prominent example of a kernel method is the support vec-
tor machine (SVM ). Its basic philosophy, which is shared by other kernel methods,
is that with the use of a certain type of similarity measure (called a kernel), the
data are implicitly embedded in a high-dimensional feature space, in which linear
methods are used for learning and estimation problems. With the construction of
various types of kernels, one can take into account particular aspects of problems
of computational biology, while the choice of the linear learning method which is
carried out in the feature spaces allows one to solve a variety of learning tasks such
as pattern recognition, regression estimation, and principal component analysis.

This book provides an in-depth overview of current research in the field of
kernel methods and their applications to computational biology. In order to help
readers from different backgrounds follow the motivations and technicalities of
the research chapters, the first part is made up of two tutorial and one survey
chapter. The first chapter, by Alexander Zien, provides a compressed introduction
to molecular and computational biology. Mainly directed toward computer scientists
and mathematicians willing to get involved in computational biology, it may also
provide a useful reference for bioinformaticians. The second chapter, by Jean-
Philippe Vert, Koji Tsuda, and Bernhard Schölkopf, is a short introduction to
kernel methods. Focusing more on intuitive concepts than on technical details, it is
meant to provide a self-contained introduction for the reader new to this field. The
third chapter, by William S. Noble, is an in-depth survey of recent applications of



viii Contents

kernel methods in computational biology, apart from the ones covered later in the
book.

Following these three introductory chapters, the book is divided into three parts,
which roughly correspond to three general trends in current research: kernel design,
data integration, and advanced applications of SVMs to computational biology.
While the chapters are self-contained and may be read independently of each other,
this organization might help the reader compare different approaches focused on
related issues and highlight the diversity of applications of kernel methods.

Part II is made up of six contributions that present different ideas or implemen-
tations for the design of kernel functions specifically adapted to various biological
data. In chapter 4, Christina Leslie, Rui Kuang, and Eleazar Eskin present a family
of kernels for strings based on the detection of similar short subsequences that have
fast implementations and prove to be useful as kernels for protein sequences for
the detection of remote homologies. A fast implementation of some of these kernels
is detailed in chapter 5 by S.V.N. Vishwanathan and Alexander J. Smola, using
suffix trees and suffix links to speed up the computation. Jean-Philippe Vert, Hi-
roto Saigo, and Tatsuya Akutsu present in chapter 6 a different kernel for protein
sequences derived from measures of sequence similarities based on the detection of
local alignments, also tested on a benchmark experiment of remote homology de-
tection. Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi introduce in chapter 7
kernels for graphs, based on the detection of similar paths between graphs, with
applications to the classification of chemical compounds. Kernels between nodes of
a graph, called diffusion kernels, are then presented in chapter 8 by Risi Kondor
and Jean-Philippe Vert, with applications to the comparison of gene expression
and metabolic pathways. Finally, a kernel between short amino acid sequences is
introduced in chapter 9 by Yann Guermeur, Alain Lifchitz, and Régis Vert, with
application to protein secondary structure prediction.

Part III covers different approaches based on kernel methods to learn from
heterogeneous information. In chapter 10, Yoshihiro Yamanishi, Jean-Philippe Vert
and Minoru Kanehisa propose to detect correlations between heterogeneous data
using a generalization of canonical correlation analysis that involves the kernel
trick, and illustrate their approaches by the automatic detection of operons in
bacterial genomes. A formalism based on semidefinite programming to combine
different kernels representing heterogeneous data is presented in chapter 11 by
Gert R. G. Lanckriet, Nello Cristianini, Michael I. Jordan, and William S. Noble,
with applications in functional genomics. As a third kernel method to learn from
heterogeneous data, Taishin Kin, Tsuyoshi Kato, and Koji Tsuda propose in
chapter 12 a formalism based on the information geometry of positive semidefinite
matrices to integrate several kernels, with applications in structural genomics.

Part IV contains several examples where SVMs are successfully applied to difficult
problems in computational biology. Gunnar Rätsch and Sören Sonnenburg focus
in chapter 13 on the problem of splice site prediction in genomic sequences,
and develop a state-of-the-art algorithm based on SVMs. Chapter 14, by Balaji
Krishnapuram, Lawrence Carin, and Alexander Hartemink, and chapter 15, by
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Sepp Hochreiter and Klaus Obermayer, both focus on the classification of tissues
based on gene profiling experiments and on the problem of gene selection in this
context. They come up with two different variants of the SVM algorithm that
perform gene selection and tissue classification simultaneously, with very promising
experimental results.

The impetus for this book was a workshop entitled “Kernel Methods in Compu-
tational Biology” which was held in the Harnack-Haus of the Max Planck Society
in Berlin, on April 14, 2003. The one-day workshop brought together the leading
proponents of this emerging field, providing a snapshot of the state of the art. Held
at the same time as the RECOMB conference, it attracted an audience of 135 reg-
istered participants. The program consisted of nine invited talks, three contributed
talks, and five posters. The articles in this book are partly based on presentations
at the workshop, augmented with several invited papers. All chapters have been
carefully peer-reviewed and edited to produce, we hope, a useful vehicle for helping
people getting up to speed on an exciting and promising direction in basic research.

We thank everybody who helped make the workshop and this book possible,
in particular Sabrina Nielebock for administrative help with the workshop, Karin
Bierig for help with the figures, and Arthur Gretton for proofreading.

Bernhard Schölkopf, Max Planck Institute for Biological Cybernetics, Tübingen,
Germany

Koji Tsuda, Max Planck Institute for Biological Cybernetics, Tübingen, Germany,
and AIST Computational Biology Research Center, Tokyo, Japan

Jean-Philippe Vert, Ecoles des Mines, Paris, France



 

I INTRODUCTION



 

1 A Primer on Molecular Biology

Alexander Zien

Modern molecular biology provides a rich source of challenging machine learning
problems. This tutorial chapter aims to provide the necessary biological background
knowledge required to communicate with biologists and to understand and properly
formalize a number of most interesting problems in this application domain.

The largest part of the chapter (its first section) is devoted to the cell as the basic
unit of life. Four aspects of cells are reviewed in sequence: (1) the molecules that
cells make use of (above all, proteins, RNA, and DNA); (2) the spatial organization
of cells (“compartmentalization”); (3) the way cells produce proteins (“protein
expression”); and (4) cellular communication and evolution (of cells and organisms).
In the second section, an overview is provided of the most frequent measurement
technologies, data types, and data sources. Finally, important open problems in the
analysis of these data (bioinformatics challenges) are briefly outlined.

1.1 The Cell

The basic unit of all (biological) life is the cell. A cell is basically a watery solution
of certain molecules, surrounded by a lipid (fat) membrane. Typical sizes of cells
range from 1 μm (bacteria) to 100 μm (plant cells). The most important properties
of a living cell (and, in fact, of life itself) are the following:Life

It consists of a set of molecules that is separated from the exterior (as a human
being is separated from his or her surroundings).

It has a metabolism, that is, it can take up nutrients and convert them into other
molecules and usable energy. The cell uses nutrients to renew its constituents, to
grow, and to drive its actions (just like a human does).

It is able to (approximately) replicate, that is, produce offspring that resemble
itself.
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It can react to its environment in a way that tends to prolong its own existence
and the existence of a (preferably high) number of offspring.

Viruses, which are simpler than cells, also satisfy some definitions that characterize
life: they can, for example, reproduce. But because they depend so strongly on the
help of host cells and they do not have their own metabolism, viruses are usually
not considered to be alive.

Two types of living organisms can be distinguished: prokarya (further subdivided
into eubacteria and archaea), which are always single cells, and eukarya (whichEukarya,

prokarya include all animals, plants, and fungi). Eukaryotic cells are more complex than
prokarya in that their interior is more organized: the eukaryote is divided into so-
called compartments. For instance, the nucleus contains hereditary information,
and a number of mitochondria serve to supply the cell with certain energy-rich
molecules.

The incredibly complex machinery of cells cannot be decently described in this
short chapter. An excellent and detailed overview can be found in the textbook by
Alberts et al. (2002), or, in a shortened version, in Alberts et al. (1998). Here, we
try to provide some rough impressions of the absolute basics.

1.1.1 Important Molecules of the Cell

Cells are defined by the molecules they are composed of. Especially important for
the integrity of cells are three kinds of macromolecules, which are now introduced.
These molecules are polymers, which means that they are composed of a large
number of covalently1 linked monomers, small molecular building blocks. The set
of different monomers and the way they are linked determine the type of polymer.

DNA The major part of the heritable information of a cell is stored in the form of
DNA molecules. They are called the cell’s genome. DNA (deoxyribonucleic acid) is a
chain molecule that is composed of linearly linked nucleotides. Nucleotides are smallNucleotides
chemical compounds. There are essentially four different nucleotides that occur in
cellular DNA, which are usually called A (adenine), C (cytosine), G (guanine), and
T (thymine).2 The chain of nucleotides has a direction, because its two ends are
chemically different. Consequently, each DNA molecule can be described by a text
over a four-letter alphabet. Chemists denote its beginning as the 5′-end and its
end as the 3′-end. The two directions are denoted by upstream, for “towards” the

1. Among the different types of bonds that are possible between atoms, covalent bonds
are the strongest. Molecules are defined as the smallest covalently connected sets of atoms;
they are often represented by graphs of covalent connections.
2. The restriction to four nucleotides is a simplification that is sufficient for most bioin-
formatics analysis. In reality, in genomic DNA cytosines may be methylated. This modi-
fication can be biologically significant, but it is usually not revealed in the available data.
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beginning, and downstream, for “towards” the end. Molecular chains of only a few
nucleotides are called oligonucleotides.

DNA is a good carrier of information that is supposed to be retained for a long
time (in fact, usually for the lifetime of a cell, which can be years). DNA can form
very stable structures due to the following properties. The nucleotides A and T can
bind to each other by forming two hydrogen bonds; therefore, A and T are said
to be complementary. G and C are also complementary: they form three hydrogenComplementarity,

hybridization bonds. Importantly, the ability to bind in this way holds for chains of nucleotides,
that is, for DNA molecules. The complement of a DNA sequence is the sequence
of the complements of its bases, but read in the reverse direction; complements
are often called complementary DNA (cDNA). Complementary strands can bind
to each other tightly by forming a double helix structure, which enables all the
hydrogen bonds between the pairs of complementary bases. The binding of two
complementary DNA molecules is often referred to as hybridization.

In cells, the genomic DNA is indeed present in the form of a double helix of two
complementary strands, as illustrated in figure 1.1. Apart from the increased sta-
bility, this provides redundancy, which serves the cell in two ways. First, erroneous
changes from one nucleotide to another, termed point mutations, can thereby be
detected and corrected. Second, there is a natural way to duplicate the genome,
which is necessary when the cell divides to produce two daughter cells. The double
helix is separated into two single strands of DNA, each of which then serves as a
template for synthesizing its complement. Since the complement of a complement
of a DNA sequence is again the primary sequence, the above procedure results in
two faithful copies of the original double-stranded DNA.

The size of genomes can be enormous; for instance, the human genome consists
of more than 3 billion nucleotides. Although the human genome is separated into 23
separate DNA molecules, each part still has an average length of about 5 cm —about
5000 times longer than the diameter of a human cell! Consequently, the DNA in cellsGenome packing,

chromosomes is kept in a highly packaged form. In regular intervals, assemblies of proteins (called
histones) bind to the DNA. The DNA double helix winds about one and a half times
around each histone complex to form a nucleosome; the nucleosomes resemble beads
on a string (of DNA). The nucleosomes themselves are usually packed on top of one
another to form a more compact fibrous form called chromatin. An even higher level
of packing is achieved by introducing loops into the chromatin fiber. The resulting
structures, one for each genomic DNA molecule, are known as chromosomes. They
do not flow around freely in the nucleus, but are anchored to nuclear structures at
sites called matrix attachment regions (MARs).

In many organisms, two or more versions of the genome may be present in a cell.
This is called a diploid or polyploid genome. In contrast, a single set of chromosomesPloidy
is said to be haploid. In sexual organisms, most cells contain a diploid genome, where
one version is inherited from each parent. The germ cells giving rise to offspring
contain a haploid genome: for each chromosome, they randomly contain either the
maternal or the paternal version (or a mixture thereof).
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Figure 1.1 The double helix structure of genomic DNA. The same piece of DNA is
visualized (using the program RasMol) in three different ways of increasing abstraction.
Left, spacefill: each atom is shown as a ball. Middle, covalent bonds between heavy atoms
are shown as sticks. Right, each strand of the double helix is shown as a ribbon. (DNA
part of PDB entry 1hcq.)

RNA RNA (ribonucleic acid) is very similar to DNA: again, it consists of nu-
cleotides linked in a chain. In contrast to DNA, the nucleotide U (for uracil) is used
instead of T, and the chemical details of the nucleotides differ slightly. Due to these
difference RNA molecules are usually single-stranded, which allows them to form
a variety of structures in three-dimensional (3D) space that can perform complex
tasks (such RNAs are called ribozymes).

The importance of the genome is that it typically contains many genes. AlthoughGenes
there is still debate about the exact definition, a gene can be thought of as a
substring of the genome that is responsible for the production of one or a couple of
types of RNA molecules. In the process of gene expression, the RNA is synthesized
to be complementary to a part of the DNA template. As a result, each gene can
control one or more properties of the organism, although often quite indirectly, as
will become apparent below.

Note that genes also include parts of DNA that are not copied into RNA. Most
important, each gene contains a sequence called a promoter, which specifies the
conditions under which RNA copies of certain parts of the gene are produced.
Although ribozymes are responsible for a few very important tasks in cells, the
purpose of the vast majority of genes in a cell is to encode building instructions for
proteins (certain macromolecules; see the next paragraph). The RNA moleculesmRNA
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mRNADNA Protein
1 nucleotide to 1 nucleotide 1 codon (3 nucleotides) to 1 amino acid

translationtranscription

according to the genetic code

Figure 1.2 Flow of genetic information.

involved in this process are called messenger RNAs, or mRNAs. In figure 1.2, the
flow of information from the DNA to the proteins is illustrated.

Proteins Proteins are polymers composed of amino acids. Cells use 20 differentAmino acids
types of amino acids for protein synthesis. Common to each amino acid are two
chemical groups (an amino [N] group and a carboxyl [C] group) which form peptide
bonds (a special kind of covalent bond) to link two amino acids. Since a water
molecule is split off during the formation of such a bond, a protein is actually
composed of amino acid residues (often, just residues). Proteins are also sometimes
called polypeptides (most commonly in contexts where their 3D structures are not
important); molecules consisting of only a few amino acids are called oligopeptides,
or simply peptides. Due to their chemistry, the beginning and the end of a protein
are called its N-terminus and its C-terminus, respectively. The chain of peptide
links forms the backbone of a protein. Importantly, each amino acid also has a third
group, the side chain. The side chains of the 20 natural amino acids show very
different chemical properties.

Each polypeptide folds into an elaborate spatial structure, called its tertiary
structure or, sloppily, its fold. Figure 1.3 should convey an impression of theTertiary

structure, fold typical complexity of a fold by showing this structure for an arbitrary protein
(in two common graphical representations). The tertiary structure depends on the
particular sequence of amino acids (which is also sometimes called the primary
structure and can be represented by a text over a 20-letter alphabet). The 3D
structure of natural proteins3 is usually assumed to be uniquely determined by the
sequence (given cellular conditions such as acidity, the concentrations of ions, etc.).4

However, sometimes the cell must help to achieve this uniqueness. In these cases,
other proteins, named chaperones, guide the folding process.

Among the structural motifs, i.e., spatial structures of subpeptides occurring in
proteins, two are of exceptional importance: the α helix and the β strand. InSecondary

structure an α helix, consecutive amino acids assume the shape of a spiral with 3.6 amino
acids per turn. This motif is especially stable due to a regular pattern of weak
bonds between any amino acid and the fourth next amino acid. In a β strand,

3. That is, proteins that occur in some natural life form.
4. Some studies suggest that the majority of possible sequences do not fold into a unique
structure. However, nature appears to prefer sequences that do so; presumably, well-defined
structures can contribute more to the cell’s survival.
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Figure 1.3 Two visual representations of the same protein. Left, full atom view. Right,
the more useful cartoon view. (From PDB entry 1A6A, drawn by RasMol.)

the backbone is extended and can gain stability from neighboring β strands. The
resulting structure, a β sheet, again shows a regular pattern of weak bonds, this
time between the strands. Together with the coils, which subsume the remainder of
the protein, α helices and β strands are the elements of secondary structure. This
is often exploited in schematic representations of proteins, as illustrated in figure
1.4. The secondary structure already determines in large part the complete protein
fold, the tertiary structure.

A domain is a subunit of a protein which can fold separately into its native struc-
ture. Especially in higher organisms (multicellular eukaryotes), many multidomainDomains
proteins have evolved, supposedly because recombining domains is an efficient way
of creating new proteins that perform useful functions.

The structure of the backbone of a folded protein determines its overall shape,
and also which amino acids are exposed on the surface. Due to the diversity ofBinding
the side chains, this allows for the generation of a huge variety of patterns of
physicochemical properties on protein surfaces. The surface properties determine
which other molecules the protein can bind to. The (cellular) function of a protein
can most immediately be defined by its set of binding partners and the chemical
reactions induced by the binding. For example, many proteins that bind small
molecules have cavities, called binding pockets, into which the ligand (the specific
small molecule) fits like a key into a lock. Frequently, the function of a protein
requires it to bind to two or more other molecules. This is often achieved through
a separate domain for each binding partner.

The functions of proteins in cells are as diverse as the tasks that cells have to
perform. Functional categories include (but are not limited to) the following:Functions



1.1 The Cell 9

Figure 1.4 Secondary structure elements. Left, an α helix. Right, a β sheet with two
strands. Top, stick model of the covalent bonds between heavy atoms; the backbone is
emphasized by the thicker sticks. Bottom, cartoon view. (From PDB entry 1A6A, visualized
with RasMol.)

Metabolism. Proteins called enzymes bind small molecules called metabolites to
catalyze reactions yielding other small molecules. In this way, nucleotides for DNA
and RNA, amino acids for proteins, lipids for membranes, and many other essential
compounds are produced. Cells may be viewed as tiny but highly complex and
competent chemical factories.

Energy. This can be seen as a special case of metabolism, because cells produce
a few types of small molecules as energy carriers.

Transcription, protein synthesis, and protein processing. The huge machinery
required to produce proper proteins from DNA is, to a great extent, run by proteins
(although ribozymes play a crucial role, too).

Transport and motor proteins. Cells can be more efficient due to a nonrandom
spatial distribution of molecules. In particular, compartmentalized cells contain
elaborate transport mechanisms to achieve and maintain appropriate local concen-
trations. Molecular motion can even become visible on a macroscopic scale: muscle
contractions are driven by the motion of myosin proteins on actin filaments (longish
intracellular structures built from actin proteins).

Communication (intra- or intercellular). Communication is most important for
multicellular organisms. While signaling molecules are usually much smaller than
proteins, they are received and recognized by proteins. The processing of signals
allows computations to be performed; this may be most obvious for the human
brain (involving ∼ 1011 cells), but also underlies the directed motion of unicellular
organisms.

Cell cycle. Most cells (be they alone or part of a multicellular organism) recur-
rently divide into two daughter cells to reproduce. This complex process is orches-
trated and carried out by proteins.
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A complete list of protein functions is far beyond the scope of this chapter. In
summary, proteins are major building blocks of the cell and, above all, the machines
that keep cells running.

Macromolecules We have now met the three most important types of macro-
molecules in the cell (DNA, RNA, and protein) and their relation (the genetic flow
of information). A fourth type of macromolecule which also occurs in cells shall
only briefly be mentioned here: the polysaccharide. Polysaccharides are polymersSaccharides
composed of covalently linked monosaccharides (sugars, such as glucose, fructose,
galactose). In contrast to the macromolecules discussed earlier, their bonding pat-
tern is not necessarily linear, but often rather treelike. Examples illustrating the
relevance of polysaccharides are starch, which is the principal food reserve of plants;
glycogen, the counterpart of starch in animals; cellulose, a major constituent of the
cell walls of plants; and chitin, which makes up most of the exoskeleton of insects.

In table 1.1, all four types of macromolecules and their most important properties
and functions are summarized. Table 1.2 shows their contributions to the total mass
of a cell, also in comparison to smaller types of molecules to be described below;
not surprisingly, proteins dominate.

Proteins, RNA, and DNA can be parts of even more intricate assemblies or,
synonymously, complexes. For example, as described above, histone proteins areComplexes
used to pack DNA into chromatin. The ribosome, which performs the translation
of mRNAs to proteins, is a huge assembly of several proteins and ribosomal RNA
(rRNA). The individual molecules in an assembly (which are not connected by
covalent bonds) are referred to as subunits. Just to make things more confusing,
(stable) complexes of proteins (in the sense of individual translation products, as
introduced above) are sometimes also called proteins; the subunits are then also
called (protein) chains.

Membrane Membrane is another huge assembly of smaller units. It mainly con-
sists of a bilayer of lipids (of several different types). A membrane is not a macro-
molecule, because the lipids are not covalently connected (i.e., they remain separate
molecules). Instead, the lipids stick together because they are largely hydrophobic,Hydrophobicity
which means that they repel water. By forming a bilayer, all hydrophobic parts
contact other hydrophobic surfaces (of other lipid molecules). Only the hydrophilic
(water-loving) heads of the longish lipids face the water.

The hydrophobicity of the membrane interior prevents water and molecules
dissolved in water (which are hydrophilic) from penetrating the membrane. Thus,
a membrane is used to separate the cell from its exterior: no large or hydrophilic
compounds can pass it directly. In eukaryotes, membranes also serve to enclose
compartments (which are subspaces of the cell with distinct chemical properties).
To admit the controlled exchange of molecules and also of information, membranes
also contain many proteins (often in the sense of protein complexes) that stick out on
both sides. The surface of such membrane-proteins typically features a hydrophobic
ring where it is embedded into the membrane.
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Table 1.1 Important macromolecules of the cell. They are composed of small molecules,
covalently connected to form linear chains.

Macro-
molecule

DNA RNA

Building
blocks

nucleotides
(A,C,G,T)

nucleotides
(A,C,G,U)

Typical
length

1000s to 109s 100s to 1000s

Structure double helix, tightly packed and or-
ganized in several levels

complex 3D structure, with struc-
tural motifs (secondary structure)

Function storage of (most of) the hereditary
information of an organism: the
genome, which contains the genes
as subsequences

messenger RNA (mRNA): serves
as the blueprint for protein produc-
tion

transfer RNA (tRNA): connects
codons to amino acids (implement-
ing the genetic code); used by the
ribosome

ribosomal RNA (rRNA): forms
part of the ribosome (amounting to
∼90% of the total RNA)

Location nucleus, mitochondria, chloro-
plasts

nucleus, cytosol, mitochondria,
chloroplasts

Macro-
molecule

Protein Polysaccharides

Building
blocks

amino acids
(20 different types)

monosaccharides
(several types)

Typical
length

10s to 1000s up to 109 (e.g., starch)

Structure complex and versatile, with struc-
tural motifs (secondary structure,
domains, etc.)

often not linearly bonded but tree-
like

Function Extremely diverse. For example,

enzymes catalyze reactions of
other molecules;

structural proteins build and sta-
bilize the structure of the cell;

receptors, kinases, and other pro-
teins receive, transport, and pro-
cess signals from the exterior;

transcription factors (TF) regu-
late the production of all proteins.

modification of proteins and
their properties

storage of energy (e.g., in starch)

structural stability (e.g., in
chitin)

storage of water (e.g., in extra-
cellular matrix in cartilage)

Location everywhere in- and outside cell;
dissolved in water or embedded in
a membrane

everywhere in- and outside cell; of-
ten bound to proteins
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Table 1.2 Approximate fractions of different classes of molecules of the total weight of
a typical cell.

Molecule Cell Mass in

type Bacteria Mammals

H2O (water) 70% 70%

DNA 1% 0.25%

RNA 6% 1%

proteins 15% 18%

lipids (fat) 2% 5%

polysaccharides (sugar) 2% 2%

metabolites and inorganic ions 4% 4%

Metabolites Of course, small molecules are vital for cells, too. Here we give just
a few selected examples:

Adenosine triphosphate (ATP) and NADPH (both derived from the nucleotide
A) serve as ubiquitous ready-to-use sources of energy.

Monosaccharides (sugars) and lipids (fats) can be converted into ATP, and
therefore serve as a long-term source of energy. Saccharides are also often attached
to proteins to modify their properties.

Signaling molecules convey information by docking to their respective receptor
proteins and triggering their action. For example, steroids (which include many sex
hormones) can diffuse into a cell’s nucleus and induce the activation of some genes.

Small molecules are more generally called compounds.

1.1.2 Compartmentalization of the Eukaryotic Cell

As mentioned earlier, eukaryotic cells contain many compartments, which are also
called organelles. They are subspaces that are enclosed by single or double
membranes. Figure 1.5 provides an overview of the major compartments in the
cell, and table 1.3 summarizes some of their properties.

In each compartment, a cell maintains different concentrations of relevant
molecules. This way, the compartmentalization allows the cell to perform diverse
tasks and chemical reactions that require different environments (e.g., a certain
acidity) efficiently. As an example, the bulk of a cell’s hereditary information is
stored as DNA molecules (condensed into chromatin) in the nucleus, where the
transcription machinery (which produces mRNA copies from genes) can more eas-
ily find it than if the DNA were allowed to reside anywhere in the cell.

Since each type of compartment is devoted to different tasks in the cell, each
requires a distinct set of proteins to perform the subtasks. In order to save resources,Subcellular

localization proteins are specifically delivered to the organelles that require them. Consequently,
many proteins contain signals that specify their destination. These signals can either
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Table 1.3 Important compartments of the eukaryotic cell. Chloroplasts (which occur
in plants, but not in animals) and mitochondria contain their own (small) genomes and
produce a part of the proteins they require themselves; they have probably evolved from
enclosed prokaryotic cells.

Compartment Function(s) Membrane

Cytosol protein synthesis, general metabolism, etc. single

Nucleus storage of main genome (DNA molecules)

RNA synthesis

ribosome synthesis (in the nucleolus)

double

Endoplasmatic
reticulum (ER)
(inner space of
nuclear membrane,
extending through-
out the cell)

synthesis of most lipids (membrane)

synthesis of proteins for single-membrane or-
ganelles (rough ER)

post-translational processing of those proteins

single

Golgi apparatus post-translational processing of proteins

distribution of proteins and lipids to single-
membrane organelles

single

Vesicles
(mobile bubbles)

transport of proteins and membrane between single-
membrane organelles and to/from cell exterior

single

Endosomes contain material taken up from the exterior; or

secrete contents (mainly proteins) to cell exterior

single

Lysosomes/vacuoles
(plants, fungi)

digest of molecules, organelles, etc. / store waste and
nutrients, control cell size

single

Peroxisomes carry out oxidative (dangerous) reactions single

Cell exterior / ex-
tracellular matrix

extracellular matrix connects cells, stabilizes the
organism, contains nutrients, etc.

in polarized cells (e.g., nerve cells), the exterior is
divided into basolateral and apical parts

single

Mitochondria generate ATP by oxidizing nutrients double

Chloroplasts
(in plants)

generate energy-rich molecules from sunlight double
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Figure 1.5 Compartments in a eukaryotic cell. All lines represent membranes. The
interior of all compartments is shaded in gray; the cytosol is white. Inspired by a figure in
Alberts et al. (1998) and crafted by Karin Bierig.

be entire peptides (e.g., hydrophobic stretches for transfer into the endoplasmatic
reticulum [ER]) or characteristic surface patches of the folded protein. There are
also default destinations when signals are absent: proteins showing no signal at all
stay in the cytosol. The subcellular localization is obviously closely related to the
function of the protein.

It should be noted that cells are in general not spatially symmetric. For example,
the surface of many cells in multicellular organisms is divided into two domains:
the apical and the basolateral. An extreme case is provided by nerve cells: their
apical part consists of axons, thin extensions (that can be as long as 2 m in the
human) which connect a neuron to other neurons. The exocytotic pathway, which
transports proteins to the cell exterior, can distinguish between the two regions.

1.1.3 Expression of Genes and Proteins

One of the most fundamental processes in the cell is the production (and disposal)
of proteins. Below, the life cycle of proteins is outlined for eukaryotic cells.
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1. Transcription. Messenger RNA (mRNA) copies of a gene are produced. The
products, called pre-mRNAs (since they are not yet spliced; see step 2), are
complementary to the DNA sequence.

(a) Initiation: Certain proteins, called transcription factors (TFs), bind to TF
binding sites in the gene promoters in the DNA.

(b) Elongation: The mRNA copy of the gene is synthesized by a special
protein (RNA polymerase II). It moves along the DNA and thereby sequentially
extends the pre-mRNA by linking a nucleotide complementary to that found
in the DNA.

(c) Termination: A signal in the DNA causes the transcription to end and the
mRNA to be released.

2. Splicing. Parts of the pre-mRNA, which are called introns, are removed. The
remaining parts, called exons, are reconnected to form the mature mRNA. The
spliced mRNAs travel from the nucleus (through huge, selective pores in its double
membrane) into the cytosol. To increase the chemical stability of the mRNA, a
chemical cap is formed at the 5′-end and a poly(A) sequence (built from many A
nucleotides) is appended to the 3′-end.

3. Translation. In the cytosol, ribosomes await the mRNAs. Ribosomes synthesize
proteins as specified by codons —triplets of consecutive nucleotides—in the mRNA.

(a) Initiation: The ribosome finds a start codon (usually, the first AUG subse-
quence that has favorable neighboring nucleotides) in the mRNA.

(b) Elongation: One by one, the ribosome attaches amino acids to the growing
polypeptide (protein) chain. In each step, the ribosome translates the current
codon into an amino acid according to the genetic code. The ribosome then
moves to the next codon in the same reading frame, that is, to the next adjacent
nonoverlapping codon.

(c) Termination: Translation is stopped by any of three different stop codons
encountered in the current reading frame.

4. (Posttranslational) modification (not for all proteins). The protein may be chem-
ically modified, if it contains the relevant signals and if it resides in a compartment
where these signals are recognized.

(a) Additional chemical groups can be covalently attached to proteins (glyco-
sylation (sugars), phosphorylation, methylation, etc).

(b) Covalent bonds can be formed between amino acids.

(c) Proteins can be covalently bound to each other.

(d) Proteins can be cleaved, that is, cut into parts.

5. Translocation (not for all proteins). Proteins are delivered to the appropriate
compartment, which is specified by signals in the amino acid sequence. The signal
can either be a typical short segment of a sequence, or a structural motif on the
surface of the protein (which may be composed of amino acids that are not neighbors
in the sequence). In the absence of signals, the protein stays in the cytosol.
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Figure 1.6 Typical gene structure in eukaryotes. At the top of the figure, a section of
a genome is shown that contains a gene. Important features of the gene are the promoter
containing several TF binding sites and the transcribed region, which is partitioned into
exons and introns. After transcription, the pre-mRNA (not shown) is spliced: the introns
are cut out; thus, the mature mRNA is the concatenation of the exons. Only a part of the
mRNA encodes a protein (CDS, for coding sequence); the other parts are called UTRs
(untranslated regions). Artwork by Karin Bierig.

6. Degradation. Almost all proteins are eventually destroyed by digestion into their
individual amino acids.

In prokaryotes, the entire process is a bit less complex because splicing is uncommon
and the translocation has only three different targets (cytosol, membrane, exterior)
due to the lack of compartments.

The process of splicing implies complex gene structures composed of alternating
introns and exons; an illustration is given in figure 1.6. However, it allows forAlternative

splicing increased flexibility by a mechanism known as alternative splicing: certain proteins
can cause certain exons to be lengthened, shortened, or even skipped completely.
Thus, the same gene can give rise to the production of different proteins. This is
an important way for cells to adapt to the circumstances, including their cell type
and extracellular signals. It is estimated that a human gene on average encodes for
eight or nine different proteins. More detailed information on the process of splicing
and its biological implications can be found in chapter 13, section 13.2.

Steps 1 and 2 of the scheme described above are called gene expression, while
steps 1 through 5 are called protein expression. The term expression level of aExpression levels
molecule type is (a bit imprecisely) used to refer to either its current abundance
in the cell, or to the rate of synthesis of new molecules. This difference is often
neglected for gene expression, which may or may not be justified by the fact that
mRNAs are degraded relatively quickly after having been translated several times.
However, for proteins the distinction is crucial, because their lifetimes may be very
long and differ vastly.

The cellular concentration of any type of protein can be influenced by changing
the efficiencies of the above steps. This is called regulation of expression. WhileRegulation
cells in fact regulate each of the above steps, the main point for the quantitative
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control of protein expression is certainly transcription initiation. In addition to
the general TFs, which are always required for initiation, there are additional TFs
which modify the probability or speed of transcription. They bind to short DNA
motifs, for obvious reasons called enhancers and silencers, in the promoter. The
effects of TF binding sites can extend over huge distances in the DNA sequence;
therefore insulators (certain DNA signals) may be required to separate genes from
each other and prevent mutual regulatory interference.

The steps of protein expression have a natural temporal ordering, where each step
operates on the result of the preceding step. However, there are at least three types
of deviation from a clear, serial manufacturing process: (1) Some of the steps may
occur concurrently, or can be performed before the preceding step is finished. For
example, much of the splicing is carried out while the gene is still being transcribed.
Also, the translocation from the cytosol into the ER and some modifications take
place during translation. (2) There is no compulsory ordering of translocation and
modification. In fact, many proteins are modified in the ER and the Golgi apparatus,
which are intermediate stations on the journey to their destination compartment
(cf. section 1.1.2). (3) Degradation may occur even before the protein is finished
and delivered.

In many cases, the mentioned exceptions relate to the folding of the newly
synthesized protein into a 3D structure. A protein can already start to fold while it
is still growing out of the ribosome, and modifications by other proteins at that time
can have an impact on the way it folds. Some proteins are aided in finding the desired
structure by helper proteins (chaperones), which, for instance, unfold incorrectly
folded proteins. In case a protein repeatedly misfolds (i.e., does not assume the
intended structure despite the help of chaperones), it can also be degraded.

1.1.4 Beyond the Cell

Cell Communication Cells, especially those in the same multicellular organism,
can communicate by the exchange of extracellular signal molecules. This way, the
coordinated action of many (in the case of a grown human, on the order of 1010 or
1011) cells can be achieved. Even to perform no action requires signaling; in animals,
cells that do not get a constant supply of certain signals from their neighbors commit
apoptosis, that is, self-destruction. This is a safety provision used to eliminate
malfunctioning cells; if the mechanism gets broken itself, uncontrolled proliferation
(cancer) may result.

Depending on the properties of the emitted signal molecules, the signaling can
affect neighboring cells only (contact-dependent); it can be locally restricted to a
small cluster of cells (paracrine); or it can rely on distribution through the blood
system (endocrine). A special case is the synaptic signaling, in which the electric
signal transmitted by a neuron causes neurotransmitters to be released that induce
an electric potential in the receiving neuron. As in endocrine signaling, the signal
is carried over large distances (as electrical potential through the long axons of the
neurons). But in contrast to endocrine signaling, the signaling molecules travel only
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a very short distance extracellularly and are transmitted to a very specific set of
target cells.

Extracellular signals can take one of two routes into the cell: through cell surface
receptors or directly to intracellular receptors. For the latter, the signaling molecules
have to traverse the cell membrane. This is possible for small hydrophobic molecules
like steroid hormones (which include, e.g., the sex hormone testosterone). When
such a molecule binds to the corresponding receptor protein, the protein usually
travels to the nucleus (or it may already have been there) and activates or inhibits
the transcription of one or several genes.

Signaling molecules that cannot permeate the cell membrane are recognized by
cell surface receptors, to which they bind extracellularly. These receptors reside
in the membrane and also have an intracellular part. The extracellular binding of
the signaling molecule induces an action by the intracellular part, for example, a
change of the 3D structure. In response to this change, a series of downstream
actions begins: cytosolic proteins modify each other in a chain, until finally a TF is
activated or deactivated or the reaction rate of an enzyme is altered.

Evolution The complexity of cells and organisms has evolved over several billion
years of interplay of mutation and selection. Here, mutation means any kind of
modification of the heritable information (basically the genome) of reproductive
cells. The totality of heritable information giving rise to an organism is called
its genotype, as opposed to phenotype, which subsumes the observable physical
properties of the organism. Differences in the genotype sometimes manifest in
different phenotypes; otherwise, the corresponding mutations are said to be silent.

Selection refers to the fact that the phenotypic changes may lead to differentialSelection
reproductive success (e.g., some mutations are directly lethal); this may correlate
with the organism’s ability to survive in its environment. Often, however, mutations
have no or a negligible impact on survival and reproduction (even if they are not
silent). Several different genotypes (and possibly phenotypes) may then coexist in
a population. In this case, their genetic differences are called polymorphisms.

There are several different types of mutations. The simplest is the point mutationMutations
or substitution; here, a single nucleotide in the genome is changed. In the case of
polymorphisms, they are called single nucleotide polymorphisms (SNPs). Other
types of mutations include the following:

Insertion. A piece of DNA is inserted into the genome at a certain position.

Deletion. A piece of DNA is cut from the genome at a certain position.

Inversion. A piece of DNA is cut, flipped around and then re-inserted, thereby
converting it into its complement.

Translocation. A piece of DNA is moved to a different position.

Duplication. A copy of a piece of DNA is inserted into the genome.

The term rearrangement subsumes inversion and translocation.
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While mutations can be detrimental to the affected individual, they can also
in rare cases be beneficial; or, much more frequently, just neutral (under the
actual circumstances). Thereby mutations can increase the genetic diversity of aGenetic diversity
population, that is, the number of present polymorphisms. In combination with
selection, this allow a species to adapt to changing environmental conditions and to
survive in the long term. For example, many viruses (such as HIV) have imprecise
replication mechanisms to produce a large fraction of mutants among the huge
number of descendants. This way, subpopulations are created that do not match
the patterns that the immune system of their host is looking for.

Many bacteria have evolved a strategy to achieve more complex mutations:
by horizontal gene transfer, genetic material is not received from parental cells,
but from other cells which may even belong to a different species. Transposons—
mobile segments of DNA that can move around or copy themselves within the
genome—presumably also serve to generate (certain kinds of) mutations. Sexual
reproduction can be viewed as a sophisticated (and presumably more efficient)
alternative to mutations for the purpose of maintaining genetic diversity. InSexual

reproduction sexual species, each individual owns a diploid genome (consisting of two different
copies). During reproduction, the parental genomes are recombined on the basis of
entire chromosomes and fragments of chromosomes (“crossing over”). In contrast
to mutations, this almost always leads to offspring that can survive.

In the course of evolution, populations of organisms often separate (e.g., spatially)
and develop over time into distinct species. While the differences are the result of
accumulating mutations, the genomes of the descendant species still share signifi-
cant similarity. In particular, many encoded proteins remain similar; such proteins
are said to be orthologs. If proteins within the same genome are similar due to a
common origin (as the result of duplications), they are called paralogs. Homology
refers to any kind of evolutionary relatedness, be it orthologous or paralogous. Ho-
mologous proteins must be distinguished from analogous proteins, which have the
same function but have evolved independently (convergent evolution).

1.2 Molecular Biology Measurement Data

Modern molecular biology is characterized by the (usually highly automated)
collection of large volumes of data. A large number of existing measurement
technologies serve to produce data on various aspects of cells and organisms. Table
1.4 provides an overview of the most common data types.

For many molecular biology data types, more than one measurement technology
exists. Serious analysis must be performed bearing this in mind. For example,
protein structures can be resolved either by NMR (nuclear magnetic resonance)
or by x-ray crystallography. (Both methods are sciences in themselves and are hard
to apply, if they work at all for a particular protein.) For some analyses, the source
of the data can make a difference: apart from the lower resolution of the NMR
structures, the structures may show systematic differences in the amino acids on
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Table 1.4 Common genomics data types and their representation for computational
analysis.

Data Type and Details Representation

Sequences

DNA: genome (hereditary information) string over nucleotides {A,C,G,T}
full-length mRNAs: spliced gene copies string over ribonucleotides {A,C,G,U}
ESTs (expressed sequence tags): partial mRNAs string over ribonucleotides {A,C,G,U}
proteins string over amino acids (size 20)

Structures

metabolites: positions and bonds of atoms labeled graph embedded in 3D space

macromolecules (proteins, RNAs, DNA) labeled graph embedded in 3D space

Interactions

proteins with metabolites: receptors or en-
zymes binding ligands

real vectors (binding energies)

proteins with DNA: transcription factors, etc. binary (bipartite graph)

proteins with proteins: complexes, etc. binary (graph); Petri-net

Expression / localization data

gene expression: abundances of mRNAs real vectors or matrices

protein expression: abundances of proteins real vectors or matrices

metabolite (small molecule) “expression”:
concentrations of metabolites

real vectors or matrices

protein localization: compartment of presence categorical

Cell / organism data

genotype: single nucleotide polymorphisms vector of nucleotides {A,C,G,T}
phenotype: cell type, size, gender, eye color, etc. vector of real and categorical attributes

state/clinical data: disease, blood sugar, etc. vector of real and categorical attributes

environment: nutrients, temperature, etc. vector of real and categorical attributes

Population data

linkage disequilibrium: LOD scores real numbers

pedigrees certain (treelike) graphs

phylogenies: “pedigree of species” trees or generalizations of trees

Scientific texts

texts: articles, abstracts, webpages natural language texts (in English)
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the protein surface, because they are in contact with water for NMR whereas they
are in contact with a neighboring protein in the crystal used for x-ray diffraction.
The problems become worse for gene expression data, where the preprocessing is
also crucial, as stressed below.

A few data types are so fundamental and frequent that we discuss them in the
following sections.

1.2.1 Sequence Data

The classic molecular biology data type is the sequence (more precisely, the DNA
sequence). The process of “measuring” the sequence of nucleotides in a piece of DNASequencing
is called sequencing and is presently highly automated. Still, it is far from trivial.
First, the sequencing process requires a huge number of identical DNA molecules.
These can be gained from a small sample (or even a single molecule) by amplification
through the polymerase chain reaction (PCR). A more severe shortcoming is that
only a few hundred up to about one thousand consecutive nucleotides of a piece of
DNA can be determined in one run.

Nevertheless, is has become almost routine to sequence entire genomes. To that
end, the DNA is first split into parts which are sequenced separately. The resulting
set of sequences must be computationally assembled into the contiguous genome.
Although techniques for the determination of protein sequences exist, it is nowadays
common to sequence mRNAs (after first converting them to cDNA) or complete
genomes, and then compute the translation products.

Table 1.5 provides an overview of major sequence databases and portals on the In-
ternet. Care is required when using these databases with machine learning methods:Sequence

databases a major assumption of many algorithms, namely, that the data are iid (independent
and identically distributed), is violated in most databases. The reason is that the
proteins considered most interesting have been studied in great detail (i.e., in many
species and versions) by biologists, and are therefore overrepresented. A common
solution to this is redundancy reduction (the elimination of similar sequences), as
provided, for instance, by the ASTRAL server at http://astral.stanford.edu/.

Apart from the big general sequence databases there exist a large number of
more specialized databases, which often provide additional information that may
be linked to the sequences. They cannot be listed here, but the journal Nucleic
Acids Research provides reports on many of them in the first issue of each year. In
addition, many of these databases are accessible via SRS.

Alignments A most basic and most important bioinformatics task is to find
the set of homologs for a given sequence. Since sequences are a very important
data type (not only for bioinformatics but also in other areas), new methods for
sequence comparison are being developed. The new string kernels presented in
chapters 4 and 5 are examples of such techniques. Nevertheless, the established
methods continue to be widely used, and often serve as a crucial ingredient to
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Table 1.5 Databases of molecular biological sequences.

Database URL (http://. . . ) Remarks

Nucleotide sequence databases

DDBJ www.ddbj.nig.ac.jp these three databases

EMBL www.ebi.ac.uk/embl/ synchronize their

GenBank www.ncbi.nlm.nih.gov contents daily

Protein sequence databases

SwissProt www.expasy.org/sprot/ curated

TrEMBL www.expasy.org/sprot/ not curated

(Some) Sequence motif databases

eMotif motif.stanford.edu/emotif/ protein regular expression pat-
terns

SMART smart.embl-heidelberg.de/ protein domain HMMs

TRANSFAC transfac.gbf.de/TRANSFAC/ genomic TF binding sites

General portals

EBI www.ebi.ac.uk European Bioinformatics Insti-
tute

Entrez www.ncbi.nlm.nih.gov/Entrez/ U.S. National Bioinformatics
Institute

ExPASy www.expasy.org Expert Protein Analysis System

SRS srs.ebi.ac.uk Sequence Retrieval System

machine learning approaches (cf. chapters 3 and 6). Here we briefly introduce the
the most fundamental sequence analysis technique: the alignment.

In a global alignment of two sequences s = s1 . . . s|s| and t = t1 . . . t|t|, each
sequence may be elongated by inserting copies of a special symbol (the dash, “-”)
at any position, yielding two stuffed sequences s′ and t′. The first requirement isAlignment
that the stuffed sequences have the same length. This allows them to be written
on top of each other, so that each symbol of s is either mapped to a symbol of t

(substitution), or mapped to a dash (gap), and vice versa. The second requirement
for a valid alignment is that no dash be mapped to a dash, which restricts the
length of any global alignment to a maximum of |s| + |t|. In a local alignment, a
substring of s is globally aligned to a substring of t.

For aligning biological sequences, scores reflecting the probabilities of inser-
tions/deletions and of mutations are assigned to gaps and to all different possible
substitutions. The score of an entire alignment is defined as the sum of the individ-Optimal

alignment ual scores. The similarity of s and t is often defined as the score of an optimal local
alignment of s and t, where optimal means maximizing the score. Although there
are exponentially many possible alignments (whether local or global), the optimal
cost and an optimal alignment (of either mode) can be computed in time O(|s||t|)
using dynamic programming (Needleman and Wunsch, 1970; Smith and Waterman,
1981).
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Since quadratic time is still too slow for searching large databases, fast heuristics
have been developed. FASTA and BLAST are much faster than dynamic program-Fast heuristics
ming, but achieve results almost as good. However, a much better measure of sim-
ilarity can be computed by taking into account the distribution of closely related
sequences. PSI-BLAST (Altschul et al., 1997) constructs a multiple alignment for
each query sequence that consists of all similar sequences found in the database.
From this a position-specific scoring matrix (PSSM) is constructed with which the
database is searched again, thereby increasing the sensitivity of the search. This
has become the most widely used method for making use of unlabeled data in
supervised problems like protein classification.

With either alignment method, the obtained score depends on the length of the
two sequences. For local alignments, this is compensated for by the use of so-calledProbabilistic

similarity
measures

p-values or E-values, which quantify the chance of finding a random similarity in
terms of probabilities or expected numbers of hits, respectively. Other methods
of obtaining probabilistic similarity measures are based on hidden Markov models
(HMMs) and Bayesian reasoning. An excellent textbook on alignments and related
topics is Durbin et al. (1998).

1.2.2 Gene Expression Data

Gene expression data usually come in the form of a matrix of expression levels for
a number of genes in a range of cell samples. There are quite a few technologies
available to measure the level of expression of a large number of genes simultane-
ously. We focus on microarrays, which are presently the most popular technology
for large-scale gene expression measurement. Then we outline two competing tech-
niques that are based on a different approach. Finally, we discuss some implications
for data analysis.

Microarrays Microarrays, sometimes also called DNA chips, employ hybridiza-
tion to distinguish different genes, and therefore require that the sequences of genes
to be measured be known in advance. In fact, a microarray is essentially a surfaceMicroarrays
with a known location (called spot) for each gene to be measured. Present-day mi-
croarrays can bear a couple of thousand spots, so that the entire human genome
can be covered with four chips. At each spot, oligonucleotides or cDNA fragments
are fixed which are complementary to a (transcribed) subsequence of a gene. Ide-
ally, the subsequences are determined in such a way that they are specific to the
corresponding gene, that is, they are not similar to the complement of any other
mRNA that is expected to occur in the sample.

The measurement of a sample with a microarray (jargon: hybridization) begins by
reverse-transcribing the mRNAs of a cell sample to cDNA. The cDNAs are labeledMeasurement

(hybridization) to make them detectable, for instance, by incorporating fluorescing or radioactive
tags. Then, the sample is administered onto the microarray, and a number of cDNAs
from the sample hybridize to the corresponding spot. This number is approximately
proportional to the respective mRNA concentration in the sample. After washing
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the array the concentration can be determined by measuring, at the corresponding
spot, the intensity of the signal emitted by the molecular labels. If two different
molecular labelings are used for two different samples, two measurements can be
carried out at the same time on the same array.

A couple of facts are essential to the proper analysis of microarray data. First,Noise
background noise is present due to incomplete washing and nonspecific hybridiza-
tion. If the mean background is estimated and subtracted, the resulting expression
levels may become negative for some genes. Although true expression levels cannot
be negative, statistical work seems to suggest that it is not a good idea to censor
such values by setting them to zero or a small positive value; instead, variance-
stabilizing transformations may be used. Second, due to varying efficiencies of the
intermediary steps of the measurement, and to varying amounts of mRNA per
cell, the results obtained with different microarrays or for different samples are not
likely to be on the same scale. Normalization should therefore be applied. More-Normalization
over, systematic differences that arise from fluctuations between production batches
should be compensated for. Finally, even normalization cannot make comparable
data gathered with microarrays that are equipped with different oligonucleotides
(e.g., chips of different brands). This is because the oligonucleotides have different
hybridization energies which introduce a scaling constant for every spot (gene).

Other technologies A few methods for measuring gene expression levels are
based on sequencing, clustering, and counting mRNA molecules, as detailed in the
following three-step strategy:

1. Sequencing. This involves randomly picking mRNA molecules from the sample,
reverse-transcribing them to cDNA, amplifying them, and then determining (parts
of) their sequences.

2. Clustering. Sequences corresponding to the same genes must be identified.

3. Counting. The cluster sizes are estimates of the expression levels.

Two examples from this group of methods are serial analysis of gene expression
(SAGE) and expressed sequence tag (EST) analysis. An EST results from partialESTs, SAGE
single-pass sequencing of a transcript; it represents an error-prone substring of a
(usually spliced) mRNA.

In contrast to microarray measurements, counting sequence tags (as in SAGE or
EST analysis) yields natural numbers as outputs. The difficulty of analysis arises
from three facts: (1) The number of sampled molecules is low (ESTs) to medium
(SAGE) due to the effort (and cost) required. Thus, the counts are bad estimates of
the true frequencies, especially for the low copy genes, which may not be detected
at all. (2) Sequencing errors may lead to inclusion of a sequence in the wrong
cluster. (3) Clusters may erroneously be merged (e.g., for very homologous genes)
or split (e.g., if sequenced parts do not overlap). The importance of sequencing-
based methods is that they do not require prior knowledge of the genes; therefore,
they can in principle be applied to any genome.
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Table 1.6 Major databases of gene expression data sets.

Database URL (http://. . . ) Remarks

General databases

ArrayExpress www.ebi.ac.uk/arrayexpress/ by the EBI

GEO www.ncbi.nlm.nih.gov/geo/ by the NCBI

Organism-specific databases

MGI GXD www.informatics.jax.org mouse

TAIR Microarray www.arabidopsis.org Arabidopsis

WormBase www.wormbase.org Caenorhabditis
elegans

Laboratory-specific databases

SMD genome-www.stanford.edu/microarray/ Stanford

YMD info.med.yale.edu/microarray/ Yale

Two other methods deserve mention, because they are frequently used by biolo-
gists. Northern blotting is the oldest approach to (semiquantitative) measurementNorthern

blotting,
quantitative PCR

of gene expression. In contrast, quantitative polymerase chain reaction (qPCR) is
a very modern method, and is currently considered to allow for the most precise
determination of expression levels. Both methods require prior knowledge of the
sequence. In addition, they are not sufficiently automated for mass measurements;
instead, they are used to confirm findings made with other technologies.

Databases Unfortunately, the databases for gene expression data are not yet as
established as the sequence databases are. It is still common for microarray data
sets to be available only from webpages that accompany a publication. Nevertheless,
there are two databases that try to be very general. These and a few databases with
more specialized domains are listed in table 1.6.

One reason for the slow establishment of general gene expression databases may
be that it is surprisingly difficult to properly design its scheme. To be really useful,
there is no point in just storing the matrices of measurement values. Instead, a
description of the preprocessing of the data, the measurement technology (including
details of the biochemical steps carried out in the laboratory), and above all the
properties of the samples, must be given. For samples taken from hospital patients,
for example, a complete description would ideally include the entire clinical data.

1.2.3 Protein Data

Reflecting their importance for cells, many aspects of proteins other than their
sequences are wellstudied, including (tertiary) structures, interactions, functions,
expression, and localization. Many of these data may be found in databases; see
table 1.7.

The unique worldwide database of protein structures is the PDB (protein
database). However, detailed structure comparisons are tedious, and thankfully
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Table 1.7 Important databases on protein properties other than sequence.

Database URL (http://. . . ) Remarks

Protein structures

PDB www.rcsb.org/pdb/ 3D structures

SCOP scop.mrc-lmb.cam.ac.uk/scop/ structural classification

CATH www.biochem.ucl.ac.uk/bsm/cath/ structural classification

Molecular interactions and networks

BIND www.bind.ca interaction network

KEGG www.genome.ad.jp/kegg/ metabolic pathways

DIP dip.doe-mbi.ucla.edu interacting proteins

Protein functions

GO www.geneontology.org controlled vocabulary

EC www.chem.qmul.ac.uk/iubmb/enzyme/ enzyme numbers

MIPS mips.gsf.de/proj/yeast/

catalogs/funcat/

yeast gene functions

Protein expression

2DPAGE us.expasy.org/ch2d/ 2D gel electrophoresis data

databases exist that provide hierarchical classifications of the PDB proteins (or the
domains therein) according to their structures. The most popular may be SCOP
(“structural classification of proteins”, which is largely manually constructed by ex-
perts) and CATH (“Class, Architecture, Topology and Homologous superfamily”,
which relies more heavily on automatic classification).

Protein interactions can be defined on several levels: molecular interactions
refer to the binding partners of proteins, while the broader notion of regulatory
interactions also includes indirect influences like up- or downregulation through
signaling pathways. Proteins can also be linked in a metabolic pathway if they
catalyze successive steps in a series of metabolic reactions. Any such interactions,
also with other molecules like DNA, can be used as edges in a biological network
graph. A couple of databases provide interactions measured or inferred by different
methods.

There are also databases providing functional classifications of proteins (or of
the respective genes). Protein function is related to interactions, localization, and
expression. There are two popular ways to measure protein expression: (1) by 2D
gel electrophoresis, in which proteins are spatially separated in a gel according to
mass and electric charge; and (2) by mass spectrometry (MS), in which the masses
of protein fragments are very precisely inferred by measuring their time of flight
after a defined acceleration. However, to the best of our knowledge, no general
databases containing MS protein expression levels exist yet; nor do such databases
exist for protein localization.
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Table 1.8 Databases on data types not covered in the previous tables.

Database URL (http://. . . ) Remarks

dbSNP www.ncbi.nlm.nih.gov/SNP/ single nucleotide polymorphisms

PubMed www.ncbi.nlm.nih.gov/PubMed/ publication abstracts

NCI cactus.nci.nih.gov small molecule structures

Table 1.9 Collections of links to databases on the web.

URL (http://. . . )

bip.weizmann.ac.il/mb/molecular biol databases.html

molbio.info.nih.gov/molbio/db.html

1.2.4 Other Data Types

A number of data types additional to those discussed above also deserve mention.
(1) Chemical compounds (small molecules) are interesting as metabolites, signaling
molecules, and potential drugs. (2) SNPs account for most phenotypic differences
between individuals, including susceptibility to many diseases. (3) The abstracts of
the scientific molecular biology publications form a huge reservoir of badly struc-
tured data. These are the targets of text mining, which attempts to automatically
extract information. Sources of these three types of data are listed in table 1.8; in
addition, the URLs of two database directories are given in table 1.9.

Model organisms are organisms chosen by biologists to be representative of some
class or property and, at the same time, to be simple and accessible. For example,Model organisms
the fruit fly Drosophila melanogaster shares many genes and somatic functions with
humans, but is much easier to investigate (no ethical problems, short reproduction
cycle, etc.). The value of model organisms for bioinformatics lies in the fact that
not only are (almost) complete genomes available for them (this is now the case for
hundreds of organisms) but also plenty of other data which can be set into relation
with the genes. Some model organisms are compiled in table 1.10.

We conclude this section with a small disclaimer: our intention here is to provide
pointers to the largest and most general mainstream databases of bioinformatics.
However, there exist a large number of additional databases on various (often rather
specialized) molecular biological problems. Once again, we refer the interested
reader to the annual database issue of Nucleic Acids Research.

1.3 Bioinformatics Challenges

As described in section 1.2, modern molecular biologists measure huge amounts
of data of various types. The intention is to use these data to (1) reconstruct the
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Table 1.10 A selection of model organisms. We were unable to obtain information on
the number of cells in the last three organisms; however, it is estimated that an adult
human body consists of about 6 · 1010 cells. The numbers of genes are estimates (except
for HIV). The genome size is given as the number of nucleotides in a single strand of the
haploid genome (Mb, for 106 basepairs).

Organism (Common Name) Level Cells Genes Genome

Human immunodeficiency virus (HIV) virus 0 9 0.01 Mb

Methanococcus jannaschii archaea 1 1750 1.66 Mb

Escherichia coli (human gut bacteria) eubacteria 1 4300 4.6 Mb

Saccharomyces cerevisiae (brewer’s yeast) eukaryote 1 6000 12 Mb

Caenorhabditis elegans (nematode worm) animal 959 19,500 100 Mb

Drosophila melanogaster (fruit fly) animal ? 13,700 165 Mb

Arabidopsis thaliana (thale cress) plant ? 25,498 125 Mb

Mus musculus (mouse) mammal ? 35,000 3000 Mb

past (e.g., infer the evolution of species); (2) predict the future (e.g., predict how
someone will respond to a certain drug); (3) guide biological engineering (such
as improving the efficiency of brewer’s yeast). Some of the concrete tasks are so
complex that intermediate steps are already regarded as problems in their own right.
For example, while the sequence of a protein in principle determines its function
(in the particular environment provided by the cell that produces the protein),
one of the grand challenges in bioinformatics is to predict its structure (which can
then serve as a basis for investigating functional aspects like interactions). This
can also be seen as an auxiliary goal complementing the three listed above: to
replace difficult, laborious, time-consuming, and expensive measurements (x-ray
crystallography) with more affordable ones (sequencing).

The rather vague goals described above manifest in a jungle of concrete com-
putational problems. Some of them are very specific, for instance, related to a
certain species or a particular protein; their solution can aid in a particular ap-
plication. Many other problems are more fundamental, but often can be seen as
building blocks for the solution of larger tasks. In the following subsections, we
try to organize some of the more fundamental challenges into a small number of
general schemes. To some of the problems described below, existing approaches are
reviewed in chapter 3.

The following sections are organized along the drug development process of
pharmaceutical companies, which is one of the main applications:

1. Understanding the biological system, especially the mechanism of the disease

2. Identifying target proteins which are pivotal for the disease

3. Characterizing those proteins; most importantly, their tertiary structure

4. Finding small molecules which bind to those proteins and which qualify as drugs
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Figure 1.7 Finding structure in genomic DNA sequences: a small hierarchy of problems.

1.3.1 Genome Structure Analysis

The analysis of DNA sequences (partial or complete genomes) can be organized into
a small tree, as depicted in figure 1.7. It contains at least three “grand challenge”
problems:

Genome comparison. The goal of this discipline is to reconstruct the evolutionary
history, that is, the series of genome rearrangements, that led to different species. A
difficulty is that the phylogeny and the common ancestors must be inferred on the
basis of genomes of present-day species. While pairwise whole genome comparisons
are already a challenge due to the sheer size of a genome, only comparison of
multiple genomes will unleash the full power of this approach. Here, most efficient
algorithms are asked for.

Gene finding. This includes the identification of the gene structure, that is, the
arrangement of the gene’s elements (introns, exons, promoter, etc.). In computer
science terms, the problem is to label substrings of the DNA. In large genomes with
low gene content, like the human genome, especially the false positives can be a
problem. An accurate solution to a large subproblem of gene structure identification,
the prediction of splice sites, is described in chapter 13.

Understanding transcriptional regulation. Here the goal is to quantitatively pre-
dict the expression levels of genes from the details of their promoters and the present
quantities of TFs. In its broadest sense this problem would also include modeling
the 3D structure of DNA. The packing of DNA is believed to have a big impact
on gene expression, since genes must be unpacked before they can be transcribed.
However, the available data may not yet be sufficient for such modeling.

All tasks are complicated by the fact that (presumably) by far not all functional
DNA motifs are known by now. In fact, the understanding of the huge part of DNA
which cannot yet be assigned a function can also be seen as a grand challenge,
albeit possibly in molecular biology rather than in bioinformatics.
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Figure 1.8 Macroscopic states (right) are caused by molecules (left); thus, molecular
measurement data contain information predictive of the macroscopic states.

1.3.2 Relation of Molecular to Macroscopic Data

It is most interesting to identify the molecular causes of macroscopic events or
states, because this understanding allows for a directed search for ways to cause
or prevent such events and to maintain or change such states. Figure 1.8 provides
examples of the molecular and macroscopic data types to be causally related. Three
classes of tasks emerge from this general problem statement:

Population genetics. The strategy in population genetics is to find chromosomal
regions that are inherited along with (completely or partially) heritable traits; such
regions can be supposed to contain genes responsible for those traits. The basic
data for this are pedigrees of families which are annotated with both phenotypic
and genotypic information on the individuals. The genotypic part consists of so-
called genetic markers (such as SNPs) that relate genetic content to chromosomal
location.

Diagnosis. As an example, it is desirable to be able to base the diagnosis of certain
diseases on gene expression patterns. For diseases that are hard to recognize or
distinguish by classic means (e.g., histology), this can potentially be less subjective
and ambiguous. Genetic diseases may also be diagnosed based on SNPs, or both
SNPs and expression data. Sometimes unsupervised analysis of molecular data can
even lead to refined definitions of diseases (Golub et al., 1999).

Therapy optimization. Here, the idea is that every individual is different and that
optimal treatment may be derived from molecular data: the efficacy of drugs may
be predicted on the basis of the genotype of a pathogen (Beerenwinkel et al., 2003).
Optimally, the interplay of the genotype (SNPs) of the patient with that of the
pathogen should be taken into account.

Target finding. This essentially amounts to applying feature selection to a success-
ful prediction of a disease (diagnosis); see chapter 15. Ideally, the relevant features
are related to the cause of the disease, which can then be selected as the target of
drug development.

Systems biology. This is the most ambitious challenge under this rubric, and is
likely to keep bioinformaticians busy in coming years: the goal is nothing less than
to quantitatively simulate entire cells (or large subsystems). This would (among
many other things) allow replacement of animal experiments by computational
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Figure 1.9 The prediction of different properties of proteins can be based on different
(combinations of) data types.

simulations. A step in that direction has already been taken by E-CELL (Tomita,
2001).

1.3.3 Protein Property Prediction

Trying to predict properties of proteins is alluring, because proteins are so important
for the cell (and for the biologist), and difficult, because proteins are so complex
and versatile. There is a whole family of problems which are distinguished by the
predicted property and by the data on which the prediction is based; this is sketched
in figure 1.9.

There are also a number of prediction problems that are not explicitly shown,
because they can be seen as intermediate steps. They include the prediction of
structural motifs (most important, secondary structure) and of solvent accessibility
of amino acids, which can provide valuable hints for a structure prediction. Another
analytical task is the prediction of modifications (such as phosphorylation) from
sequence. Modifications can affect all four types of properties shown on the right
side of figure 1.9.

At least four grand challenge problems are instances of the family illustrated in
the figure:

Structure prediction. Here the amino acid sequence is given, and the 3D structure
of the folded protein (in a cell) is to be computed. The fact that the cellular
environment is so important in reaching the correct structure (cf. section 1.1.3)
renders the idea of simulating its molecular motion in watery solution unappealing
(although this is tried with vigor). Indeed, the most successful structure prediction
methods are knowledge-based (i.e., at least in a way, machine learning) methods.5

Chapters 4 and 12 describe applications of kernel methods to structure prediction.

5. This is demonstrated in the evaluation of the CASP competition available from
http://predictioncenter.llnl.gov/casp5/.
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Function prediction. Here the problem starts with finding an appropriate defini-
tion of function. While hierarchical classifications of functions now exist, it is not
clear whether they are well suited to serve as classes to be predicted. (At least,
the idea of cutting the hierarchy at a fixed depth to define the classes seems to
be questionable.) It has been shown that the best performance can be achieved by
making use of multiple data types, although the proper combination is not trivial
(Pavlidis et al., 2002, see also chapters 10 and 11).

Genetic network reconstruction. The term genetic network refers to a graph
specifying interactions between molecules, especially of regulatory type. Although
a few experimental methods exist to find such interactions, there is also great
interest in predicting them to obtain a more complete picture at less cost. A genetic
network can allow deduction of hypotheses about, say, the effects of inhibiting
certain proteins, which may suggest drug target candidates. Several models for
computational treatment have been suggested: probably the most prominent classes
are Boolean, linear, and Bayesian networks; a recent trend is the use of graph kernels
(cf. chapter 8).

Docking. This is the computational prediction of molecular binding events involv-
ing proteins. There are two flavors of protein docking: protein-protein docking and
protein-ligand docking. The goal of protein-protein docking is basically to predict
whether two proteins can bind at all; this can contribute edges for biological net-
works. While the backbones are usually taken to be fixed, it is important to model
the flexibility of the involved side chains. In protein-ligand docking, the flexibility
of the ligand (the small molecule) is essential; often, it is also crucial on the side
of the protein (induced fit). Here, the goal includes predicting the strength of the
binding (affinity), which must be high for inhibitors.

1.3.4 Small Molecule Problems

Computational work with chemical compounds is sometimes regarded as a subdisci-
pline of bioinformatics and sometimes viewed as a separate field termed chemoinfor-
matics or cheminformatics. For completeness, we briefly introduce the main prob-

Chemoinformatics,
cheminformatics

lems in this area that bear biological relevance. Usually they are closely related to
the task of drug development.

Virtual HTS (high-throughput screening).
This is essentially protein-ligand docking (see above) viewed from a different
perspective. Simulating the experimental HTS, large databases of compounds are
tested against a receptor protein to identify potential ligands.

Lead identification. This means proposing a novel skeleton of a suitable drug
molecule, called a lead structure, based on a collection of data related to a disease.
The data may be the product of virtual or real HTS. While virtual HTS relies on
the atomic structure of the binding pocket of the protein of interest, in practice
it often is not known. Then techniques like QSAR (quantitative structure-activity
relationships) are used to infer important properties from molecules with known
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activity. Such properties can be summarized in a pharmacophore, an abstract
characterization of the set of molecules of interest. In lead hopping, the task is
to find new lead structures for a given pharmacophore (with known leads), for
example, to evade patent problems.

Predictive toxicology. Not being (too) toxic is an important prerequisite for
a drug. Depending on the time scale of the effect, toxicity may be acute or
chronic. While acute cytostatic (inhibiting cell growth) toxicity is quite amenable
to experimental investigations, lab screenings for chronic effects like carcinogenicity
(causing cancer) are very time-consuming and hard to standardize. Thus, reliable in
silico predictions would be of high value. Of course, there are further properties of
small molecules that are relevant to drug candidates, often subsumed by the term
ADME (absorption, distribution, metabolism, and excretion). Much effort has been
spent on developing good representations of molecules for solving such prediction
tasks; modern methods allow working directly with the natural representation by
a labeled graph (cf. chapter 7).

1.4 Summary

It is hard to summarize the first two sections of this chapter. The section on the
basic biology of the cell (section 1.1) is already a summary in itself. Please be
warned that there is much, much more to cellular biology and that it really matters
for successful bioinformatics. With respect to the molecular biology measurement
data (section 1.2), we would like to add that biotechnology is a very active field and
new technology is constantly being developed. Thus, new exciting types of data can
be expected to become available and popular in the near future.

What we do want to explicitly point out here are a couple of things that may
have already become apparent from section 1.3. In several examples it could be
seen that many bioinformatics problems

1. can be posed as machine learning problems;

2. concern a structured data type (as opposed to “simple” real vectors);

3. concern a combination of different data types.

Corresponding to that, the subsequent chapters of this book are concerned with
the following questions:

1. How to properly model bioinformatics problems in a machine learning frame-
work.

2. How to operate on structured data types with the use of kernel functions.

3. How to combine different data types with clever kernels or algorithms.

While there already is some tradition of machine learning approaches to the analysis
of molecular biology data, it has so far been mostly concerned with relatively
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simple data structures (usually, fixed-length vectors of real values and categorical
attributes). By demonstrating new ways to deal with complex data this book
may contribute to accelerating the progress and success of machine learning in
bioinformatics, and possibly also in other application areas.



 

2 A Primer on Kernel Methods
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Kernel methods in general, and support vector machines (SVMs) in particular, are
increasingly used to solve various problems in computational biology. They offer
versatile tools to process, analyze, and compare many types of data, and offer state-
of-the-art performance in many cases. This self-contained introduction to positive
definite kernels and kernel methods aims at providing the very basic knowledge
and intuition that the reader might find useful in order to fully grasp the technical
content of this book.

2.1 Introduction

Kernel methods in general and SVMs in particular have been successfully applied
to a number of real-world problems and are now considered state-of-the-art in
various domains, although it was only fairly recently that they became part of the
mainstream in machine learning and empirical inference. The history of methods
employing positive definite kernels, however, can be traced back at least a few
decades. Aronszajn (1950) and Parzen (1962) were some of the first to employ these
methods in statistics. Subsequently, Aizerman et al. (1964) used positive definite
kernels in a way which was already closer to what people now call the kernel trick.
They employed radial basis function kernels to reduce a convergence proof for the
potential function classifier to the linear perceptron case. To do this, they had
to argue that a positive definite kernel is identical to a dot product in another
space (sometimes called the feature space), in which their algorithm reduced to the
perceptron algorithm. They did not, however, use the feature space view to design
new algorithms.

The latter was done some thirty years later by Boser et al. (1992), to construct the
SVMs, a generalization of the so-called optimal hyperplane algorithm. Initially, itKernel methods
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was thought that the main strength of SVMs compared to the optimal hyperplane
algorithm was that they allowed the use of a larger class of similarity measures.
Just as optimal hyperplanes, however, they were only used on vectorial data. But
soon it was noted (Schölkopf, 1997) that kernels not only increase the flexibility
by increasing the class of allowed similarity measures but also make it possible
to work with nonvectorial data. This is due to the fact that kernels automatically
provide a vectorial representation of the data in the feature space. The first examples
of nontrivial kernels defined on nonvectorial data were those of Haussler (1999)
and Watkins (2000) (see also Cristianini and Shawe-Taylor, 2000). Moreover, it
was pointed out (Schölkopf et al., 1998) that kernels can be used to construct
generalizations of any algorithm that can be carried out in terms of dot products,
and the last 5 years have seen a large number of “kernelizations” of various
algorithms (Graepel and Obermayer, 1998; Weston et al., 1999; Tsuda, 1999; Ruján
and Marchand, 2000; Herbrich et al., 2000; Fyfe and Lai, 2000; Rosipal and Trejo,
2001; Akaho, 2001; Harmeling et al., 2001; Girolami, 2002; Suykens et al., 2002;
Weston et al., 2003a; Vert and Kanehisa, 2003b; Kuss and Graepel, 2003).

Further threads of kernel work can be identified in approximation theory and
statistics (Berg et al., 1984; Micchelli, 1986; Wahba, 2002; Poggio and Girosi, 1990),
as well as in the area of Gaussian process prediction and related fields such as
kriging, where kernels play the role of covariance functions (see, e.g., Weinert,
1982; Williams, 1998; MacKay, 1998).

This chapter is structured as follows. Section 2.2 is devoted to the presentation
of kernels and some of their basic properties. Kernel methods are then introduced
in section 2.3, SVMs being treated in more detail in section 2.4. We then discuss
more advanced kernel topics relevant to this book, including the presentation of
several families of kernels in section 2.6, and an introduction to the emergent field
of kernel design in section 2.7.

2.2 Kernels

Kernels are the basic ingredient shared by all kernel methods. They provide a gen-
eral framework to represent data, and must satisfy some mathematical conditions.
These conditions give them a number of properties useful to bear in mind when it
comes to understanding the intuition behind kernel methods and kernel design.

2.2.1 The Issue of Data Representation

Let us denote by S = (x1, · · · ,xn) a set of n objects to be analyzed. We suppose
that each object xi is an element of a set X, which may, for example, be the set of
all possible images if one wants to analyze a set of images, or the set of all possible
molecules in a biological context. In order to design data analysis methods, the first
question to be addressed is how to represent the data set S for further processing.
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Figure 2.1 Two different representations of the same dataset. is supposed to be the set
of all oligonucleotides, and is a data set of three particular oligonucleotides. The classic
way to represent is first to define a representation φ(x) for each element of x ∈ , for
example, as a sequence of letters to represent the succession of nucleotides, and then to
represent as the set φ( ) of representations of its elements (upper part). Kernel methods
are based on a different representation of , as a matrix of pairwise similarity between its
elements (lower part).

The vast majority of data analysis methods, outside kernel methods, have a
natural answer to this question: first define a representation for each object, and
then represent the set of objects by the set of their representations. Formally, this
means that a representation φ(x) ∈ F is defined for each possible object x ∈ X,
where the representation can, for example, be a real-valued vector (F = R

p),
a finite-length string (F is then the set of all finite-length strings), or a more
complex representation that can be processed by an algorithm. The data set
S is then represented as the set of individual object representations, φ(S) =
(φ (x1) , · · · , φ (xn)), and the algorithm is designed to process such data. As an
example, if a protein is represented by a sequence of letters that corresponds to its
primary structure, then a set of proteins can be represented by a set of sequences.

Kernel methods are based on a radically different answer to the question of data
representation. Data are not represented individually anymore, but only through aKernel

representation set of pairwise comparisons. In other words, instead of using a mapping φ : X→ F

to represent each object x ∈ X by φ(x) ∈ F, a real-valued “comparison function”
k : X × X → R is used, and the data set S is represented by the n × n matrix of
pairwise comparisons ki,j = k(xi,xj). All kernel methods are designed to process
such square matrices. The difference between both approaches is represented in
figure 2.1.

Several comments can already be made at this point. First, the representation
as a square matrix does not depend on the nature of the objects to be analyzed.
They can be images, molecules, or sequences, and the representation of a data set
is always a real-valued square matrix. This suggests that an algorithm developed to
process such a matrix can analyze images as well as molecules or sequences, as long
as valid functions k can be defined. This also suggests that a complete modularity
exists between the design of a function k to represent data on the one hand, and
the design of an algorithm to process the data representations on the other hand.
These properties turn out to be of utmost importance in fields like computational
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biology, where data of different nature need to be integrated and analyzed in a
unified framework.

Second, the size of the matrix used to represent a dataset of n objects is always
n× n, whatever the nature or the complexity of the objects. For example, a set of
ten tissues, each characterized by thousands of gene expression levels, is represented
by a 10 × 10 matrix, whatever the number of genes. Computationally, this is very
attractive in the case when a small number of complex objects are to be processed.

Third, there are many cases where comparing objects is an easier task than finding
an explicit representation for each object that a given algorithm can process. As an
example, many data analysis algorithms, such as least squares regression or neural
networks, require an explicit representation of each object x as a vector φ (x) ∈ R

p.
There is no obvious way to represent protein sequences as vectors in a biologically
relevant way, however, while meaningful pairwise sequence comparison methods
exist.

2.2.2 General Definition

As the reader might guess, the comparison function k is a critical component of any
kernel method, because it defines how the algorithm “sees” the data. Most kernel
methods described below can only process square matrices, which are symmetric
positive definite. This means that if k is an n× n matrix of pairwise comparisons,
it should satisfy ki,j = kj,i for any 1 ≤ i, j ≤ n, and c�kc ≥ 0 for any c ∈ Rn.1

This motivates the following definition:

Definition 2.1 A function k : X× X→ R is called a positive definite kernel iff it
is symmetric, that is, k(x,x′) = k(x′,x) for any two objects x,x′ ∈ X, and positive
definite, that is,Positive definite

kernel n∑
i=1

n∑
j=1

cicjk(xi,xj) ≥ 0

for any n > 0, any choice of n objects x1, · · · ,xn ∈ X, and any choice of real
numbers c1, · · · , cn ∈ R.

From now on, we only focus on positive definite kernels, and simply call them
kernels. Definition 2.1 ensures that if k is a kernel, then any pairwise similarity
matrix built from k is symmetric positive definite.

Imposing the condition that a comparison function be a kernel clearly restricts
the class of functions one can use. For example, the local alignment scores widely
used in computational biology to assess the similarity between sequences are not
in general kernels (see chapter 6). However, this restriction is often worth the cost

1. In mathematics, such a matrix is usually called positive semidefinite, because c�kc
can be zero and not strictly positive. However, in this chapter, we follow the notation in
approximation theory (Wahba, 2002), which omits “semi” for simplicity.
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because it opens the door to the use of kernel methods (see section 2.3). Moreover,
an increasing number of “tricks” are being developed to derive kernels from virtually
any comparison function (see section 2.7).

Before we describe kernel methods in more detail, however, let us try to get a
better intuition about kernels themselves. Kernels have several properties which one
should bear in mind in order to fully understand kernel methods, and to understand
the motivations behind the kernels developed in this book.

2.2.3 Kernels as Inner Product

Let us start with a simple example that leads to a fundamental property of kernels.
Suppose the data to be analyzed are real vectors, that is, X = R

p and any object is
written as x = (x1, · · · , xp)�. One is tempted to compare such vectors using their
inner product: for any x,x′ ∈ Rp,Linear kernel

kL(x,x′) := x�x′ =
p∑

i=1

xix
′
i. (2.1)

This function is a kernel. Indeed, it is symmetric (x�x′ = x′�x), and the positive
definiteness results from the following simple calculation, valid for any n > 0,
x1, · · · ,xn ∈ R

p, and c1, · · · , cn ∈ R:
n∑

i=1

n∑
j=1

cicjkL(xi,xj) =
n∑

i=1

n∑
j=1

cicjx�
i xj = ||

n∑
i=1

cixi||2 ≥ 0. (2.2)

The inner product between vectors is the first kernel we encounter. It is usually
called the linear kernel. An obvious limitation of this kernel is that it is only
defined when the data to be analyzed are vectors. For more general objects x ∈ X,
however, this suggests a way to define kernels in a very systematic manner, by first
representing each object x ∈ X as a vector φ(x) ∈ R

p, and then defining a kernel
for any x,x′ ∈ X by

k(x,x′) = φ(x)�φ(x′). (2.3)

Following the same line of computation as in (2.2), the reader can easily check that
the function k defined in (2.3) is a valid kernel on the space X, which does not need
to be a vector space.

Any mapping φ : X→ R
p for some p ≥ 0 results in a valid kernel through (2.3).

Conversely, one might wonder whether there exist more general kernels than these.
As the following classic result of Aronszajn (1950) shows, the answer is negative, at
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φ
X F

Figure 2.2 Any kernel on a space can be represented as an inner product after the
space is mapped to a Hilbert space , called the feature space.

least if one allows R
p to be replaced by an eventually infinite-dimensional Hilbert

space2:

Theorem 2.2 For any kernel k on a space X, there exists a Hilbert space F and a
mapping φ : X→ F such that

k(x,x′) = 〈φ(x), φ(x′)〉, for any x,x′ ∈ X, (2.4)

where 〈u, v〉 represents the dot product in the Hilbert space between any two points
u, v ∈ F.

This result, illustrated in figure 2.2, provides a first useful intuition about kernels:Feature space
they can all be thought of as dot products in some space F, usually called the
feature space. Hence, using a kernel boils down to representing each object x ∈ X

as a vector φ (x) ∈ F, and computing dot products. There is, however, an important
difference with respect to the explicit representation of objects as vectors, discussed
in subsection 2.2.1: here the representation φ (x) does not need to be computed
explicitly for each point in the data set S, since only the pairwise dot products are
necessary. In fact, there are many cases where the feature space associated with a
simple kernel is infinite-dimensional, and the image φ (x) of a point x is tricky to
represent even though the kernel is simple to compute.

This intuition of kernels as dot products is useful in order to provide a geometric
interpretation of kernel methods. Indeed, most kernel methods possess such an
interpretation when the points x ∈ X are viewed as points φ (x) in the feature
space.

2.2.4 Kernels as Measures of Similarity

In this book, as well as in the kernel methods community, kernels are often presented
as measures of similarity, in the sense that k (x,x′) is “large” when x and x′

2. A Hilbert space is a vector space endowed with a dot product (a strictly positive and
symmetric bilinear form), that is complete for the norm induced. p with the classic inner
product is an example of a finite-dimensional Hilbert space.
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are “similar.” This motivates the design of kernels for particular types of data or
applications, because particular prior knowledge might suggest a relevant measure
of similarity in a given context. As an example, the string and graph kernels
presented in chapters 6 and 7 are motivated by a prior intuition of relevant notions
of similarity: the fact that two biological sequences are similar when there exist
good alignments between them, on the one hand, and the fact that two graphs are
similar when they share many common paths, on the other.

The justification for this intuition of kernels as measures of similarity is not always
obvious, however. From subsection 2.2.3 we know that kernels are dot products in
a feature space. Yet the notion of dot product does not always fit one’s intuition of
similarity, which is more related to a notion of distance. There are cases where these
notions coincide. Consider, for example, the following kernel on X = R

p, called the
Gaussian radial basis function (RBF) kernel:RBF kernel

kG(x,x′) = exp

(
−d (x,x′)2

2σ2

)
, (2.5)

where σ is a parameter and d is the Euclidean distance. This is a valid kernel (see
subsection 2.7.2), which can be written as a dot product kG (x,x′) = 〈φ (x) , φ (x′)〉
by theorem 2.2. The feature space is a functional space, and an explicit form of the
map φ is not obvious. By (2.5), we see that this kernel is a decreasing function of
the Euclidean distance between points, and therefore has a relevant interpretation
as a measure of similarity: the larger the kernel kG(x,x′), the closer the points x
and x′ in X.

For more general kernels k on a space X, basic linear algebra in the feature space
associated with k by theorem 2.2 shows that the following holds for any two objects
x,x′ ∈ X:

k(x,x′) =
||φ (x) ||2 + ||φ (x′) ||2 − d (φ (x′) , φ (x′))2

2
, (2.6)

where d is the Hilbert distance defined by d(u, v)2 = 〈(u− v) , (u− v)〉 and ||.|| is
the Hilbert norm (||u||2 = 〈u, u〉). Equation (2.6) shows that the kernel k (x,x′)
measures the similarity between x and x′ as the opposite of the square distance
d (φ (x) , φ (x′))2 between their images in the feature space, up to the terms ||φ (x) ||2
and ||φ (x′) ||2. If all points have the same length in the feature space, meaning
||φ (x) ||2 = k (x,x) = constant for all x ∈ X, then the kernel is simply a decreasing
measure of the distance in the feature space. This is, for example, the case for all
translation-invariant kernels of the form k (x,x′) = ψ (φ (x) − φ (x′)) such as the
Gaussian RBF kernel (2.5), because in this case k (x,x) = ψ(0) for any x ∈ X. For
more general kernels, one should keep in mind the slight gap between the notion of
dot product and similarity.

The conclusion of this section is that it is generally relevant to think of a
kernel as a measure of similarity, in particular when it is constant on the diagonal.
This intuition is useful in designing kernels and in understanding kernel methods.
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For example, methods like SVMs (see section 2.4), which predict the values of a
function at a given point from the observation of its values at different points, base
their prediction on the hypothesis that “similar” points are likely to have similar
values. The “similarity” between points mentioned here is precisely the similarity
determined by the kernel.

2.2.5 Kernels as Measures of Function Regularity

Let k be a kernel on a space X. In this section we show that k is associated with
a set of real-valued functions on X, Hk ⊂ {f : X→ R}, endowed with a structure
of Hilbert space (in particular, with a dot product and a norm). Understanding
the functional space Hk and the norm associated with a kernel often helps in
understanding kernel methods and in designing new kernels, as we illustrate in
section 2.3.

Let us start with two examples of kernels and their associated functional spaces.
Consider first the linear kernel (2.1) on a vector space X = R

p. The corresponding
functional space is the space of linear function f : Rd → R:

Hk =
{
f(x) = w�x : w ∈ R

p
}

, (2.7)

and the associated norm is just the slope of the linear function,

||f ||Hk
= ||w|| for f(x) = w�x. (2.8)

As a second example, consider the Gaussian RBF kernel (2.5) on the same vector
space X = Rp. The associated functional space is the set of functions f : Rd → R

with Fourier transform f̂ that satisfies

N(f) =
1

(2πσ2)
p
2

∫
Rp

∣∣∣ f̂ (ω)
∣∣∣2 e

σ2
2 ||ω||2dω < +∞,

and the norm in Hk is precisely this functional: ||f ||Hk
= N(f). Hence Hk is a

set of functions with Fourier transforms that decay rapidly, and the norm ||.||Hk

quantifies how fast this decay is.
In both examples, the norm ||f ||Hk

decreases if the “smoothness” of f increases,
where the definition of smoothness depends on the kernel. For the linear kernel,
the smoothness is related to the slope of the function: a smooth function is a flat
function. For the Gaussian RBF kernel, the smoothness of a function is measured
by its Fourier spectrum: a smooth function has little energy at high frequencies.
These examples of smoothness turn out to be very general, the precise definition of
smoothness depending on the kernel considered. In fact, the notion of smoothness is
dual to the notion of similarity discussed in subsection 2.2.4: a function is “smooth”
when it varies slowly between “similar” points.
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Let us now sketch the systematic construction of the functional space Hk from
the kernel k. The set Hk is defined as the set of function f : X→ R of the form

f(x) =
n∑

i=1

αik(xi,x), (2.9)

for n > 0, a finite number of points x1, · · · ,xn ∈ X, and a finite number of weights
α1, . . . , αn ∈ R, together with their limits under the norm:

||f ||2Hk
:=

n∑
i=1

n∑
j=1

αiαjk (xi,xj) . (2.10)

It can be checked that this norm is independent of the representation of f in
(2.9). Hk is in fact a Hilbert space, with a dot product defined for two elements
f(x) =

∑n
i=1 αik(xi,x) and g(x) =

∑m
j=1 α′

ik(x′
i,x) byReproducing

kernel Hilbert
space 〈f, g〉 =

n∑
i=1

m∑
j=1

αiα
′
jk
(
xi,x′

j

)
.

An interesting property of this construction is that the value f (x) of a function
f ∈ Hk at a point x ∈ X can be expressed as a dot product in Hk,

f (x) = 〈f, k (x, .)〉. (2.11)

In particular, taking f (.) = k (x′, .), we derive the following reproducing property
valid for any x,x′ ∈ X:

k (x,x′) = 〈k (x, .) , k (x′, .)〉. (2.12)

For this reason, the functional space Hk is usually called the reproducing kernel
Hilbert space (RKHS) associated with k. The equality in (2.12) also shows that the
Hilbert space Hk is one possible feature space associated with the kernel k, when
we consider the mapping φ : X → Hk defined by φ (x) := k (x, .). Indeed, (2.4) is
exactly equivalent to (2.12) in this case. The construction of Hk therefore provides
a proof of theorem 2.2.

Aside from the technicalities of this section, the reader should keep in mind theRegularization
connection between kernels and norms on functional spaces. Most kernel methods
have an interpretation in terms of functional analysis. As an example, we show in
the next sections that many kernel methods, including SVMs, can be defined as
algorithms that, given a set of objects S, return a function that solves the equation

min
f∈Hk

R(f, S) + c||f ||Hk
, (2.13)

where R(f, S) is small when f “fits” the data well, and the term ||f ||Hk
ensures

that the solution of (2.13) is “smooth.” In fact, besides fitting the data well and
being smooth, the solution to (2.13) turns out to have special properties that are
useful for computational reasons, which are discussed in theorem 2.3.3 below.
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2.3 Some Kernel Methods

Having discussed the notions of data representation and kernels in section 2.2,
let us now turn our attention to the algorithms that process the data to perform
some particular tasks, such as clustering, computing various properties, inferring a
regression or classification function from its observation on a finite set of points,
and so on. We focus here on a class of algorithms called kernel methods, which
can roughly be defined as those for which the data to be analyzed only enter the
algorithm through the kernel function; in other words, algorithms that take as input
the similarity matrix defined by a kernel.

Recent years have witnessed the development of a number of kernel methods,
which we do not have the ambition to survey in full generality in this short
introduction. Historically, the first kernel method recognized as such is the SVM
(Boser et al., 1992), which has found many applications in computational biology
(see survey in chapter 3), and which we describe in detail in section 2.4. Before
this, let us try briefly to give a flavor of the two concepts that underlie most kernel
methods: the kernel trick and the representer theorem.

2.3.1 The Kernel Trick

The kernel trick is a simple and general principle based on the property of kernels
discussed in subsection 2.2.3, namely that they can be thought of as inner product.
It can be stated as follows.

Proposition 2.3 Any algorithm for vectorial data that can be expressed only inKernel trick
terms of dot products between vectors can be performed implicitly in the feature space
associated with any kernel, by replacing each dot product by a kernel evaluation.

The kernel trick is obvious but has huge practical consequences that were only
recently exploited. It is first a very convenient trick to transform linear methods,
such as linear discriminant analysis (Hastie et al., 2001) or principal component
analysis (PCA; Jolliffe, 1986), into nonlinear methods, by simply replacing the
classic dot product by a more general kernel, such as the Gaussian RBF kernel
(2.5). Nonlinearity is then obtained at no computational cost, as the algorithm
remains exactly the same. The operation that transforms a linear algorithm into a
more general kernel method is often called kernelization.

Second, the combination of the kernel trick with kernels defined on nonvectorial
data permits the application of many classic algorithms on vectors to virtually any
type of data, as long as a kernel can be defined. As an example, it becomes natural to
perform PCA on a set of sequences, thanks to the availability of kernels for sequences
such as those discussed in chapter 4 or chapter 6, or to search for structure-
activity relationships on chemical compounds using least squares regression without
computing an explicit representation of molecules as vectors, thanks to the graph
kernel presented in chapter 7.
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Figure 2.3 Given a space endowed with a kernel, a distance can be defined between
points of mapped to the feature space associated with the kernel. This distance can
be computed without explicitly knowing the mapping φ thanks to the kernel trick.

2.3.2 Example: Computing Distances between Objects

Let us illustrate the kernel trick on the very simple problems of computing distances
between points and clouds of points, which we attempt in general sets X endowed
with a kernel k. Recall from theorem 2.2 that the kernel can be expressed as a
dot product k(x,x′) = 〈φ(x), φ(x′)〉 in a dot product space F for some mapping
φ : X→ F.

As a starter consider two objects x1,x2 ∈ X, such as two sequences or two
molecules. These points are mapped to two vectors φ (x1) and φ (x2) in F, so it is
natural to define a distance d (x1,x2) between the objects as the Hilbert distance
between their images,

d (x1,x2) := ||φ (x1)− φ (x2) ||. (2.14)

This definition is illustrated in figure 2.3. At first sight, it seems necessary to
explicitly compute the images φ (x1) and φ (x2) before computing this distance.
However, the following simple equality shows that the distance (2.14) can be
expressed in terms of dot products in F:

||φ (x1)− φ (x2) ||2 = 〈φ (x1) , φ (x1)〉+ 〈φ (x2) , φ (x2)〉 − 2〈φ (x1) , φ (x2)〉. (2.15)

Applying the kernel trick in (2.15) and plugging the result into (2.14) shows that
the distance can be computed only in terms of the kernel,

d (x1,x2) =
√

k (x1,x1) + k (x2,x2)− 2k (x1,x2). (2.16)

The effect of the kernel trick is easily understood in this example: it is possible to
perform operations implicitly in the feature space. This is of utmost importance
for kernels that are easy to calculate directly, but correspond to complex feature
spaces, such as the Gaussian RBF kernel (2.5).

Let us now consider the following slightly more general problem. Let S =
(x1, · · · ,xn) be a fixed finite set of objects, and x ∈ X a generic object. Is it
possible to assess how “close” the object x is to the set of objects S?
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Figure 2.4 The distance between the white circle and the set of three black circles in
the space endowed with a kernel (on the left) is defined as the distance in the feature
space between the image of the white circle and the centroid m of the images of the black
circles. The centroid m might have no preimage in . This distance can nevertheless be
computed implicitly with the kernel trick.

This question might be of interest in different contexts. For example, in binary
classification, one observes two sets of objects S1 and S2 having two different
properties, and one is asked to predict the property of a new object x. A natural
way to achieve this is to predict that x has the property of the objects in S1 if it
is closer to S1 than S2, and the other property otherwise. A second example was
recently proposed by Gorodkin et al. (2001) in the context of multiple sequence
alignment. Given a set of biological sequences to align jointly, the authors proposed
a pairwise alignment score as a kernel from which they derived a ranking of the
sequences, from the most central to the most peripheral with respect to the whole
set. This ranking can then be used to improve a greedy multiple alignment.

Having mapped the data set S and the object x in the feature space with the
function φ, a natural way to measure the distance from x to S is to define it as the
Euclidean distance between φ (x) and the centroid of S in the feature space, where
the centroid is defined as

m =
1
n

n∑
i=1

φ (xi) .

In general, there is no reason why m should be the image of an object x ∈ X by φ,
but still it is well defined as an element of F. As illustrated in figure 2.4, we can
now define the distance from x to S as follows:

dist(x, S) = ||φ(x) −m|| = ||φ(x) − 1
n

n∑
i=1

φ(xi)||. (2.17)

Expanding the square distance (2.17) in terms of dot products in the feature space
as we did in (2.15), and using the kernel trick, we obtain

dist(x, S) =

√√√√k(x,x)− 2
n

n∑
i=1

k(x,xi) +
1
n2

n∑
i=1

n∑
j=1

k(xi,xj). (2.18)



2.3 Some Kernel Methods 47

This shows that the distance from x to S can be computed entirely from the values
of the kernels between pairs of points in {x} ∪ S, even though it is defined as a
distance in the feature space between φ(x) and a point m that does not necessarily
even have a preimage φ−1(m) in X.

As a slight generalization to (2.18), interested readers can now easily verify that
the kernel trick allows them to define the following functional as a distance between
two sets of points S1 and S2:√

1
|S1|2

∑
x,x′∈S1

k(x,x′) +
1
|S2|2

∑
x,x′∈S2

k(x,x′)− 2
|S1||S2|

∑
x∈S1,x′∈S2

k(x,x′).

2.3.3 The Representer Theorem

The kernel trick is straightforward when one thinks of kernels as inner products
(see subsection 2.2.3), and is a convenient guideline to deriving kernel methods
from linear algorithms. When one thinks of kernels as regularization operators (see
subsection 2.2.5), a simple but deep theorem can help understand many kernel
methods in a different light. This theorem, called the representer theorem, was first
stated less generally by Kimeldorf and Wahba (1971):

Theorem 2.4 Let X be a set endowed with a kernel k, and S = {x1, · · · ,xn} ⊂ XRepresenter
theorem a finite set of objects. Let Ψ : Rn+1 → R be a function of n + 1 arguments, strictly

monotonic increasing in its last argument. Then any solution of the problem

min
f∈Hk

Ψ (f (x1) , · · · , f (xn) , ||f ||Hk
) , (2.19)

where (Hk, ||.||Hk
) is the RKHS associated with k, admits a representation of the

form

∀x ∈ X, f (x) =
n∑

i=1

αik (xi,x) . (2.20)

Proof With the notations of theorem 2.4, let us call ξ (f, S) the function to be
minimized in (2.19), and let

HS
k =

{
f ∈ Hk : f (x) =

n∑
i=1

αik (xi,x) , (α1, · · · , αn) ∈ R
n

}
⊂ Hk.

Any function f ∈ Hk can be decomposed as f = fS + f⊥, where fS ∈ HS
k is the

orthogonal projection of f onto the subspace HS
k and f⊥ ⊥ HS

k . By (2.11) it follows
that f⊥ (xi) = 〈f⊥, k (xi, .)〉 = 0 for i = 1, · · · , n, because each function k (xi, .)
is an element of HS

k and f⊥ is orthogonal to each element of HS
k by definition.

Therefore f (xi) = fS (xi) for each i = 1, · · · , n. Moreover, Pythagoras theorem in
Hk states that ||f ||2Hk

= ||fS||2Hk
+ ||f⊥||Hk

. This shows that ξ (f, S) ≥ ξ (fS, S),
with equality iff ||f⊥||Hk

= 0, or f⊥ = 0, because Ψ is strictly monotonic increasing
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in its last argument. As a result, any minimum f of ξ (f, S) must belong to HS
k ,

which concludes the proof.

Theorem 2.4 shows the dramatic effect of regularizing a problem by including
a dependency in ||f ||Hk

in the function to optimize. As pointed out in subsec-
tion 2.2.5, this penalization makes sense because it forces the solution to be smooth,
which is usually a powerful protection against overfitting of the data. The repre-
senter theorem shows that this penalization also has substantial computational
advantages: any solution to (2.19) is known to belong to a subspace of Hk of di-
mension at most n, the number of points in S, even though the optimization is
carried out over a possibly infinite-dimensional space Hk. A practical consequence
is that (2.19) can be reformulated as an n-dimensional optimization problem, by
plugging (2.20) into (2.19) and optimizing over (α1, · · · , αn) ∈ R

n.
Most kernel methods can be seen in light of the representer theorem. Indeed,

as we show in the next examples, they often output a function of the subspace
HS

k ; indeed one can often explicitly write the functional that is minimized, which
involves a norm in Hk. This observation can serve as a guide to choosing a kernel
for practical applications, if one has some prior knowledge about the function the
algorithm should output: it is in fact possible to design a kernel such that a priori
desirable functions have a small norm.

2.3.4 Example: Kernel Principal Component Analysis

PCA (Jolliffe, 1986) is a powerful method to extract features from a set of vectorsPCA
and to visualize them. Let us first suppose that X = R

p and S = (x1, . . . ,xn) is a
set of centered vectors,

n∑
i=1

xi = 0.

The orthogonal projection onto a direction w ∈ R
p is the function hw : X → R

defined by

hw (x) = x� w

||w|| . (2.21)

As illustrated in figure 2.5, PCA finds successive directions w1, . . . ,wp for which
the projections hwi

have maximum empirical variance and wi is orthogonal to
w1, . . . ,wi−1, for i = 1, . . . , p. Here the empirical variance of a projection hw is
defined by

ˆvar (hw) :=
1
n

n∑
i=1

hw (xi)
2 =

1
n

n∑
i=1

(
x�

i w
)2

||w||2 . (2.22)

There may be ambiguity in this definition if two different directions have the same
empirical variance, which we will not discuss further in the hope of keeping the
attention of the reader on the kernelization of PCA.
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Figure 2.5 For centered vectorial data, principal component analysis (PCA) finds the
orthogonal directions of largest variations.

Let us now rephrase PCA in terms of functional optimization (Schölkopf and
Smola, 2002). Let kL be the linear kernel (2.1), and Hk the RKHS (2.7) associated
with kL. Given any direction w ∈ Rd, we use (2.8) to associate the function fw ∈ Hk

defined by fw (x) = w�x, with norm ||fw|| = ||w||. Here, ||fw|| is understood as
the norm of f in Hk, while ||w|| is the Euclidean norm of w in R

d. The empirical
variance (2.22) of the projection onto w can therefore be expressed in terms of fw;

∀w ∈ R
p, ˆvar (hw) =

1
n||fw||2

n∑
i=1

fw(xi)2.

Moreover, orthogonality of two directions w, w′ ∈ R
p is equivalent to the orthog-

onality of the corresponding functions fw, f ′
w ∈ Hk with respect to the dot prod-

uct of Hk. Linear PCA can therefore be rephrased as finding successive functions
f1, . . . , fp ∈ Hk defined recursively as follows: for i = 1, . . . , p, fi maximizes the
functional

∀f ∈ Hk, Ψ (f) :=
1

n||f ||2
n∑

j=1

f(xj)2, (2.23)

under the constraints of orthogonality with respect to f1, . . . , fi−1. Here again, the
definition has some ambiguity if several functions have the same value.

The functional (2.23) satisfies the conditions of theorem 2.4: it is a strictly
decreasing function of ||f ||, and only depends on the values that f takes on
the points x1, . . . ,xn. Theorem 2.4 shows that the successive directions fi, for
i = 1, . . . , p, admit a representation

∀x ∈ X, fi (x) =
n∑

j=1

αi,jk (xj ,x) , (2.24)

for some αi = (αi,1, . . . , αi,n)� ∈ Rn [indeed, the proof of theorem 2.4 remains valid
when the optimization (2.19) is performed on a subspace of Hk, such as a subspace
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defined by orthogonality conditions]. Combining (2.24) and (2.10), we can express
the norm ||fi|| in terms of αi using matrix notations,

||fi||2 = α�
i kαi, (2.25)

which with (2.24) yields

n∑
i=1

fi (xi)
2 = α�

i k2αi. (2.26)

Plugging (2.25) and (2.26) into (2.23), we obtain a dual formulation of PCA
which consists in finding α1, . . . , αp ∈ Rn defined recursively: for i = 1, . . . , p,
αi maximizes the function

α�k2α

nα�kα
, (2.27)

under the constraints αikαj = 0, for j = 1, . . . , i − 1. The principal components
are then recovered by (2.24).

Classic linear algebra (Schölkopf et al., 1998) shows that the solutions αi of this
problem are precisely the eigenvectors of k. In order to recover the projections
(2.21) onto the principal directions, the eigenvector αi of k with eigenvalue λi must
be scaled to ensure 1 = ||wi|| = α�

i kαi = λi||αi||2, or ||αi|| = 1/
√

λi. Of course
this conputation is only valid if the data are centered in the feature space. This is
not a restriction, however, because any kernel matrix k can be transformed into a
matrix k̃ corresponding to the inner products of the same points after centering in
the feature space, using the kernel trick. The reader can check that k̃ is obtained
by the formula k̃ = (I − e/n)k(I − e/n), where I is the identity matrix and e is the
singular matrix with all entries equal to 1.

This representation of PCA only involves the diagonalization of the n×n matrix
of pairwise comparisons with the linear kernel. It can therefore be kernelized by
simply replacing this matrix with the same n × n matrix of pairwise comparisons
obtained from a different kernel. In that case, linear PCA is performed implicitly
in the corresponding feature space. The resulting method, called kernel PCA, isKernel PCA
a useful tool to extract features from a set of objects in a space endowed with a
kernel. For example, PCA involving a kernel defined on strings can be a useful
visualization tool for sets of biological sequences. By projecting the sequences onto
the first two or three principal components, one can observe the structure of the
set of points, such as the presence of clusters or outliers, as shown in figure 2.6.

2.4 Support Vector Machines

Suppose that the data set S consists of a series of objects x1, . . . ,xn ∈ X, together
with a series of labels y1, . . . , yn ∈ Y associated with the objects. SVMs are kernel
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PC2

PC1

Figure 2.6 An example of kernel PCA. A set of 74 human tRNA sequences is analyzed
using a kernel for sequences (the second-order marginalized kernel based on SCFG (Kin
et al., 2002)). This set of tRNAs contains three classes, called Ala-AGC (white circles),
Asn-GTT (black circles) and Cys-GCA (plus symbols). This plot shows the 74 sequences
projected onto the first two principal components. By visual inspection, the three classes
appear to be well separated in the feature space associated with the kernel. See also Vert
(2002b) for another example of kernel PCA application to biological data.

methods to learn a function f : X → Y from S, which can be used to predict the
label of any new object x ∈ X by f (x).

In this tutorial we only consider the simple case where each object is classifiedPattern
recognition into one of two classes, indicated by the label y ∈ {−1, +1}. This simple problem,

called binary classification or pattern recognition in the machine learning com-
munity, turns out to be very useful in practice. Examples of pattern recognition
problems in computational biology include predicting whether a protein is secreted
or not from its amino acid sequence, predicting whether a tissue is healthy from a
gene profiling experiment, or predicting whether a chemical compound can bind a
given target or not from its structure. In each case, a positive prediction is asso-
ciated with the label +1, and a negative prediction with the label −1. In order to
perform pattern recognition, one needs a data set of objects with known tags, such
as a database of proteins known to be secreted or not, in order to learn a prediction
function that can then be applied to proteins without annotation.

As usual with kernel methods, we begin with a description of the algorithm when
objects are vectors, X = R

p. In this case, the SVM tries to separate the two classes
of points using a linear function of the form f (x) = w�x + b, with w ∈ Rp and
b ∈ R. Such a function assigns a label +1 to the points x ∈ X with f (x) ≥ 0, and
a label −1 to the points x ∈ X with f (x) < 0. The problem is therefore to learn
such a function f from a data set of observations S.
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H1

H2

Figure 2.7 The hyperplane H1 discriminates the white circles from the black ones with
1 mistake. The hyperplane H2 separates these points with 5 mistakes. The empirical risk
minimization principle states that one should choose a hyperplane with a minimal number
of errors on the training set, which is H1 in this case

For a candidate function f (x) = w�x + b, one can check for each observation
(xi, yi) whether it is correctly classified by f , that is, whether yif (xi) ≥ 0 or not.
A natural criterion to choose f might be to minimize the number of classification
errors on S; the number of indices i ∈ [1, n] such that yif (xi) ≥ 0. This general
principle, called empirical risk minimization, is illustrated in figure 2.7. This can,Empirical risk

minimization for example, be accomplished using the linear perceptron. As shown in figure 2.8,
however, this usually does not define a unique solution, even when it is possible to
perfectly separate the points.

SVMs are unique in that they focus more on the confidence of the classifications
than on the number of misclassifications. This emphasis stems from general results
on learning theory, developed in particular by Vapnik and Chervonenkis since the
late 1960s (Vapnik and Chervonenkis, 1968, 1971, 1974). One way to formalize it
with linear classifiers is shown in figure 2.9. The linear function f (x) = w�x + b

defines two half-spaces of points classified positively and negatively with large
confidence, namely the sets h+ = {x : f (x) ≥ 1} and h− = {x : f (x) ≤ −1}.
The distance between these two half-spaces, called the margin, is exactly equal to
2/||w||. If possible, one might require all points in the training set S to be correctlyMargin
classified with strong confidence by a linear function f with largest possible margin.
This would correspond to the problem of maximizing 2/||w|| under the constraints
yi

(
w�x + b

) ≥ 1 for i = 1, . . . , n. In order to accommodate the cases when the
training set cannot be correctly separated by a linear hyperplane, SVMs slightly
modify this problem by softening the constraints using the continuous hinge loss
function shown in figure 2.10,Hinge loss

c (f,x, y) = max (0, 1− yf (x)) . (2.28)
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Figure 2.8 Even when the training data are linearly separable, the empirical risk
minimization principle does not define a unique solution.

w.x+b=−1

w.x+b=+1

w.x+b > +1

w.x+b < −1

w.x+b=0

Figure 2.9 An affine function f(x) = w�x+ b defines two half-spaces where points are
classified with large confidence: h+ = {x : f(x) ≥ 1} for the positive points (black circles)
and h− = {x : f(x) ≤ −1} (white circles). The distance between the half-spaces is equal
to 1/‖w‖.
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c(f,x,y)

yf(x)

1
Figure 2.10 The hinge loss function. As long as yf(x) ≥ 1, the point x is correctly
classified by the function f with large confidence and the hinge loss is null. When
yf(x) < 1, x is either correctly classified with small confidence (0 ≤ yf(x) < 1), or
misclassified (yf(x) < 0). In these cases the hinge loss is positive, and increases as
1 − yf(x). SVMs find a linear separating function with a large margin and small average
hinge loss on the training set.

If a point (x, y) is correctly classified by f with large confidence, then c (f,x, y) = 0.
If this is not the case, then c (f,x, y) increases with the distance from x to the correct
half-space of large confidence.

SVMs combine the requirements of large margin (i.e., small ||w||), and few
misclassifications or classifications with little confidence on the training set, by
solving the problem

argmin
f(x)=w�x+b

1
2
||w||2 + C

n∑
i=1

c(f,xi, yi), (2.29)

where C is a parameter that controls the tradeoff between the two requirements.
Larger values of C might lead to linear functions with smaller margin but more
examples correctly classified with strong confidence (the choice of this parameter is
discussed in subsection 2.5.3).

Stated as (2.29), the reader might observe that this problem is very close to the
minimization of a functional on a RKHS satisfying the hypothesis of theorem 2.4,
with the slight difference that we consider here affine functions f , and not only
linear functions of the form (2.7). It turns out that the representer theorem can be
adapted to this case (see, e.g., theorem 4.3 in Schölkopf and Smola, 2002), and any
w solution of (2.29) has an expansion as a linear combination of x1, . . . ,xn. Let us
now directly demonstrate this property and highlight several interesting properties
of the solution of (2.29).
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2.4.1 Solving the Optimization Problem

The hinge loss function (2.28) is not differentiable, so direct minimization of (2.29)
is not straightforward. To overcome this issue let us introduce n new variables
ξ1, . . . , ξn, called slack variables, and rewrite (2.29) as the problem of minimizing:

argmin
w,b,ξ1,...,ξn

1
2
||w||2 + C

n∑
i=1

ξi, (2.30)

under the constraints ξi ≥ c(f,xi, , yi) for i = 1, . . . , n. These two problems are
equivalent, because the minimization of (2.30) with respect to ξi is obtained when
ξi takes its minimal value, namely c(f,xi, yi). By definition of the hinge loss (2.28),
the constraint ξi ≥ c(f,xi, yi) is equivalent to the two constraints ξi ≥ 0 and
ξi ≥ 1 − yi(w�xi + b). We have therefore shown that (2.29) is equivalent to the
quadratic programming problem

min
w,b,ξ1,...,ξn

1
2
||w||2 + C

n∑
i=1

ξi, (2.31)

under the constraints

for i = 1, . . . , n,

{
ξi ≥ 0,

ξi − 1 + yi(w�xi + b) ≥ 0.
(2.32)

This constrained optimization problem can be processed using Lagrange mul-
tipliers, which are written as α = (α1, . . . , αn) ≥ 0 for each of the constraintsLagrange

multipliers yi (w.xi + b) ≥ 1 − ξi, and β = (β1, . . . , βn) ≥ 0 for each of the constraints ξi ≥ 0.
We can then introduce the Lagrangian,

L(w, b, ξ, α, β) =
1
2
||w||2 + C

n∑
i=1

ξi −
n∑

i=1

αi

[
ξi − 1 + yi

(
w�xi + b

)]− n∑
i=1

βiξi.

(2.33)
In order to solve (2.31) we need to find the unique saddle point of L, which is a
minimum with respect to (w, b, ξ) and a maximum with respect to (α, β) ≥ 0.

For fixed (α, β) let us first minimize the Lagrangian as a function of (w, b, ξ).
This is done by setting the partial derivatives to 0;

∂L

∂w
(w, b, ξ, α, β) = w −

n∑
i=1

yiαixi = 0, (2.34)

∂L

∂b
(w, b, ξ, α, β) =

n∑
i=1

yiαi = 0, (2.35)

∂L

∂ξi
(w, b, ξ, α, β) = C − αi − βi = 0, for i = 1, . . . , n. (2.36)
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With (2.34) we recover the representer theorem that states w is a linear combination
of the x1, . . . ,xn. More precisely, we get

w =
n∑

i=1

yiαixi. (2.37)

Plugging (2.37) into (2.33) and using (2.35), we obtain the value of the Lagrangian
when minimized with respect to (w, b,x),

∀(α, β) ≥ 0, inf
w,b,ξ

L(w, b, ξ, α, β) = −1
2

n∑
i=1

n∑
j=1

yiyjαiαjx�
i xj +

n∑
i=1

αi, (2.38)

under the constraints (2.35) and (2.36) on α and β (if these constraints are not
fulfilled, the infimum is equal to −∞).

The function (2.38) has to be maximized with respect to α ≥ 0 and β ≥ 0. But
β does not appear in this function, so we just need to maximize (2.38) as a function
of α and to check that there exists some β ≥ 0 for which (2.36) holds. This is the
case iff αi ≤ C for i = 1, . . . , N , because only in this case can we find βi ≥ 0 such
that βi + αi = C.

As a result, the initial problem (2.31) is equivalent to the following dual problem:
find α = (α1, . . . , αn) which minimizesDual problem

W (α) = −1
2

n∑
i=1

n∑
j=1

yiyjαiαjx�
i xj +

n∑
i=1

αi, (2.39)

under the constraints {∑n
i=0 yiαi = 0,

0 ≤ αi ≤ C for i = 1, . . . , n.

Once α is found one recovers the other dual vector β with the constraint

βi = C − αi, for i = 1, . . . , N.

The vector w is then obtained from (2.37). In order to recover b, we can use the
Karush-Kuhn-Tucker conditions which state that the constraints corresponding to
non-zero Lagrange multipliers are met at the saddle point of the Lagrangian. As a
result, for any 0 ≤ i ≤ n with 0 < αi < C (which implies β > 0), the constraints
ξi = 0 and ξi − 1 + yi (w.xi + b) hold. We thus obtain

b = yi −w�xi = yi −
n∑

j=1

yjαjx�
j xi. (2.40)

Figure 2.11 shows a typical linear function learned by an SVM, together with
the Lagrange multipliers αi and βi associated to each point. The constraint αi < C

implies βi > 0, and therefore ξi = 0. These points are are correctly classified
with large confidence. The constraints 0 < αi < C imply βi > 0, and therefore
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α=0

0<α< C

α=C

Figure 2.11 A linear function learned by an SVM to discriminate black from white
circles, and the corresponding Lagrange multipliers . Each point correctly classified with
large confidence (yf(x) > 1) has a null multiplier. Other points are called support vector.
They can be on the boundary, in which case the multiplier satisfies 0 ≤ α ≤ C, or on the
wrong side of this boundary, in which case α = C.

w�xi+b = yi. These points are correctly classified, but at the limit of the half-space
of large confidence. Points not correctly classified with large confidence correspond
to ξi > 0, and therefore βi = 0 and αi = C.

The points with positive Lagrange multiplier αi = 0 are called support vectors.
From (2.37) we see that w is a linear combination of the support vectors alone.Support vectors
Moreover, the solution found by the SVM does not change when non-support vectors
are removed from the training set. Thus the set of support vectors contains all the
information about the data set used by SVM to learn a discrimination function.
This can easily be seen when it comes to predicting the class of a new object x ∈ X.
Indeed we must then form the linear function

f (x) = w�x + b =
n∑

i=1

yiαix�
i x + b, (2.41)

and predict that the class of x is −1 or +1 depending on the sign of this function.
The sum in (2.41) only involves support vectors.

2.4.2 General SVMs

From (2.39), (2.40), and (2.41), we see that learning a linear classifier and predicting
the class of a new point only involves the points in the training set through their dot
products. The kernel trick can therefore be applied to perform the SVM algorithm
in the feature space associated with a general kernel. It can be stated as follows:
find α = (α1, . . . , αn) which minimizes

W (α) = −1
2

n∑
i=1

n∑
j=1

yiyjαiαjk (xi,xj) +
n∑

i=1

αi, (2.42)
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φ
X F

Figure 2.12 SVMs perform a linear discrimination of a training set of labeled points in
the feature space associated with a kernel. The resulting separation can be nonlinear in
the original space.

under the constraints {∑n
i=0 yiαi = 0,

0 ≤ αi ≤ C for i = 1, . . . , n.

Next, find an index i with 0 < αi < C, and set:

b = yi −
n∑

j=1

yjαjk (xj ,xi) .

The classification of a new object x ∈ X is then based on the sign of the function

f (x) =
n∑

i=1

yiαik (xi,x) + b. (2.43)

The resulting function, although linear in the feature space associated with the
kernel, can of course be nonlinear if the initial space is a vector space and the
kernel is nonlinear. An example of nonlinear separation is illustrated in figure 2.12.

2.4.3 Variants and Extensions

Many variants of the basic SVM algorithm presented in the preceding sections have
been proposed. Among the many variants surveyed in Schölkopf and Smola (2002),
let us mention here a few directions to generalize the basic SVM algorithm. First,
in the case of binary classification, several interesting modifications are obtained
by changing the function (2.29) being optimized. Different norms on w together
with different cost functions lead to interesting variants, which can be more or less
difficult to solve. Lack of space prevents us from being exhaustive, so we will have
to skip interesting approaches such as the leave-one-out machine (Weston, 1999;
Weston and Herbrich, 2000) and the Bayes point machines (Ruján and Marchand,
2000; Herbrich et al., 2001; Rychetsky et al., 2000), as well as algorithms for tasks
which are different from pattern recognition, such as regression estimation (Vapnik,
1995) and novelty detection (Schölkopf et al., 2001).
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2.4.4 ν-SVMs

An alternative realization of a soft margin SVM (2.29) uses the ν-parametrization
(Schölkopf et al., 2000). In this approach, the parameter C is replaced by ν ∈ [0, 1],
which can be shown to lower- and upper-bound the number of examples that will
be support vectors and that will come to lie on the wrong side of the hyperplane,
respectively. In many situations, this provides a more natural parameterization
than that using the somewhat unintuitive parameter C. The so-called ν-SVM
uses a primal objective function with the error term 1

νm

∑
i ξi − ρ, and separation

constraintsν-SVM

yi · ((w · xi) + b) ≥ ρ− ξi, i = 1, . . . , m. (2.44)

The margin parameter ρ is a variable of the optimization problem. The dual
can be shown to consist of maximizing the quadratic part of (2.39), subject to
0 ≤ αi ≤ 1/(νm),

∑
i αiyi = 0 and the additional constraint

∑
i αi = 1.

2.4.5 Linear Programming Machines

The idea of linear programming (LP) machines is to use the kernel expansion
f(x) =

∑m
i=1 υik(x, xi) + b [cf. (2.43)] as an ansatz for the solution, but to use

a different regularizer, namely the �1 norm of the coefficient vector (Mangasarian,
1965; Frieß and Harrison, 1998; Mattera et al., 1999; Bennett, 1999; Weston et al.,
1999). The main motivation for this is that this regularizer is known to induce
sparse solutions. This amounts to the objective function

Rreg[g] :=
1
m
‖υ‖1 + C Remp[g], (2.45)

where ‖υ‖1 =
∑m

i=1 |υi| denotes the �1 norm in coefficient space, using the soft
margin empirical risk,

Remp[g] =
1
m

∑
i

ξi, (2.46)

with slack terms

ξi = max{1− yif(xi), 0}. (2.47)

We thus obtain the LP problem

min
α,ξ∈Rm,b∈R

1
m

m∑
i=1

(αi + α∗
i ) + C

m∑
i=1

ξi, (2.48)

subject to {
yif(xi) ≥ 1− ξi,

αi, α
∗
i , ξi ≥ 0.
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Here, the �1-norm has been componentwise split into positive and negative parts,
that is, υi = αi − α∗

i . The solution differs from (2.43) in that each expansion
pattern no longer necessarily has a weight αiyi with a sign equal to its class label;
nor do the expansion patterns lie on or beyond the margin — in LP machines they
can basically be anywhere, a feature which is reminiscent of the relevance vector
machine (Tipping, 2001).

LP machines can also benefit from the ν-trick. In this case, the programming
problem can be shown to take the following form (Graepel et al., 1999b):

min
α,ξ∈Rm,b,ρ∈R

1
m

m∑
i=1

ξi − νρ, (2.49)

subject to ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
m

m∑
i=1

(αi + α∗
i ) = 1,

yif(xi) ≥ ρ− ξi,

αi, α
∗
i , ξi, ρ ≥ 0.

2.5 SVMs in Practice

A number of SVM implementations are freely or commercially available: ForSVM
implementations instance, SVM light,3 LIBSVM, 4 and mySVM 5 are popular in the machine learning

community, and a more complete and up-to-date list is available on the kernel
method community website http://www.kernel-machines.org. While newcomers
may feel that these programs can solve the learning tasks automatically, it in
fact remains challenging to apply SVMs in a fully automatic manner. Questions
regarding the choice of kernel, of parameters, of data representation, or of different
flavors of SVMs, remain largely empirical in real-world applications. While default
setting and parameters are generally useful as a starting point, big improvements
can result from careful tuning of the algorithm. As an example, Hsu et al. (2003)
report an accuracy improvement from 36% to 85.2% by an appropriate tuning.

2.5.1 Multiclass Problems

The basic SVM algorithm for pattern recognition is designed for classification of
objects into two classes, but many real-world applications deal with more than two
classes. This is, for example, the case when one wants to assign a function or a
structure to a protein sequence, or a disease family to a tissue from gene expression

3. Available from http://svmlight.joachims.org/
4. Available from http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
5. Available from http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/
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experiments. One way to use SVMs in this context is to apply an implementation
that specifically solves multiclass problems (see, e.g., chapter 9). However, these
implementations remain rare and cannot handle more than a few classes.

The most widely used method for multiclass problems involves reformulating
them as a number of binary classification problems, and solving these problems
with binary SVMs. The resulting SVMs must then be combined to form a multiclass
prediction algorithm. The most common way to perform this split and combination
is called the One-against-all scheme. It consists in first finding a discriminationOne-against-all
between each class and all the others, thus transforming a problem with N classes
into N binary problems. The scores output by each SVM are then combined by a
max rule: an object is assigned to the class corresponding to the SVM that outputs
the largest score. As an example, let us consider a three-class classification problem
with the following training set labels:

y = (1, 1, 1, 2, 2, 2, 3, 3, 3).

In the one-against-all scheme this problem is decomposed as three binary problems
with the following class assignments:

y1 = (1, 1, 1,−1,−1,−1,−1,−1,−1)

y2 = (−1,−1,−1, 1, 1, 1,−1,−1,−1)

y3 = (−1,−1,−1,−1,−1,−1, 1, 1, 1)

(2.50)

Three SVMs are trained on the three class labels respectively. When an unknown
sample is classified, the outputs of SVMs are compared and the sample is assigned
to the class with the largest output.

We conclude this subsection by noting that several other methods for multiclass
problems have been proposed.

In pairwise classification, one classifier is learned for each possible pair of classes
(see Friedman, 1996; Schmidt and Gish, 1996; Kreßel, 1999).

In error-correcting output codes, a set of classifiers is trained, each one solving
the task of separating the union of certain classes from the complement. By
cleverly choosing the classes, the outputs of several such classifiers code the class
membership of a given test point rather robustly (Allwein et al., 2000)

Multiclass objective functions capture a multiclass problem by defining an ob-
jective function that simultaneously trains all the classifiers involved (Weston and
Watkins, 1999). While this may be the most elegant approach, it tends to be too
expensive to train all classifiers simultaneously, if the problem size is large.

2.5.2 Kernel Normalization

When the data set is a set of vectors, it is often effective to linearly scale each
attribute to zero mean and unit variance, and then apply the Gaussian RBF kernel
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or polynomial kernel (Hsu et al., 2003). The main advantage of this normalization
is to avoid attributes in larger numeric ranges dominating those in smaller ranges.

For more general kernels such as string or graph kernels, the kernel matrix is often
directly obtained without feature vectors. In this case, it is considered effective to
normalize the kernel matrix such that all the diagonal elements are 1. If kij denotes
the (i, j)th element of a kernel matrix k, this normalization is

k′
ij =

kij√
kiikjj

.

More advanced methods for kernel normalization are described by Schölkopf et al.
(2002)

2.5.3 Parameter Setting

In order to use a basic SVM for binary classification, two kinds of parameters have
to be determined:

The regularization parameter C of the SVM

The kernel and its parameters

A proper choice of these parameters is crucial to the good performance of the
algorithm. A temptation to be avoided is to set the parameters based on the
performance of the SVM on the training set, because this is likely to lead to
overfitting: the performance increases on the training set used, but decreases on
new samples.

A standard way to fix parameters is to use cross-validation. Let us denote byCross-validation
γ a parameter of a kernel to be set, for instance, the width of the Gaussian RBF
kernel, and C the parameter of the algorithm. Given specific values of C and γ,
the k-fold cross-validation error is calculated as follows: first of all, the training
set Z = {xi, yi}ni=1 is randomly divided into k subsets Z1, · · · , Zk of approximately
equal size. The SVM is trained on k− 1 subsets and its error rate on the remaining
subset is computed. Repeating this process k times such that each subset is tested
once, the cross-validation error is determined by the average of the test errors.
When k = n, the cross-validation error is especially called the leave-one-out error.

In this scheme C and γ are determined so as to minimize the cross-validation
error. This goal is approximately achieved by a Grid search. A set of candidateGrid search
values are chosen both for C and γ, and the cross-validation error is computed
for every possible combination of them. If nc and nγ are the number of candidate
values, then the cross-validation error is computed ncnγ times, which means that
the SVM is trained kncnγ times in total. Typically, users do not have any idea
about the optimal values for C and γ, so the candidate values must cover a very
large domain. Hsu et al. (2003) suggest the candidate values be determined as
an exponentially growing sequence (e.g., C = 2−5, 2−3, · · · , 215, γ = 2−15, · · · , 23).
When there are more than two parameters, the grid search becomes difficult as the
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number of grid points grows exponentially. In such cases, one can use a gradient
search to minimize an upper bound on the leave-one-out error (Chapelle et al.,
2002).

Model selection can lead to costly computations. For example, when k = nc =
nγ = 10, the SVM must be trained 1000 times to choose C and γ, which might
be prohibitive for large data sets. However, this process can be easily parallelized,
which alleviates the burden of cross-validation.

2.6 More Kernels

In section 2.3, we presented some of the possibilities for data analysis offered by
kernel methods. They are completely modular, in the sense that each method can
be applied to any kernel. In this section we present classic or recently developed
kernels that the reader might find it useful to be aware of.

2.6.1 Kernels for Vectors

A few kernels for vectors have gained considerable attention in the SVM community.
The linear kernel which we already met,

kL (x,x′) = x�x′,

is a particular instance of the polynomial kernels defined for d ≥ 0 byPolynomial
kernels

kPoly1(x,x′) =
(
x�x′)d ,

or

kPoly2(x,x′) =
(
x�x′ + c

)d
,

where d is the degree of the polynomial and c is a constant in the second kernel.
The polynomial kernel kPoly1 of degree 2 corresponds to a feature space spanned by
all products of 2 variables, that is,

{
x2

1, x1x2, x
2
2

}
. It is easy to see that the kernel

kPoly2 of degree 2 corresponds to a feature space spanned by all products of at
most 2 variables, that is,

{
1, x1, x2, x

2
1, x1x2, x

2
2

}
. More generally the kernel kPoly1

corresponds to a feature space spanned by all products of exactly d variables, while
the kernel kPoly2 corresponds to a feature space spanned by all products of at most
d variables.

The Gaussian RBF kernelGaussian RBF
kernel

kG(x,x′) = exp
(
−||x− x′||2

2σ2

)
,
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where σ is a parameter, is one of the most frequently used kernels in practice,
thanks to its capacity to generate nonparametric classification functions. Indeed,
the discriminant function learned by an SVM has the form

f(x) =
n∑

i=1

yiαi exp
(
−||xi − x||2

2σ2

)
and is therefore a sum of Gaussian centered on the support vectors. Almost any
decision boundary can be obtained with this kernel. Observe that the smaller the
parameter σ, the more peaked the Gaussians are around the support vectors, and
therefore the more complex the decision boundary can be. Larger σ corresponds to
a smoother decision boundary.

The sigmoid kernel is defined bySigmoid kernel

k(x,x′) = tanh
(
κx�x′ + θ

)
,

where κ > 0 and θ < 0 are parameters respectively called gain and threshold. The
main motivation behind the use of this kernel is that the decision function learned
by an SVM,

f(x) =
n∑

i=1

αiyi tanh
(
κx�

i x + θ
)
,

is a particular type of two-layer sigmoidal neural network. In fact the sigmoid kernel
is not always positive definite, but has still been successfully used in practice.

2.6.2 Kernels for Strings

Computational biology is a field rich in strings, such as peptide or nucleotide strings.
As a result, much work has been devoted recently to the problem of making kernels
for strings, as illustrated in chapters 4, 5, and 6.

String kernels differ in the information about strings they encode, their implemen-
tation, and their complexity. In order to give a flavor of string kernels, we present
a particular string kernel proposed by Lodhi et al. (2002) in the context of natural
language processing, which is one of the earliest string kernels. The basic idea is
to count the number of subsequences up to length n in a sequence, and compose a
high-dimensional feature vector by these counts. The string kernel is defined as a
dot product between such feature vectors.

More precisely, let Σ be the set of symbols. A string s of length |s| is defined as
s = s1, . . . , s|s| ∈ Σ|s|. The set of all strings is X =

⋃∞
i=0 Σi. An index set i of length

l is an l-tuple of positions in s,

i = (i1, . . . , il), 1 ≤ i1 < . . . < il ≤ |s|,
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and we denote by s[i] = si1 , . . . , sil
the subsequence of s corresponding to the

indices in i. Let us define the weight of the index set i by

λl(i), where l(i) = il − i1 + 1,

where λ < 1 is a predetermined constant. Thus, for a given subsequence length l,
the weight decreases exponentially with the number of gaps in the subsequence.

For each sequence u ∈ Σk, where k is fixed, let us now define a feature Φu : X→ R

as

∀s ∈ X, Φu(s) =
∑

i:s[i]=u

λl(i).

Considering all sequences u of length n, we can map each sequence s ∈ X to a |Σ|n-
dimensional feature space by the mapping s→ (Φu(s))u∈Σn . We can then define a
kernel for strings as the dot product between these representations,

∀s, t ∈ X, kn(s, t) =
∑

u∈Σn

∑
i:u=s[i]

λl(i)
∑

j:u=t[j]

λl(j)

=
∑

u∈Σn

∑
i:u=s[i]

∑
j:u=t[j]

λl(i)+l(j). (2.51)

Calculating each feature is hopeless because of the high dimensionality. However, it
has been shown that a recursive algorithm can calculate kn efficiently with a time
complexity O(n|s||t|) (Lodhi et al., 2002), using dynamic programming.

2.6.3 The Fisher Kernel

Probabilistic models are convenient to represent families of complex objects that
arise in computational biology. Typically, such models are useful when one wants to
characterize a family of objects x that belong to a big set X, but only span a very
small subset of X. The models can then be used to infer a probability distribution
on X concentrated on the objects observed or likely to be observed. For example,
hidden Markov models (HMMs) are a central tool for modeling protein families
or finding genes from DNA sequences (Durbin et al., 1998). More complicated
models called stochastic context-free grammars (SCFGs) are useful for modeling
RNA sequences (Sakakibara et al., 1994).

The success of a particular probabilistic model requires that the distribution of
actual objects be well characterized by that model. The Fisher kernel (Jaakkola
and Haussler, 1999) provides a general principle to design a kernel for objects well
modeled by a probabilistic distribution, or more precisely a parametric statistical
model. Denote by p(x|θ), x ∈ X, θ ∈ �p a parametric statistical model with a
p-dimensional parameter θ on the measurable space;

∀θ ∈ Θ,

∫
X

p(x|θ)dx = 1.
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Moreover, (x, θ) → p(x|θ) is required to be smooth enough for all following
computations to make sense.

Given a sample S = (x1, . . . ,xn), suppose a parameter θ̂ is estimated to model
S, for example, by maximum likelihood. The Fisher kernel is then defined as

∀x,x′ ∈ X, k(x,x′) = ∇θ log p(x|θ̂)�J−1∇θ log p(x′|θ̂),

where

∇θ =
(

∂

∂θ1
, · · · , ∂

∂θp

)�

is a gradient vector with respect to θ and J is the Fisher information matrix;

J =
∫
x∈X

∇θ log p(x|θ̂)∇θ log p(x|θ̂)�p(x|θ̂)dx.

The Fisher kernel can be understood intuitively when the parametric model is an
exponential family. An exponential family of densities is written as

p(x|θ) = exp(θ�s(x) + φ(θ)),

where s : X → �p is a vector-valued function and φ is a normalization factor
to ensure that

∑
x∈X p(x|θ) = 1. The function s, commonly called “sufficient

statistics,” plays a role of feature extraction from x, because p(x|θ) depends on x

solely through s. The Fisher kernel can recover this “hidden” feature of x because

∇θ log p(x|θ̂) = s(x) +∇θφ(θ̂),

and the second term is a constant independent of x. Usually the Fisher kernel
is applied to complicated probability distributions which do not belong to the
exponential family (e.g., HMMs). However, the Fisher kernel can still effectively
reveal the features implicitly used in a probabilistic model (see Tsuda et al., 2004,
for details).

The first application of the Fisher kernel was in the context of the protein remote
homology detection, in combination with SVMs, where it outperformed all other
state-of-the-art methods (Jaakkola et al., 2000). Extensions to the Fisher kernel
idea can be seen, for example, in Tsuda et al. (2002a,b), Sonnenburg et al. (2002),
and Seeger (2002).

2.7 Designing Kernels

As suggested in the previous section, a wide choice of kernels already exists. Many
data or applications may still benefit from the design of particular kernels, adapted
specifically to a given task. In this section, we review several useful results and
principles when one wants to design a new kernel, or even “learn” a kernel from the
observed data.
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2.7.1 Operations on Kernels

The class of kernel functions on a set X has several useful closure properties. It
is a convex cone, which means that if k1 and k2 are two kernels, then any linear
combination,

λ1k1 + λ2k2,

with λ1, λ2 ≥ 0 is a kernel.
The set of kernels is also closed under the topology of pointwise convergence,

which means that if one has a family of kernel (ki)i∈N
that converges in a pointwise

fashion to a function,

∀x,x′ ∈ X, lim
n→∞ kn (x,x′) = k (x,x′) ,

then k is a kernel.
Other useful properties include closure under the pointwise multiplication, also

called the Schur product (Schur, 1911): if k1 and k2 are two kernels, then

k (x,x′) := k1 (x,x′) k2 (x,x′)

is also a kernel. From this and the closure under pointwise limit we can deduce a
useful corollary: if f(z) =

∑∞
i=0 aizi is holomorphic in {z ∈ C : |z| < ρ}, and if k

is a kernel such that |k (x,x′) | < ρ for any x,x′, then f ◦ k is a valid kernel. As
an example, for any kernel k, exp(k) is a valid kernel, and for any bounded kernel
|k| < ρ, (ρ− x)−1 is a valid kernel.

On the other hand, other operations on kernels are in general forbidden. For
example, if k is a kernel, then log(k) is not positive definite in general, and neither
is kβ for 0 < β < 1. In fact these two operations are linked by the following result:
kβ is positive definite for any β > 0 iff log (k) is conditionally positive definite:Conditionally

positive definite n∑
i,j=1

cicj log(k (xi,xj)) ≥ 0

for any n > 0, x1, . . . ,xn ∈ X and c1, . . . , cn ∈ R with the additional constraint
that

∑n
i=1 ci = 0. Such a kernel is called infinitely divisible. These considerations

are, for example, discussed in chapter 6.

2.7.2 Translation-Invariant Kernels and Kernels on Semi-Groups

When X = R
p, the class of translation-invariant kernels is defined as the class of

kernels of the form

∀x,x′ ∈ X, k (x,x′) = ψ (x− x′) ,

for some function ψ : Rp → R. The Gaussian kernel (2.5) is an example of a
translation-invariant kernel. These kernels are particular examples of group kernels :Group kernel
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if (X, .) is a group,6 then group kernels are defined as functions of the form
k (x,x′) = ψ

(
x−1x′), with ψ : X → R. Conditions on ψ to ensure that k is a

symmetric positive definite kernel have been studied in relation to harmonic analysis
on groups and semigroups; the interested reader should consult Berg et al. (1984)
for a complete treatment of these conditions for Abelian groups and semigroups. In
the case (X, .) = (Rp, +), the classic Bochner theorem states that if ψ is continuous,
then k is a valid kernel iff ψ is the Fourier transform of a nonnegative finite measure.
This is, for example, the case for the Gaussian RBF kernel. If (X, .) is a discrete
Abelian semi-group, then k is a kernel iff ψ is the Fourier transform of a non-
negative Radon measure. Such results can be extended to more general groups and
semi-groups, and suggest principled ways to design kernels on sets with a group
structure, such as the set of permutations, or on sets endowed with a group action.
These kernels are related to the diffusion kernel presented in chapter 8, which can
be considered an efficient way to compute a group kernel if the graph is considered
as the Cayley graph of a group.

2.7.3 Combining Kernels

Rather than design a kernel from scratch, one might be tempted to generate a
kernel from a family of available kernels. In such cases, multiple kernel matrices
k1, k2, · · · , kc for the same set of objects are available. We might then wish to
use kernel methods to combine this heterogeneous information; in other words, we
would like to design a single kernel k from several basic kernels k1, . . . , kc. A simple
way to achieve this is to take the sum of the kernels:

k =
c∑

i=1

ki.

This is clearly a valid kernel that can be interpreted as taking the direct product
of the feature spaces of the basic kernels as a feature space. This approach was
proposed in Pavlidis et al. (2002) in the context of functional genomics, and
validated as a useful way to integrate heterogeneous data.

A slight generalization of this approach is to take a weighted sum,

k =
c∑

i=1

μiki.

A nontrivial question is how to chose the weights automatically. Several approaches
have been pioneered recently and are presented in forthcoming chapters: semidefi-
nite programming in chapter 11, kernel canonical correlation analysis in chapter 10,
and an information geometry-based approach in chapter 12.

6. A group is a set with an associative operation, a neutral element, and such that any
element has an inverse. If the operation is commutative, the group is called Abelian.



2.7 Designing Kernels 69

2.7.4 From Similarity Scores to Kernels

Another typical situation which arises when designing a kernel in computational
biology, as well as in other fields, is when one has a “good” function to measure
the similarity between objects, but which is unfortunately not a kernel. Such an
example is, for instance, treated in detail in chapter 6, where a kernel for biological
sequences is built to mimic well-known measures of similarity between sequences.
Other examples include the design of a kernel for molecular 3D structures from
measures of structural similarity (see chapter 12).

Again, there is no single answer but rather a number of approaches that have
been proposed and tested recently. Let X be a set and s : X × X → R a measure
of similarity. One principled way to convert s into a valid kernel is called the
empirical kernel map (Tsuda, 1999). It consists in first choosing a finite set ofEmpirical kernel

map objects t1, · · · , tr ∈ X called templates. An object x ∈ X is then represented by a
vector of similarity with respect to the template samples:

x ∈ X→ φ (x) = (s(x, t1), . . . , s(x, tr))� ∈ R
p.

The kernel is then defined as the dot product between two similarity vectors:

∀x,x′ ∈ X, k (x,x′) = φ (x)� φ (x) =
r∑

i=1

s (x, ti) s (x′, ti) .

Liao and Noble (2002) successfully applied this technique to transform an alignment
score between protein sequences into a powerful kernel for remote homology detec-
tion However, one drawback of this method is that the results depend on the choice
of template samples, as well as the fact that it can be computationally prohibitive.

In some cases, all objects to be processed by kernel methods are known in advance.
This is the case, for example, when kernel PCA is performed on a finite set of
objects, or when an SVM is trained in a transductive framework, that is, when the
unannotated objects to be classified are known in advance. A good example of a
transductive problem is in functional genomics on an organism: given the knowledge
we have about the functions of some genes of an organism, can we predict the
functions of the unannotated genes, which we know in advance because we know
the whole genome.

In such cases, the problem boils down to making a symmetric positive definite
matrix kernel matrix out of a pairwise similarity matrix. A natural way to perform
this is by eigendecomposition of the similarity matrix (which is supposed to be
symmetric), and removal of negative eigenvalues (Graepel et al., 1999a; Roth et al.,
2003). Recently Roth et al. (2003) pointed out that this method preserves clustersRemoval of

negative
eigenvalues

in data, and showed promising experimental results in classifying protein sequences
based on the FASTA scores.
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2.8 Conclusion

This short introductory tour of positive definite kernels and kernel methods only
contains a very brief and partial summary of a field that has a long history, but
was only recently investigated in depth in the context of empirical inference and
machine learning. As highlighted by the different chapters of this book, this field is
very active nowadays, with promising applications in computational biology.



 

3 Support Vector Machine Applications in

Computational Biology

William Stafford Noble1

During the past 3 years, the support vector machine (SVM) learning algorithm has
been extensively applied within the field of computational biology. The algorithm
has been used to detect patterns within and among biological sequences, to classify
genes and patients based upon gene expression profiles, and has recently been
applied to several new biological problems. This chapter reviews the state of the
art with respect to SVM applications in computational biology.

3.1 Introduction

The SVM algorithm (Boser et al., 1992; Vapnik, 1998) is a classification algorithm
that provides state-of-the-art performance in a wide variety of application domains,
including handwriting recognition, object recognition, speaker identification, face
detection, and text categorization (Cristianini and Shawe-Taylor, 2000). During the
past 3 years, SVMs have been applied very broadly within the field of computa-
tional biology, to pattern recognition problems, including protein remote homology
detection, microarray gene expression analysis, recognition of translation start sites,
functional classification of promoter regions, prediction of protein-protein interac-
tions, and peptide identification from mass spectrometry data. The purpose of this
chapter is to review these applications, summarizing the state of the art.

Two main motivations suggest the use of SVMs in computational biology. First,
many biological problems involve high-dimensional, noisy data, for which SVMs are
known to behave well compared to other statistical or machine learning methods.
Second, in contrast to most machine learning methods, kernel methods like the SVM

1. Formerly William Noble Grundy. See www.gs.washington.edu/noble/name-change.

html.
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can easily handle nonvector inputs, such as variable length sequences or graphs.
These types of data are common in biology applications, and often require the
engineering of knowledge-based kernel functions. Much of this review consists in
explaining these kernels and relating them to one another.

This review assumes that the reader has a basic familiarity with SVMs, including
the notion of a kernel function and the mapping from input space to feature space.
Background information can be found in Cristianini and Shawe-Taylor (2000),
Burges (1998), and at www.kernel-machines.org. The chapter is organized by
application domain, beginning in section 3.2 with perhaps the most intensively
studied application, the recognition of subtle similarities among protein sequences.
Section 3.3 reviews other protein and gene classification tasks, and section 3.4
looks at problems that involve recognizing patterns within a protein or DNA
sequence. Section 3.5 reviews the many applications of SVMs to the analysis of
DNA microarray expression data. Section 3.6 describes three approaches to learning
from heterogeneous biological data. Finally, the chapter closes with a description
of several applications that do not fit neatly into the previous categories, followed
by a brief discussion.

3.2 Protein Remote Homology Detection

Over the past 25 years, researchers have developed a battery of successively more
powerful methods for detecting protein sequence similarities. This development can
be broken into four stages. Early methods looked for pairwise similarities between
proteins. Among such algorithms, the Smith-Waterman dynamic programming
algorithm (Smith and Waterman, 1981) is among the most accurate, whereas
heuristic algorithms such as BLAST (Altschul et al., 1990) and FASTA (Pearson,
1990) trade reduced accuracy for improved efficiency.

In the second stage, further accuracy was achieved by collecting aggregate
statistics from a set of similar sequences and comparing the resulting statistics to
a single, unlabeled protein of interest. Profiles (Gribskov et al., 1990) and hidden
Markov models (HMMs) (Krogh et al., 1994; Baldi et al., 1994) are two methods
for representing these aggregate statistics. For a given false-positive rate, these
family-based methods allow the computational biologist to infer nearly three times
as many homologies as a simple pairwise alignment algorithm (Park et al., 1998).

In stage 3, additional accuracy was gleaned by leveraging the information in large
databases of unlabeled protein sequences. Iterative methods such as PSI-BLAST
(Altschul et al., 1997) and SAM-T98 (Karplus et al., 1998) improve upon profile-
based methods by iteratively collecting homologous sequences from a large database
and incorporating the resulting statistics into a single model. All of the resulting
statistics, however, are generated from positive examples, that is, from sequences
that are known or posited to be evolutionarily related to one another.

In 1999, Jaakkola et al. ushered in stage 4 of the development of homologyThe Fisher kernel
detection algorithms with a paper that garnered the “Best Paper” award at the
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annual Intelligent Systems for Molecular Biology conference. Their primary insight
was that additional accuracy can be obtained by modeling the difference between
positive and negative examples. Because the homology task requires discriminating
between related and unrelated sequences, explicitly modeling the difference between
these two sets of sequences yields an extremely powerful method. The algorithm
described in that paper is called SVM-Fisher.

The SVM-Fisher method (Jaakkola et al., 1999, 2000) couples an iterative HMM
training scheme with the SVM. For any given family of related proteins, the HMM
provides a kernel function. First, the HMM is trained on positive members of
the training set using the standard Baum-Welch training routine. The training
is iterated, adding to the training set at each round similar sequences from a large
unlabelled database. After training, the gradient vector of any sequence—positive,
negative, or unlabeled—can be computed with respect to the trained model. As in
the Baum-Welch training algorithm for HMMs, the forward and backward matrices
are combined to yield a count of observations for each parameter in the HMM. As
shown in Jaakkola et al. (1999), the counts can be converted into components of a
gradient vector Ũ via the following equation:

Ũij =
Ej(i)
ej(i)

−
∑

k

Ej(k), (3.1)

where Ej(i) is the number of times that amino acid i is observed in state j, and
ej(i) is the emission probability for amino acid i in state j. Although these gradients
can be computed for every HMM parameter, the SVM-Fisher method uses only
the gradient components that correspond to emission probabilities in the match
states. Furthermore, a more compact gradient vector can be derived using a mixture
decomposition of the emission probabilities. Each sequence vector summarizes how
different the given sequence is from a typical member of the given protein family.
Finally, an SVM is trained on a collection of positively and negatively labeled
protein gradient vectors. By combining HMMs and SVMs, SVM-Fisher offers an
interpretable model, a means of incorporating prior knowledge and missing data,
and excellent recognition performance.

Indeed, the SVM-Fisher method yields results that improve significantly upon the
previous state of the art. The standard benchmark for this classification task comes
from the Structural Classification of Proteins (SCOP) (Murzin et al., 1995), which
provides protein superfamily labels based upon human interpretation of three-
dimensional protein structures (see fig. 3.1). The original experiment compared
SVM-Fisher to BLAST and to the SAM-T98 iterative HMM method.

Hughey and Krogh (1996), and a subsequent experiment included a comparison
to PSI-BLAST (Leslie et al., 2002). In each case, SVM-Fisher performed signifi-
cantly better than previous methods. Subsequent work by Karchin et al. (2002)
demonstrated the successful application of the SVM-Fisher methodology to the
recognition of a large, pharmaceutically important class of proteins, the G protein-
coupled receptors.
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Figure 3.1 The SCOP hieararchy of protein domains. SCOP is a hand-curated database
that is arranged hierarchically according to protein three-dimensional structure. The three
primary levels of the hierarchy—family, superfamily, and fold—correspond to varying
degrees of similarity. Proteins within a single family show clear evolutionary relationships,
typically evidenced by more than 30% pairwise identities at the sequence level, while
members of a superfamily may have low sequence identity, but have structural and
functional features that suggest a common evolutionary origin. Finally, proteins belong to
the same fold if they have the same major secondary structures in the same arrangement
and with the same topological connections. Proteins placed together in the same fold
category may not have a common evolutionary origin. The figure illustrates how a SCOP-
based benchmark is created. All but one family within a given superfamily constitute the
positive training set, and the held-out family constitutes the positive test set. Negative
examples are drawn from outside of the training set fold.

Recently, the Fisher kernel framework was elegantly generalized by Tsuda et al.
(2002b). They describe a general method for deriving a kernel from any latent
variable model, such as an HMM. The kernel assumes the availability of the hidden
variables, which are estimated probabilistically. The resulting joint kernel can be
converted to a marginalized kernel by taking its expectation with respect to the
hidden variables. The Fisher kernel, it turns out, is a special case of marginalized
kernels. The framework is demonstrated by using a small HMM-based marginalized
kernel to characterize a single family of bacterial proteins.

Subsequent to the introduction of the Fisher kernel, many different kernels haveComposition
kernels been applied to the problem of protein remote homology. Ding and Dubchak (2001)

define one of the simplest such kernels, a composition-based kernel function that
characterizes a given protein via the frequency with which various amino acids oc-
cur therein. In this work, each protein is characterized by a simple vector of letter
frequencies. Each protein sequence is represented via six different alphabets, corre-
sponding to amino acids, predicted secondary structure, hydrophobicity, normalized
van der Waals volume, polarity, and polarizability. A single protein is represented
by the letter frequencies across each of these alphabets, for a total of 125 features.
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The focus of this work is not the kernel function but the machinery for making
multiclass predictions. The most common means of training an SVM for an n-class
problem is the one-vs.-others method: n SVMs are trained, one per class, using
members of all other classes as negative examples. The final classification of a test
example is the class corresponding to the SVM that yields the discriminant with
largest absolute value. Ding and Dubchak introduce a method called the unique
one-vs.-others method, which performs additional SVM optimizations to sort out
disagreements among SVMs trained using the standard, one-vs-others method, and
they show that their method leads to significant improvement in test set accuracy.
The work also shows that an SVM outperforms a similarly trained neural network
on this task.

A similar composition kernel is used by Cai et al. (2001) to recognize broad
structural classes of proteins (all-α, all-β, α/β, and α + β). On this task, the
SVM yields better discrimination performance than a neural network method and
a method previously developed by the same authors.

A significant drawback to the composition kernel is the simplicity of the proteinMotif kernels
representation. Logan et al. (2001) propose a richer representational scheme, in
which features correspond to motifs in a pre-existing database. The BLOCKS
database (Henikoff and Henikoff, 1991) contains weight matrix motifs derived from
protein multiple alignments. Because these motifs occur in regions that are highly
conserved, they tend to correspond to functionally important regions of the proteins.
This observation motivates using motifs as features for an SVM. Logan et al. use
the BLIMPS tool (Wallace and Henikoff, 1992) to compare 10,000 BLOCKS motifs
to each protein in the SCOP database. The resulting scores are used to map each
protein into a 10,000-dimensional space. On a small collection of SCOP families,
this motif kernel performs better than an HMM method and comparably to the
Fisher-SVM.

Recently, a different motif kernel was described by Ben-Hur and Brutlag (2003).
This kernel uses the eBLOCKS database (motif.stanford.edu/eblocks), which
contains close to 500,000 motifs. Rather than represent each motif via a weight
matrix, eBLOCKS uses discrete sequence motifs. For example, the 6-mer motif
[AS].DKF[FILMV] contains three types of sites: the first position matches either A or
S, the second position matches any amino acid, and the third position matches only
the amino acid D. Thus, this motif would match the following example sequences:
ACDKFF, SRDKFI, and SADKFV. Because the motif database is so large, a simple
vector representation is computationally infeasible. Ben-Hur and Brutlag therefore
demonstrate how to compute the corresonding kernel values efficiently using a trie
data structure. Tested on a SCOP benchmark (Liao and Noble, 2002), the motif
kernel provides a significant improvement in performance over previously described
kernels.

One appealing characteristic of the Fisher kernel is its ability to incorporatePairwise
comparison
kernels

prior knowledge that is built into the profile HMM framework, including a simple
model of molecular evolution. An alternative evolutionary model is implicit in pair-
wise sequence comparison algorithms, such as the Smith-Waterman (Smith and
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Figure 3.2 An empirical kernel map derived from the Smith-Waterman sequence com-
parison algorithm. Each matrix contains m rows and columns, corresponding to the pro-
teins in the training set. Each entry in the matrix on the left is the Smith-Waterman score
of the corresponding proteins. Each entry on the right is the result of applying a standard
kernel function (e.g., dot product, polynomial, or radial basis) to the two corresponding
rows from the Smith-Waterman matrix.

Waterman, 1981) dynamic programming algorithm and its heuristic approxima-
tion, BLAST (Altschul et al., 1990). Like the HMM, these algorithms assume that
molecular evolution primarily proceeds via mutations and small-scale insertions and
deletions. Furthermore, through extensive application over more than two decades
of research, pairwise sequence comparison algorithms have been exhaustively an-
alyzed and optimized. For example, the distribution of scores produced by these
algorithms can be well characterized and used to compute a p-value or E-value
associated with each observed score.

Liao and Noble (2002, 2003) describe a simple method for generating a kernel
from the scores produced by a pairwise sequence comparison algorithm. These
algorithms have the form of a kernel function, in the sense that they measure the
similarity between a pair of objects being classified; however, the scores themselves
are not positive definite and so cannot be used as kernels. Therefore, Liao and
Noble employ the empirical kernel map (Tsuda, 1999) to convert the scores to a
valid kernel. This procedure is illustrated in fig. 3.2. The matrix on the left is an
m × m matrix of Smith-Waterman scores, corresponding to all pairs of proteins
in a training set. Each row in this matrix can be used as a vector representation
of the corresponding protein. A standard kernel function is then used to compute
the similarity between these vectors. Thus, each entry in the matrix on the right in
fig. 3.2 is simply the scalar product of two rows from the matrix on the left. Because
the procedure uses a standard kernel function, the empirical kernel map guarantees
a valid kernel matrix. Furthermore, the empirical kernel map offers an easy way
to incorporate prior knowledge directly into the kernel. For example, a sequence
kernel based on the Smith-Waterman or BLAST algorithm benefits from its implicit



3.2 Protein Remote Homology Detection 77

model of molecular evolution as well as from two decades of empirical optimization
of the algorithm’s parameters. In conjunction with an SVM classifier, the Smith-
Waterman empirical kernel map yields a powerful method—called SVM-pairwise—
for detection of subtle protein sequence similarity, performing significantly better
than the Fisher kernel on the data set used in that paper (Liao and Noble, 2002).

One drawback to the SVM-pairwise algorithm is its efficiency; however, several
variants of the algorithm address this issue. The computation of the kernel matrix
requires precomputation of all pairwise sequence comparison scores in the training
set. For the Smith-Waterman algorithm, each such computation is O(p2), where
p is the length of the protein sequences. This step can be sped up by a factor
of p by using the heuristic BLAST algorithm instead, at a small loss in accuracy
(Liao and Noble, 2002). The second step of the kernel computation—calculation of
the empirical kernel map—is also expensive, requiring O(m) time for each kernel
value, where m is the number of proteins in the training set. For some families of
proteins, the value of m can become quite large, on the order of 10,000. This step
can be sped up by using a smaller vectorization set of proteins in the empirical
kernel map, where the vectorization set defines the columns in the left-hand matrix
in fig. 3.2. For example, using a vectorization set consisting only of the positive
training examples leads to a significant time savings, again at a relatively small
decrease in performance (Liao and Noble, 2003).

String kernels comprise another class of kernels for protein remote homologyString kernels
detection. Like the BLAST and Smith-Waterman algorithms, string kernels operate
directly on pairs of proteins; however, string kernels are positive definite functions
and hence do not require the empirical feature map. The most general types of
string kernels are pair HMM and convolution kernels (Watkins, 2000; Haussler,
1999; Lodhi et al., 2002). However, these kernels are expensive to compute and
have not been applied to protein classification.

Leslie, Eskin, and Noble (2002) describe a simple string kernel—the spectrum
kernel—that is more efficient to compute. This kernel is, in a sense, a generalization
of the composition kernel mentioned earlier, in which the composition is computed
with respect to length-k substrings, called k-mers. For example, for k = 5 and
an alphabet of size 20, each vector consists of 520 = 9.5 × 1013 elements, each
corresponding to a single 5-mer. The kernel can be computed efficiently using
a trie data structure. On the SCOP benchmark used by Jaakkola et al. (1999),
the spectrum kernel using k = 3 provides performance comparable to that of the
HMM-based Fisher kernel. An alternative version of the spectrum kernel based upon
suffix trees and suffix links was subsequently described by Vishwanathan and Smola
(2003). For computing individual kernel values, the suffix tree implementation is
faster by a factor of O(k). However, this difference disappears for the computation
of a complete matrix of m2 kernel values: the trie-based spectrum kernel method
allows for efficient construction of the full matrix in one pass of the algorithm, and
this computation is as fast as calculating m2 individual kernel values with the suffix
tree method.
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Table 3.1 Efficiency of kernels for protein sequence comparison. Each entry in the
first table is the running time required to compute an m × m matrix of kernel values.
Variables are defined in the second table. For simplicity, all proteins are assumed to be of
approximately the same length p.

Kernel Complexity Reference

SVM-Fisher O(s2mp + sm2) (Jaakkola et al., 1999)

SVM-pairwise O(vmp2 + vm2) (Liao and Noble, 2003)

spectrum O(pm2) (Leslie et al., 2002)

mismatch O(kM �Mpm2) (Leslie et al., 2003b)

gappy, substitution, wildcard O(cKpm2) (Leslie and Kuang, 2003)

weight matrix motif O(�pqm2) (Logan et al., 2001)

discrete motif O(pqm2) (Ben-Hur and Brutlag, 2003)

Variable definitions

p length of one protein

m number of proteins in training set

s number of states in profile HMM

v number of proteins in vectorization set

k k-mer (substring) length

M number of allowed mismatches

� size of alphabet

cK constant that is independent of alphabet size

q number of motifs in database

The spectrum kernel has also been generalized to allow for a more accurate model
of molecular evolution. Mutations in the protein sequence are modeled using a
mismatch kernel (Leslie et al., 2003b), in which matches between k-mers are allowed
to contain at most M mismatches. Thus, for M = 1, a feature corresponding to
a k-mer such as VTWTA would match sequences such as VTATA, VCWTA, or VTWTK.
Further flexibility, including deletions of amino acids and more accurate modeling
of mutations, are modeled using a collection of string kernel functions introduced
by Leslie and Kuang (2003). These generalizations also use the trie data structure,
and have a running time that does not depend upon the size of the alphabet.

The efficiencies of the various kernel functions for protein remote homology
detection are summarized in table 3.1. With respect to the quality of the results
produced by these various kernels, conclusions are difficult to draw. There are two
primary SCOP benchmarks, one that includes in the training set additional non-
SCOP homologs identified via an HMM (Jaakkola et al., 1999) and one that uses
only SCOP domains (Liao and Noble, 2002). The SVM-Fisher method performs
well on its original benchmark (Jaakkola et al., 1999) but less well when non-SCOP
homologs are removed from the training set (Liao and Noble, 2002), presumably
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because the HMMs are consequently undertrained. The SVM-pairwise algorithm
performs better than SVM-Fisher on the nonhomology benchmark (Liao and
Noble, 2002); however, performing SVM-pairwise on the Jaakkola benchmark is not
practical due to the O(m3) running time of the empirical kernel map. Published
results indicate that the discrete motif method outperforms SVM-pairwise on
the nonhomology benchmark (Ben-Hur and Brutlag, 2003); however, subsequent
experiments using a larger E-value threshold show the two methods performing
comparably. Finally, although the spectrum kernel does not perform as well as
SVM-Fisher (Leslie et al., 2002), its variants (mismatch, gappy, substitution, and
wildcard) are comparable to SVM-Fisher on the homology benchmark (Leslie et al.,
2003b; Leslie and Kuang, 2003) and (for the mismatch kernel) comparable to SVM-
pairwise on the nonhomology benchmark (Leslie et al., 2003a).

3.3 Classification of Genes and Proteins

The recognition of remote homology relationships among proteins is a multiclass
classification problem, in which the classes are defined by similarities of protein 3D
structure. There are, however, numerous other ways in which proteins and their
corresponding genes can be placed into biologically interesting categories. SVMs
have been applied to the recognition of several such types of categories.

In addition to the primary amino acid sequence, the functional role of a proteinFunctional
classification of
promoter regions

can sometimes be determined by analyzing the DNA sequence that occurs upstream
of the corresponding gene. This region contains the switching mechanism that
controls when the gene is turned on and off; that is, when and how frequently
the gene is translated into a protein sequence. Pavlidis et al. (2001a) demonstrate
the application of the Fisher kernel to the problem of classifying genes according
to the characteristics of their switching mechanisms. This work thus assumes that
genes with similar switching mechanisms are likely to operate in response to the
same environmental stimulation and hence are likely to have similar or related
functional roles. The Fisher kernel is derived from a motif-based HMM, constructed
using Meta-MEME (Grundy et al., 1997). In this model, each motif corresponds
to one transcription factor binding site. The method is used successfully to predict
membership in two groups of coregulated genes in yeast.

Protein function can also be determined via sequence comparison with otherPrediction of
protein function
from phylogenetic
profiles

species. Vert (2002b) describes an elegant kernel function that operates on phylo-
genetic profiles. A phylogenetic profile is a bit string representation of a protein,
in which each bit corresponds to one species for which the complete genome is
available (Pellegrini et al., 1999). A bit is 1 if the protein has a close homolog in
that species, and 0 otherwise. Thus, the phylogenetic profile captures (part of) the
evolutionary history of a given protein. Two proteins that have similar phylogenetic
profiles likely have similar functions, via a kind of guilt by association. Say that in
every genome that protein A is observed, we also observe protein B, and vice versa.
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Given enough complete genomes, the probability of such consistent co-occurrence
happening by chance is extremely small.

Vert’s phylogenetic profile kernel uses a simple Bayesian tree model to capture
the evolutionary relationships among sequences. The tree defines a joint probability
distribution, and the corresponding feature space contains one dimension for each
possible evolutionary history. The tree kernel is a weighted sum over these histories.
Vert demonstrates how to compute this kernel in linear time. For predicting
yeast protein functional classes, an SVM trained using the tree kernel performs
significantly better than an SVM trained using a simple dot product kernel from
the same data set.

Hua and Sun (2001b) use SVMs to perform protein classification with respect toPrediction of
subcellular
localization

subcellular localization. Here, the label of each protein corresponds to the region of
the cell in which it typically resides, including for prokaryotes the cytoplasm, the
periplasm, and the exterior of the cell, and for eukaryotes the nucleus, cytoplasm,
mitochondria, and the exterior of the cell. In this work, the kernel function is a
simple, 20-feature composition kernel. The SVM is shown to produce more accurate
classifications than competing methods, including a neural network, a Markov
model, and an algorithm specifically designed for this task (Chou and Elrod, 1999).

Zavaljevski et al. (2002) describe the application of an SVM to a clinicallyDistinguishing
between benign
and pathologic
human
immunoglobulin
light chains

important, binary protein classification problem. The class of human antibody light
chain proteins is large and is implicated in several types of plasma cell diseases. In
particular, Zavaljevski, Stevens, and Reifman use SVMs to classify the κ family of
human antibody light chains into benign or pathogenic categories. The data set
consists of 70 protein sequences. Significantly, these proteins are aligned to one
another, in a multiple alignment of width 120. This alignment suggests a simple
vectorization, in which each binary feature represents the occurrence of a particular
amino acid at a particular position in the alignment. In order to reduce the size of
the resulting feature vector, the authors compress the amino acid to an alphabet
of size 7, based upon biochemical similarities.

In addition to making accurate predictions, the SVM is used in this context to
identify positions in the alignment that are most discriminative with respect to
the benign/pathogenic distinction. This identification is accomplished via selective
kernel scaling, in which a scaling factor is computed for each alignment position
and subsequently incorporated into the kernel computation. The scale factors are
computed in two different fashions: first, by measuring the degree of conservation
in a reference alignment of 14 prototypical human κ light chains, and second, by
computing a normalized sensitivity index based upon the output of the SVM. The
latter method is iterative and is related to the recursive feature elimination method
described below (Guyon et al., 2002). The resulting classifier yields an accuracy
of around 80%, measured using leave-one-out cross-validation, which compares
favorably with the error rate of human experts. Furthermore, the kernel scaling
technique confirms the importance of three previously identified positions in the
alignment.
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3.4 Prediction along the DNA or Protein Strand

In addition to classifying invidual gene or protein sequences, SVMs have been
applied to a number of tasks that involve searching for a particular pattern within
a single sequence.

An early such application involved the recognition of translation start sitesTranslation start
sites in DNA. These positions mark the beginnings of protein-coding genes; hence,

an accurate recognizer for this task is an integral part of automatic gene-finding
methods. Zien et al. (2000) compare SVMs to a previously described neural network
approach to this problem. A fixed-length window of DNA is encoded in redundant
binary form (4 bits per base), and the SVM and neural network are trained on the
resulting vectors. Using a simple polynomial kernel function, the SVM improves
upon the neural network’s error rate (15.4% down to 13.2%). Furthermore, Zien
et al. demonstrate how to encode prior knowledge about the importance of local
interactions along the DNA strand. This locality-improved kernel reduces the error
still further to 11.9%.

A similar application is described by Degroeve et al. (2002). Here, rather thanSplice sites
recognizing the starts of genes, the SVM learns to recognize the starts of introns.
Training and testing are performed on sequences from Arabidopsis thaliana. Once
again, the data are collected in fixed-length windows and encoded in redundant
binary form. The emphasis in this work is feature selection: the authors would like to
determine which positions around the splice site provide the most information. They
therefore propose a wrapper-based feature selection method, removing features one
at a time using the following selection criterion:

argmax
m

⎛⎝ l∑
j=1

yi ×
(

l∑
i=1

αiyik(xi
m, xj

m) + b

)⎞⎠ , (3.2)

where yj is the label (+1 or −1) of example j, b is the SVM bias term, and xj
m

is instance xj with feature m set to its mean value. Three SVM methods (using
linear, polynomial, and radial basis function kernels) are compared to a similar
method based upon a weight matrix, or naive Bayes classifier. The experiments
do not show a clear superiority of any method. Indeed, in no case does feature
selection improve performance relative to using the entire window of 100 bases.
All methods, not surprisingly, indicate that the most important features are those
closest to the splice site, though the methods do not agree on which specific sites
are most relevant.

Signal peptides are molecular bar codes at the end of a protein sequence thatSignal peptide
cleavage sites help to direct the protein to a particular location in the cell. Vert (2002a) describes

an SVM approach to recognizing the position at which a signal peptide is cleaved
from the main protein once it reaches its location. This application is thus similar to
recognizing translation starts and splice sites, except that it is performed on proteins
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rather than DNA sequences. The recognition of signal peptides is important for the
development of new drugs.

However, the emphasis in Vert’s paper is not the signal peptide application per se,
but the description of a general class of kernels derived from probabilistic models.
The primary aim is to describe a kernel that defines two objects as “close” when
they share rare common substructures. Here, “rarity” is defined with respect to a
particular naive Bayes probabilistic model. In general, for any probability density p

on X and any set of substructures V ⊂ P (S), the kernel kp,V is defined as follows:

kp,V (x, y) =
p(x)p(y)
|V |

∑
TεV

δ(xT , yT )
p(xT )

, (3.3)

for any two realizations (x, y)εA2S , where δ(xT , yT ) is 1 if xT = yT , 0 otherwise.
Previous research has successfully applied a simple weight matrix model to

the recognition of signal peptide cleavage sites (von Heijne, 1986). Accordingly,
Vert demonstrates how to derive from a weight matrix a kernel based upon
co-occurrences of rare substrings. The resulting SVM yields dramatically better
recognition performance than the simple weight matrix approach. For example, at
a false-positive rate of 3%, the weight matrix method retrieves 46% of true positives,
whereas the SVM method retrieves 68%.

The three previous methods aim at recognizing specific sites in a DNA or proteinFunctional RNAs
in prokaryotes sequence. In contrast, Carter et al. (2001) have demonstrated the application of

SVMs to the problem of recognizing functional RNAs in genomic DNA. With
respect to a typical protein-coding gene, RNA is an intermediate between the
repository of genetic information (the DNA strand) and the functional product
(the protein). Functional RNAs (fRNAs), in contrast, are RNA molecules that have
a functional role in the cell and do not code for a protein molecule. Recognizing
these RNAs in the DNA strand is difficult because they are typically short and
lack the many constraints imposed upon genes that encode proteins. However,
because the genes are so short, they can be recognized effectively using a fixed-
width sliding window. This is the approach used by Carter, Dubchak, and Holbrook
(2001). Each window is encoded using two types of features: compositional features
(frequencies of nucleotides and dinucleotides) and structural features (occurrences
of six structural motifs associated with fRNAs). The SVM performs well, with
leave-one-out error rates of approximately 0.7% to 16.8%, depending upon the
organism. However, the SVM is compared to a neural network, which performs
slightly better. The comparison is somewhat unfair because the neural network
employs a structured network that builds in prior knowledge about the two different
classes of inputs, whereas the SVM kernel treats all the inputs uniformly. Thus, this
application provides a clear opportunity for engineering an SVM kernel.

Finally, Hua and Sun (2001a) have demonstrated how to predict the secondarySecondary
structure structure at each location along a protein strand. Secondary structure elements

fall into three categories: helix, sheet, or coil. Accordingly, this is a multiclass
recognition problem, which Hua and Sun address in a straightforward fashion. The
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protein sequence is encoded in redundant binary fashion, using an 11-amino acid
sliding window. An RBF kernel is used, and three separate SVMs are trained, one
per secondary structure element. The final classification of a given amino acid is the
label associated with the SVM that assigns the discriminant score that is farthest
from zero. The resulting classifier achieves a per-residue accuracy of 73.5% on a
standard data set, which is comparable to existing methods based upon neural
networks.

3.5 Microarray Gene Expression Analysis

All of the SVM applications described thus far have involved the analysis of
biosequences. There is, however, an entirely different type of data, the analysis of
which has received considerable attention recently (see Knudsen, 2002 for a useful
overview). A microarray measures the number of copies of messenger RNA (mRNA)
in a given sample of cells. The technology comes in two primary forms. The first
technique involves affixing known DNA strands (called probes) to a 1 cm2 glass slide.
A fluorescently labeled sample of mRNA is then washed over the slide, and mRNAs
that match the probes on the slide bind there. Subsequently, the dye is fluoresced
under a microscope, and the intensity at each spot is measured. Each spot on the
slide corresponds to a known gene; hence, each spot intensity indirectly indicates
how many copies of that gene’s mRNA exist in the sample. The second technique
is similar to the first, except that the substrate is a silicon chip, and the probes are
synthesized photolithographically on the surface of the silicon. Because synthesizing
long sequences is expensive, many (between 20 and 40) spots are created for
each gene, each spot containing copies of a relatively short (25-nucleotide) probe
sequence. Again, the spot intensities are measured via fluorescence. The overall
signal for a given gene is computed by combining the measurements from the
corresponding spots. Using either technology, the end result is a collection of on
the order of 10,000 measurements of gene activity per experiment. The microarray
is appealing because of its ability to produce data in a high-throughput fashion.
However, the data themselves are quite noisy. Consequently, many research groups
have resorted to the use of clustering and pattern recognition techniques to interpret
their microarray data.

3.5.1 Gene Classification

The first application of SVMs to microarray data involved the classification of yeast
genes into functional categories (Brown et al., 2000). The microarray data were
collected from several previous studies (DeRisi et al., 1997; Spellman et al., 1998;
Chu et al., 1998) and had previously been analyzed using hierarchical clustering
(Eisen et al., 1998). The data set consisted of 79 glass slide microarray experiments,
each measuring the activity of approximately 6000 yeast genes. Based upon the
previously published analysis, Brown et al. selected five functional classes from
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Figure 3.3 Classification tasks with microarray gene expression data. Data from many
separate microarray experiments are collected into a single matrix, indexed by gene (row)
and experiment (column). Classification can be performed along either dimension of this
matrix: gene functional classification along the row dimension or diagnostic or prognostic
patient classification along the column dimension.

the MIPS yeast genome database (Mewes et al., 2000)—tricarboxylic acid (TCA)
pathway, respiration chain complexes, cytoplasmic ribosomal proteins, proteasome,
and histones—and measured the ability of the SVM to recognize members of each
of these classes.

The SVM yielded very good performance on this task. In comparison with a
collection of traditional machine learning techniques, including Fisher’s linear dis-
criminant, C4.5, Parzen windows, and MOC1, the SVM using either an RBF or
third-degree polynomial kernel was always the best performing method. Further-
more, the study demonstrated that the SVM can be used both to make predictions
for previously unannotated genes and to identify genes in the training set that
have been mislabeled. Finally, an analysis of the mistakes made by the SVM shows
that the learning algorithm’s behavior is in many cases explainable due to noise
or known biological anomalies. For example, some of the false-negative examples
in the TCA class turn out to be post-translationally modified, meaning that the
regulation of these genes occurs after the mRNA has been translated into a protein.
In such cases, microarray data cannot be expected to provide useful insights.
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3.5.2 Tissue Classification

A more popular application of SVMs to the analysis of microarray data involves
transposing the matrix of expression values. Rather than classify each gene accord-
ing to its profile across multiple experiments, the SVM learns to classify experi-
ments. In this type of study, one experiment typically corresponds to one patient,
and the classification label corresponds to a diagnosis. As such, the dimensional-
ity of the problem is unusual: typically, a data set contains tens of experiments
(examples) and thousands of genes (features).

The first application of a supervised learning algorithm to a tissue classificationAcute myeloid
and acute
lymphoblastic
leukemia

task was performed by Golub et al. (1999). They used a collection of 38 training
samples and 34 test samples to train a simple learning algorithm called “weighted
voting” to recognize the distinction between two forms of leukemia: Acute myeloid
(ALM) and acute lymphoblastic leukemia (ALL). This algorithm uses a feature
selection metric, the signal-to-noise ratio P (j), defined as follows:

P (j) =
∣∣∣∣μ1(j)− μ−1(j)
σ1(j) + σ−1(j)

∣∣∣∣ , (3.4)

where j is the gene index, μi is the mean of class 1 for gene j, μ−1 is the mean of class
-1 for gene j, and σ1 and σ−1 are the corresponding per-class standard deviations.
This metric is closely related to the Fisher criterion score used in Fisher’s linear
discriminant (Duda and Hart, 1973).

Subsequently, Mukherjee et al. (1999) demonstrated the application of the SVM
to this learning task. Because of the high dimensionality of the examples, a linear
kernel is applied. Using the signal-to-noise ratio as a feature selection method,
Mukherjee et al. improved upon the accuracy of the weighted voting method,
reducing the error rate from 6% (2 errrors out of 34) to 0%. Note, however, that the
method lacks a principled means of setting a priori the number of selected features.
Without feature selection, the SVM makes 1 error, and with the number of features
set too low (49 genes out of 7129), the number of errors is again 2.

Mukherjee et al. (1999) also describe a technique for assigning confidence values
to the SVM predictions. The method assumes that the probability of a particular
class, given a particular example, is approximately equal to the probability of the
class given the corresponding SVM discriminant value. Discriminant values are
estimated using leave-one-out cross-validation, and their distribution is estimated
using an SVM-based, nonparametric density estimation algorithm (Mukherjee and
Vapnik, 1999). Introducing confidence levels results in 100% accuracy and between
0 and 4 rejects, depending upon the number of features selected.

In work carried out concurrently, Moler et al. (2000) describe the application ofColon cancer
SVMs to the recognition of colon cancer tissues. The data set consists of 40 colon
cancer tumor and 22 normal colon tissues (Alon et al., 1999). This work describes
a general, modular framework for the analysis of gene expression data, including
generative, Bayesian methods for unsupervised and supervised learning, and the
SVM for discriminative supervised learning.
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The SVM is used in two ways, first to identify outlier or mislabeled training
examples. An unsupervised naive Bayes class discovery method identifies four
classes in the entire data set, and a multiclass (one-vs.-all) linear SVM is trained
and tested on all 1988 genes via leave-one-out cross-validation on these four classes.
The authors claim that examples that are always support vectors are of particular
interest: if these examples are consistently assigned to their labeled class, then they
are considered unambiguous; if the examples are inconsistently assigned, then they
may be mislabeled. Overall, the results suggest that the data can be divided into
three subtypes (clearly tumor, mainly nontumor and heterogeneous), which the
authors claim may be of clinical significance.

The second SVM application involves recognition of tumor vs. nontumor tissues.
A feature selection metric, the naive Bayes relevance (NBR) score, is proposed,
which is based on the probability of a class given the observed value of the feature,
under a Gaussian model. The performance of the SVM using various numbers of
selected genes is compared to the performance of a naive Bayes classifier using the
same genes. In every case, the SVM performs better than the naive Bayes.

In a similar set of experiments, Furey et al. (2000) apply linear SVMs with featureOvarian cancer
selection to three cancer data sets. The first data set consists of 31 tissue samples,
including cancerous ovarian, normal ovarian, and normal nonovarian tissue. The
other sets are the AML/ALL and colon cancer sets mentioned above. Following
Golub et al. (1999), the signal-to-noise ratio is used to select genes for input to the
classifier. The SVM successfully identifies a mislabeled sample in the ovarian set,
and is able to produce a perfect classification. However, this classification is fragile
with respect to the SVM parameter settings (softness of the margin and number of
genes selected for input). Overall, the SVM provides reasonably good performance
across multiple data sets, although the experiments also demonstrate that several
perceptron-based algorithms perform similarly.

Segal et al. (2003b) use the SVM to develop a genome-based classification schemeSoft tissue
sarcoma for clear cell sarcoma. This type of tumor displays characteristics of both soft

tissue sarcoma and melanoma. A linear SVM is trained to recognize the distinction
between melanoma and soft tissue sarcoma, using 256 genes selected via a t-test.
In a leave-one-out setting, the classifier correctly classifies 75 out of 76 examples.
Subsequently, the trained classifier is applied to five previously unseen clear cell
sarcoma examples, and places all five within the melanoma class. Thus, SVM
analysis of gene expression profiles supports the classification of clear cell sarcoma
as a distinct genomic subtype of melanoma.

In related work, Segal et al. (2003a) use SVMs to investigate the complex
histopathology of adult soft tissue sarcomas. Here, the data set consists of 51
samples that have been classified by pathologists into nine histologic subtypes.
The SVM, again using a t-test for feature selection, successfully recognizes the
four subtypes for which molecular phenotypes are already known. Among the
remaining samples, a combination of SVMs and hierarchical clustering uncovers
a well-separated subset of the malignant fibrous hystiocytoma subtype, which is a
particularly controversial subtype.
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All of the methods described thus far for cancer classification rely upon a scoreRecursive feature
elimination (either the signal-to-noise ratio, NBR score, or t-test) for selecting which genes to

give to the SVM classifier. A significant drawback to these scores is that they treat
each gene independently, thereby ignoring any significant gene-gene correlations
that may occur in the data. Guyon et al. (2002) propose an SVM-based learning
method, called SVM recursive feature elimination (SVM-RFE) that addresses this
issue. The motivating idea is that the orientation of the separating hyperplane found
by the SVM can be used to select informative features: if the plane is orthogonal
to a particular feature dimension, then that feature is informative, and vice versa.
Specifically, given an SVM with weight vector �w =

∑
k αkyk�xk, the ranking criterion

for feature i is ci = (wi)2. This criterion suggests the following wrapper-based
learning method:

1. Initialize the data set to contain all features.

2. Train an SVM on the data set.

3. Rank features according to the criterion c.

4. Eliminate the lowest-ranked feature.

5. If more than one feature remains, return to step 2.

In practice, the algorithm is sped up by removing half of the features in step 4.
The SVM-RFE algorithm is tested on the AML/ALL and colon cancer data sets.

For the leukemia data sets, SVM-RFE identifies two genes that together yield zero
leave-one-out error. In addition, several other classification algorithms, including
the weighted voting algorithm, are applied to the data using the genes selected by
SVM-RFE. The results show that the selection of genes is more important than the
particular learning algorithm employed.

SVM-RFE has the dual goal of producing a good discriminator and reducing theGene selection
number of genes to a manageable number. If we eliminate the first goal, then we
are left with the problem of gene ranking. Identifying genes that exhibit predictive
power in discriminating between two classes of samples is often the primary goal of
a microarray study. Su et al. (2003) describe a tool called RankGene that produces
gene rankings. One of the ranking metrics available in RankGene is the discriminant
of a one-dimensional SVM trained on a given gene.

Many tissue classification analyses have been hampered somewhat by the dearthMulti-class
classification of useful, publically available gene expression data sets. Yeang et al. (2001) ad-

dressed this issue by producing a data set of 190 samples from 14 tumor classes.
This collection was later expanded to include 308 samples, including 90 normal
tissue samples (Ramaswamy et al., 2001). The initial study compares six different
supervised learning methods: weighted voting, k-nearest neighbor, and the SVM,
each trained for multiclass classification using both a one-vs.-all and an all-pairs ap-
proach. The signal-to-noise ratio is used for feature selection for the weighted voting
and k-nearest neighbor, but feature selection is not applied to the SVM algorithm.
Nonetheless, the one-vs.-all SVM algorithm trained using all genes performs better
than the all-pairs SVM and better than any of the other classifiers trained using 20,
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40, 50, 100, or 200 genes. The second, larger study does apply SVM-RFE, but the
best performance is again obtained by the one-vs.-all SVM trained using all genes.

At this stage, the diagnosis and prognosis of cancer using microarray assays is
still the subject of both hype and controversy. For example, an important and
occasionally overlooked characteristic of these studies is the risk of introducing
selection bias by choosing discriminative genes prior to performing cross-validation.
Ambroise and McLachlan (2002) demonstrate that this bias occurs in several
published studies, including the SVM-RFE analysis performed by Guyon et al.
(2002). A reanalysis of the colon cancer and leukemia data sets, taking into
account the selection bias, shows that feature selection does not actually improve
discrimination performance relative to an SVM trained from all of the genes.
This result agrees with the results reported by Ramaswamy et al. (2001). Despite
the controversy, a microarray assay is already in clinical trial in the Netherlands
for determining whether breast cancer patients will receive adjuvant treatment
(chemotherapy, tamoxifen, or radiation) after surgery (Schubert, 2003), and at
least five additional clinical trials are set to begin soon (Branca, 2003). Ironically,
the Dutch microarray screen is based, in part, on a (non-SVM-based) microarray
analysis (van’t Veer et al., 2002) that has been demonstrated independently to
suffer from selection bias (Tibshirani and Efron, 2002).

3.6 Data Fusion

Now that the human genome is more or less completely sequenced, more interest
is being paid to the problem of data fusion, of integrating heterogeneous biological
data. For example, for a given gene we might know the protein it encodes, that
protein’s similarity to other proteins, the mRNA expression levels associated with
the given gene under hundreds of experimental conditions, the occurrences of known
or inferred transcription factor binding sites in the upstream region of that gene,
and the identities of many of the proteins that interact with the given gene’s protein
product. Each of these distinct data types provides one view of the molecular
machinery of the cell.

Several efforts have been made to perform biological data fusion in the context ofSumming kernel
matrices SVM learning. Pavlidis et al. (2001b, 2002) trained SVMs to recognize functional

categories of yeast genes, using a combination of microarray gene expression data
and phylogenetic profiles. In this case, both types of data are fixed-length, real-
valued vectors, so a standard third-degree polynomial kernel is employed. Pavlidis
et al. compare three different techniques for combining these two types of data (see
figure 3.4): early integration, in which the two vectors are simply concatenated;
intermediate integration, in which two kernels are computed separately and then
added; and late integration, in which two SVMs are trained and their discriminant
scores are added. Intermediate integration provides the best results, presumably
because it trades off making too many independence assumptions (in late integra-
tion) vs. allowing too many dependencies (in early integration). The authors also
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Figure 3.4 Three methods for learning from heterogeneous data with a support vector
machine. In early integration, the two types of data are concatenated to form a single set
of input vectors. In intermediate integration, the kernel values are computed separately
for each data set and then summed. In late integration, one SVM is trained on each data
type, and the resulting discriminant values are summed.

present some heuristic techniques for choosing scaling factors to be applied to each
kernel function.

Another form of data fusion was performed by Vert and Kanehisa (2003b). ThisKernel canonical
correlation
analysis

approach integrates gene expression profiles with prior knowledge of a metabolic
network. The network represents pathways of proteins that operate upon one
another in the cell. Vert and Kanehisa hypothesize that gene expression patterns
that are well measured (i.e., that correspond to actual biological events, such as
the activation or inhibition of a particular pathway) are more likely to be shared
by genes that are close to one another in the metabolic network. Accordingly, the
expression data and the metabolic network are encoded into kernel functions, and
these functions are combined in feature space using canonical correlation analysis
(Bach and Jordan, 2002). Using yeast functional categories, an SVM trained from
the combined kernel performs significantly better than an SVM trained only on
expression data.

Recently, Lanckriet et al. (2004) have described a new method for integratingSemidefinite
programming heterogeneous genomic data. Similar to the work of Pavlidis et al. (2001b, 2002),

the method involves summing a collection of kernel matrices, one per data set. In
this case, however, each matrix is weighted, and Lanckriet et al. demonstrate how to
optimize simultaneously the hyperplane selection and the selection of kernel weights.
The result is a convex optimization problem that can be solved with semidefinite
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programming techniques. The paper demonstrates the utility of these techniques
by solving the problem of predicting membrane proteins from heterogeneous data,
including amino acid sequences, hydropathy profiles, gene expression data, and
known protein-protein interactions. An SVM algorithm trained from all of these
data performs significantly better than the SVM trained on any single type of
data and better than existing algorithms for membrane protein classification.
Furthermore, the algorithm is robust to noise: when a randomly generated data
set is included in the mix, the corresponding kernel function receives a weight close
to zero, and the overall performance of the discriminator is essentially unchanged.

Finally, Tsuda et al. (2003) describe a different type of data fusion algorithm.Expectation-
maximization for
missing data

This approach applies a variant of the expectation-maximization algorithm (Demp-
ster et al., 1977) to the problem of infering missing entries in a kernel matrix
by using a second kernel matrix from an alternative data source. The method is
demonstrated using two kernel matrices derived from two different types of bacterial
protein sequences (16S rRNA and gyrase subunit B). The quality of the resulting
matrix is evaluated by using the matrix to perform unsupervised learning. The
results suggest that this approach may prove useful in a supervised context as well.

3.7 Other Applications

Model et al. (2001) describe a classification task very similar to the cancer classifi-Cancer
classification
from methylation
data

cation tasks described above. The primary difference is that, in this case, the data
come from a methylation assay, rather than a microarray gene expression profile.
Methylation is a molecular modification of DNA, in which a methyl group is added
to the nucleotide cytosine. Methylation patterns in the upstream regions of genes
are thought to be a major factor in gene regulation. Model et al. have developed a
high-throughput method for collecting methylation data, and have used it to col-
lect data from leukemia patients, 17 with AML and 8 with ALL. Each methylation
pattern contains measurements from 81 positions along the DNA strand. The com-
putational experiment consists of training a linear SVM to differentiate between
AML and ALL. Many feature selection methods are employed, including principle
component analysis, the signal-to-noise ratio, the Fisher criterion score, the t-test,
and a method called backward elimination. The last is essentially identical to the
SVM-RFE algorithm of Guyon et al. (2002) and appears to have been invented
independently. For this task, SVM-RFE does not outperform the linear feature se-
lection methods. Instead, feature selection via the Fisher criterion score provides
the best results.

Perhaps one of the most unusual learning tasks is described by Myasnikova et al.Prediction of
developmental
age of Drosophila
embryos

(2002). They are interested in characterizing gene expression changes in Drosophila
during development, and they measure these changes in a gene-specific fashion using
fluorescent dyes and light microscopy of Drosophila embryos. In order to precisely
and efficiently analyze the resulting data, they need an automatic method for
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determining the developmental age of a Drosophila embryo. To solve this problem,
they use support vector regression (Drucker et al., 1997).

The data set consists of 103 embyros for which the precise developmental age is
known. A microphotograph of each embryo is reduced, using previously developed
techniques, to a table of values in which each row corresponds to a single cell, and
columns represent the x and y coordinates of the nucleus and the expression levels
of three genes in that cell. The resulting regression estimator appears to perform
well, though no comparison to other algorithms is performed. The authors also
demonstrate how factor analysis, performed on a data set of labeled and unlabeled
examples, can be used to reduce the number of features to 3, thereby significantly
increasing the speed of the regression estimation with no accompanying loss in
accuracy.

Bock and Gough (2001) apply SVMs to the very important problem of predictingPrediction of
protein-protein
interactions

protein-protein interactions. This task fits cleanly into a binary discrimination
framework: given a pair of proteins, the SVM predicts whether or not they interact.
A critical question is how best to represent the protein pairs, and Bock and Gough
derive a set of features characterizing the charge, hydrophobicity, and surface
tension at each amino acid in a given protein. Protein pairs are represented simply
as the concatenation of the corresponding vectors. The SVM performs impressively,
achieving an accuracy better than 80% in a cross-validated test. However, the
experiment suffers from a significant flaw: the negative examples are generated
randomly. Therefore, it is not clear whether the SVM is learning to differentiate
between interating and noninteracting protein pairs, or to differentiate between real
and simulated protein pairs. Further experiments are needed.

Indeed, a subsequent experiment addressing this same problem shows the SVM
performing comparably to a simple Bayesian technique (Gomez et al., 2003). The
SVM’s drawback, in this work, is that the training set is extremely large, and the
SVM is consequently quite slow relative to the simpler method.

In tandem mass spectrometry, a sample of unknown proteins is enzymatically di-Peptide
identification
from mass
spectrometry
data

gested into relatively short strings of amino acids, called peptides. These peptides
are size-selected via mass spectrometry, fragmented via ionization, and the frag-
ments are measured by a second mass spectrometer. The final spectrum contains
peaks corresponding to all or most of the substrings in a single peptide. It is possible
to infer the original peptide from the spectrum, using only the known masses of the
amino acids. In practice, however, performing this task de novo is too difficult, and
successful algorithms like SEQUEST (Eng et al., 1994) use an auxiliary database
of known proteins. SEQUEST performs a simulation of tandem mass spectrometry
on each peptide in the database, searching for a theoretical spectrum that matches
the observed spectrum.

Anderson et al. (2003) apply the SVM to the problem of interpreting SEQUEST
output. The algorithm produces a large number of false positives, and the SVM’s
task is to learn to differentiate true from false positives. Thus, the input to the
classifier is a pair of spectra—observed and theoretical—and the output is a
prediction—true positive or false positive. The input spectra are represented by
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a collection of 13 parameters, reflecting the quality of the observed spectrum, the
similarity of the observed and theoretical spectrum, and the difference between this
match and the next-best match found by SEQUEST. The SVM uses a quadratic
kernel function, and achieves error rates of 7% to 14%, depending upon the quality
of the instrument used to generate the data. This compares favorably with QScore,
a previously published, non learning-based probabilistic algorithm that addresses
the same task (Moore et al., 2002). The same SVM has been subsequently used
to construct an assay of the ubiquitin system (Gururaja et al., 2003), which is
responsible for targeting proteins for degradation.

3.8 Discussion

Clearly, the application of SVM learning in computational biology is a popular
and successful undertaking. The appeal of this approach is due in part to the
power of the SVM algorithm, and in part to the flexibility of the kernel approach
to representing data. In particular, the kernel framework accommodates in a
straightforward fashion many different types of data—vectors, strings, trees, graphs,
and so on—that are common in biology. Also, kernels provide an easy way to
incorporate biological knowledge and unlabeled data into the learning algorithm. A
kernel matrix derived from a particular experiment can thus summarize the relevant
features of the primary data, encapsulate biological knowledge, and serve as input
to a wide variety of subsequent data analyses.

Finally, as an avenue for future research, the kernel approach to learning allows
for a principled way to perform transduction (Gammerman et al., 1998). A trans-
ductive learning task is one in which the (unlabeled) test data are available to the
algorithm a priori. In the post-genomic era, many computational biology tasks are
transductive because the entire complement of genes or proteins in a given organism
is known. Exploiting the finite nature of these learning tasks may lead to improved
recognition performance in many biological domains.
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We review several families of string kernels designed in particular for use with sup-
port vector machines (SVMs) for classification of protein sequence data, mismatch
kernels, and three newer related models: restricted gappy kernels, substitution ker-
nels, and wildcard kernels. These kernels are based on feature spaces indexed by
l-length subsequences or “l-mers” from the string alphabet Σ (or the alphabet aug-
mented by a wildcard character) and incorporate various notions of inexact string
matching. All the kernels can be computed efficiently with a recursive function
based on a trie-based data structure, with computation time that scales linearly
with sequence length: the kernel value k(x, y) can be computed in O(ck(|x |+ |y|))
time, where the constant ck depends on the parameters of the kernel. In particular,
for the newer kernel models, the constant ck is independent of the size |Σ| of the
alphabet, which significantly speeds up computation time. Moreover, when used
with an SVM classifier, all the kernel models allow linear time prediction on test
sequences. Finally, we report protein classification experiments on a benchmark
SCOP (structural classification of proteins) data set, where we show that inexact
matching kernels achieve SVM classification performance comparable to the best
competing methods.

4.1 Introduction

A central problem in computational biology is the classification of protein sequences
into functional and structural families based on sequence homology. Approaches
based on pairwise alignment of sequences (Waterman et al., 1991; Altschul et al.,
1990, 1997), profiles for protein families (Gribskov et al., 1987), consensus patterns
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using motifs (Bairoch, 1995; Attwood et al., 1998), and hidden Markov models
(HMM’s; Krogh et al., 1994; Eddy, 1995; Baldi et al., 1994) have all been used
for this problem. Recent research suggests that the best-performing methods are
discriminative: protein sequences are seen as a set of labeled examples — positive if
they are in the family and negative otherwise — and a learning algorithm attempts
to learn a decision boundary between the different classes.

However, in order to use discriminative classifiers like SVMs (Vapnik, 1998) for
this problem, one must choose a suitable vector representation of protein sequence
data. Protein sequences can be viewed as variable-length strings from the alphabet
of 20 amino acids, typically several hundred characters long; each sequence x must
be represented in a vector space by a feature mapping x �→ Φ(x ). If we use kernel
methods such as SVMs, which only require inner products k(x , y) = 〈Φ(x ), Φ(y)〉
for training and testing, then we can implicitly accomplish the above mapping using
a kernel for sequence data.

In the recent Fisher kernel approach (Jaakkola et al., 2000), one derives the
feature representation for an SVM classifier from a generative model for a protein
family. Here, one first builds a profile HMM for the positive training sequences,
defining a log likelihood function log P (x |θ) for any protein sequence x. Then the
gradient vector ∇θ log P (x |θ)|θ=θ0 , where θ0 is the maximum likelihood estimate
for model parameters, defines an explicit vector of features, called Fisher scores,
for x. This representation gives strong classification results, but the Fisher scores
must be computed by an O(|x |2) forward-backward algorithm, making the kernel
evaluations somewhat slow.

The SVM-pairwise method (Liao and Noble, 2002) provides an alternative vector-
ization, based on pairwise alignment scores like Smith-Waterman (SW) (Waterman
et al., 1991) or BLAST (Altschul et al., 1990). These alignment-based scores do
not define a positive definite kernel; however, one can use a feature representation
based on the empirical kernel map Φ(x ) = 〈d(x1, x ), . . . , d(xm, x )〉, where d(x , y) is
the pairwise score (or corresponding E-value) between x and y and xi, i = 1 . . .m,
are the training sequences. Using SW E-values in this fashion gives strong classi-
fication performance (Liao and Noble, 2002). Note, however, that the method is
slow, both because computing each SW score is O(|x |2) and because computing
each empirically mapped kernel value is O(m).

In this chapter, we discuss a family of representations and kernels based on the
spectrum of a sequence. The l-spectrum of a sequence is the set of all l-length
contiguous subsequences, or l-mers, that it contains. Here, we define kernels whose
implicit feature map is indexed by the set of all l-mers from the alphabet Σ of
amino acids: Φ(x ) = (φα(x ))α∈Σl . If φα(x ) is simply a count of the number of
exact occurrences of l-mer α in x , we obtain the spectrum feature map of Leslie
et al. (2002). However, by incorporating some notion of inexact string matching, we
obtain a much improved classification performance. In the (l, m)-mismatch feature
map of Leslie et al. (2003b), the coordinate function φα(x ) represents a count of
all occurrences of α, allowing up to m mismatches, in x . Using the same feature
space indexed by l-mers from Σ (or Σ augmented with a wildcard character), one



4.2 Definitions of Feature Maps and String Kernels 97

can obtain other models for counting inexact matches (Leslie and Kuang, 2003),
based on counts with restricted gaps, probabilistic substitutions, or wildcards. All
these inexact string matching representations define true string kernels (rather than
only giving feature maps): one does not have to explicitly compute and store the
feature vectors, but rather one can directly and efficiently compute the kernel value
k(x , y) using a recursive function based on traversal of a trie data structure. The
complexity of calculating k(x , y) is linear in the length of the input sequences, that
is, O(ck(|x |+ |y|)), where ck is a parameter-dependent constant. For the mismatch
kernel, ck = lm+1|Σ|m, while the other inexact matching string kernels have the
advantage that ck is independent of alphabet size Σ, leading to faster compute
times.

For useful kernel parameters, the mismatch kernel and its relatives – the gappy,
substitution, and wildcard kernels – are fast, scalable, and give impressive perfor-
mance. We summarize our experimental results on a benchmark SCOP data set for
remote protein homology detection, where we show that both the mismatch kernel
and the faster inexact matching variations kernels achieve SVM classification per-
formance comparable to the Fisher-SVM approach, the best previous method for
this data set. We do not include a comparison with the SVM-pairwise method here,
since the kernel computations for this method are expensive for this large SCOP
data set. However, in the longer version of Leslie et al. (2003b), we show that the
mismatch kernel used with an SVM classifier is competitive with SVM-pairwise on
the smaller SCOP benchmark presented in Liao and Noble (2002).

There has been much recent work on string kernels in applications like text cat-
egorization and speech recognition, as well as protein classification. Previous work
includes convolution kernels (Haussler, 1999), dynamic alignment kernels (Watkins,
2000), and the gappy n-gram kernel developed for text classification (Lodhi et al.,
2002). A practical disadvantage of these string kernels is their computational ex-
pense. Most of the kernels rely on dynamic programming algorithms for which the
computation of each kernel value k(x , y) is quadratic in the length of the input
sequences x and y, that is, O(|x ||y|) with constant factor that depends on the pa-
rameters of the kernel. The exact matching spectrum kernel has been extended to
compute the weighted sum of l-spectrum kernels for different l by using suffix trees
and suffix links (Vishwanathan and Smola, 2003), allowing for a compute time of
O(|x |+|y|); this result eliminates the linear dependence on l in the spectrum kernel,
whose complexity is O(l(|x | + |y|)). However, the kernels we describe in this pa-
per – mismatch, gappy, substitution, and wildcard kernels – use notions of inexact
string matching for improved representation and classification performance while
maintaining linear time scaling.

4.2 Definitions of Feature Maps and String Kernels

Below, we give the definition of mismatch kernels (Leslie et al., 2003b) and three
newer variations which incorporate other notions of inexact string matching: re-
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stricted gappy kernels, substitution kernels, and wildcard kernels (Leslie and Kuang,
2003). In each case, the kernel is defined via an explicit feature map from the space
of all finite sequences from an alphabet Σ to a vector space indexed by the set
of l-length subsequences from alphabet Σ or, in the case of wildcard kernels, Σ
augmented by a wildcard character.

4.2.1 Spectrum and Mismatch Kernels

For a very simple feature map into the |Σ|l-dimensional vector space indexed bySpectrum feature
map l-mers, we can assign to a sequence x a vector given as follows: for each l-mer α,

the coordinate indexed by α will be the number of times α occurs in x . This gives
the l-spectrum feature map defined in Leslie et al. (2002):

ΦSpectrum
l (x ) = (φα(x ))α∈Σl

where φα(x ) = # occurrences of α in x . Now the l-spectrum kernel kSpectrum
l (x , y)

for two sequences x and y is obtained by taking the inner product in feature space.
This kernel gives a simple notion of sequence similarity: two sequences will have
a large l-spectrum kernel value if they share many of the same l-mers. One can
extend this idea by taking weighted sums of l-spectrum kernels for different values
of l, as described in Vishwanathan and Smola (2003).

For a more biologically reasonable representation, we want to allow some degree
of inexact matching in our feature map – that is, we want the kernel to measure
the number of similar l-mers shared by two sequences – which we accomplish with
mismatches. In Leslie et al. (2003b), we define the (l, m)-mismatch kernel via a
feature map ΦMismatch

(l,m) , again mapping to the vector space indexed by the set of
l-mers from Σ. For a fixed l-mer α = a1a2 . . . al, with each ai a character in Σ, the
(l, m)-neighborhood generated by α is the set of all l-length sequences β from Σ
that differ from α by at most m mismatches. We denote this set by N(l,m)(α) and
call it the “mismatch neighborhood” around α.

For an l-mer α, the feature map is defined asMismatch feature
map

ΦMismatch
(l,m) (α) = (φβ(α))β∈Σl

where φβ(α) = 1 if β belongs to N(l,m)(α), and φβ(α) = 0 otherwise. For a sequence
x of any length, we extend the map additively by summing the feature vectors for
all the l-mers in x :

ΦMismatch
(l,m) (x ) =

∑
l-mers α in x

ΦMismatch
(l,m) (α)

Each instance of an l-mer contributes to all coordinates in its mismatch neighbor-
hood, and the β-coordinate of ΦMismatch

(l,m) (x ) is just a count of all instances of the
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l-mer β occurring with up to m mismatches in x . The (l, m)-mismatch kernel k(l,m)

is then given by the inner product of feature vectors:

kMismatch
(l,m) (x , y) = 〈ΦMismatch

(l,m) (x ), ΦMismatch
(l,m) (y)〉.

For m = 0, we obtain the l-spectrum (Leslie et al., 2002).

4.2.2 Restricted Gappy Kernels

For the (g, l)-gappy string kernel (Leslie and Kuang, 2003), we use the same |Σ|l-
dimensional feature space, indexed by the set of l-mers from Σ, but we define our
feature map based on gappy matches of g-mers (with g > l) to l-mer features. For a
fixed g-mer α = a1a2 . . . ag (each ai ∈ Σ), let G(g,l)(α) be the set of all l-mers that
can be obtained from l-length subsequences occurring in α (with up to g− l gaps).
Here, an l-length subsequence refers to an ordered sequence of characters from α

at positions 1 ≤ i1 < i2 < . . . < il ≤ g, and an l-mer is obtained by concatenating
these characters: ai1ai2 . . . ail

. Then we define the gappy feature map on α asGappy feature
map

ΦGap
(g,l)(α) = (φβ(α))β∈Σl

where φβ(α) = 1 if β belongs to G(g,l)(α), and φβ(α) = 0 otherwise. In other words,
each instance g-mer contributes to the set of l-mer features that occur (in at least
one way) as subsequences with up to g − l gaps in the g-mer. Now we extend the
feature map to arbitrary finite sequences x by summing the feature vectors for all
the g-mers in x :

ΦGap
(g,l)(x ) =

∑
g-mers α∈x

ΦGap
g,l (α)

The kernel kGap
(g,l)(x , y) is defined as before by taking the inner product of feature

vectors for x and y.
Alternatively, given an instance g-mer, we may wish to count the number of

occurrences of each l-length subsequence and weight each occurrence by the number
of gaps. Following Lodhi et al. (2002), we can define for g-mer α and l-mer feature
β = b1b2 . . . bl the weighting

φλ
β(α) =

1
λl

∑
1≤i1<i2<...<il≤g

aij
=bj for j=1...l

λil−i1+1

where the multiplicative factor satisfies 0 < λ ≤ 1. We can then obtain a weighted
version of the gappy kernel kWeighted Gap

(g,l,λ) from the feature map:

ΦWeighted Gap
(g,l,λ) (x ) =

∑
g-mers α∈x

(φλ
β(α))β∈Σl

This feature map is related to the gappy l-gram kernel defined in Lodhi et al.
(2002) but enforces the restriction that only those l-character subsequences that
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occur with at most g − l gaps (rather than all gappy occurrences) contribute to
the corresponding l-mer feature. Note that for our kernel, a restricted gappy l-mer
instance is counted in all (overlapping) g-mers that contain it, whereas in Lodhi
et al. (2002), a gappy l-mer instance is only counted once. If we wish to approximate
the gappy l-gram kernel, we can define a small variation of our restricted gappy
kernel where one only counts a gappy l-mer instance if its first character occurs in
the first position of a g-mer window (Leslie and Kuang, 2003).This modified feature
map now gives a “truncation” of the usual gappy l-gram kernel.

In section 4.3, we show that our restricted gappy kernel has O(c(g, l)(|x |+ |y|))
computation time, where constant c(g, l) depends on the size of g and l, while
the original gappy l-gram kernel has complexity O(l|x ||y|). We will see that for
reasonable choices of g and l, we obtain much faster computation time, while
in experimental results reported in section 4.5, we still obtain good classification
performance.

4.2.3 Substitution Kernels

The substitution kernel (Leslie and Kuang, 2003) is similar to the mismatch kernel,
except that we replace the combinatorial definition of a mismatch neighborhood
with a similarity neighborhood based on a probabilistic model of character sub-
stitutions. In computational biology, it is standard to use pairwise scores s(a, b),
derived from estimated evolutionary substitution probabilities, from a substitution
matrix (Henikoff and Henikoff, 1992; Schwartz and Dayhoff, 1978; Altschul et al.,
1990). One system derives the scores s(a, b) from estimates of conditional substi-
tution probabilities P (a|b) = p(a, b)/q(b), where p(a, b) is the probability that a

and b co-occur in an alignment of closely related proteins, q(a) is the background
frequency of amino acid a, and P (a|b) represents the probability of a mutation into
a during a fixed evolutionary time interval given that the ancestor amino acid was
b. We define the mutation neighborhood M(l,σ)(α) of an l-mer α = a1a2 . . . al as
follows:

M(l,σ)(α) = {β = b1b2 . . . bl ∈ Σl : −
l∑
i

log P (ai|bi) < σ}

We can choose σ = σ(N) such that maxα∈Σl |M(l,σ)(α)| < N , so we have theoretical
control over the maximum size of the mutation neighborhoods. In practice, choosing
σ to allow an appropriate amount of mutation while restricting neighborhood size
may require experimentation and cross-validation.

Now we define the substitution feature map analogously to the mismatch featureSubstitution
feature map map:

ΦSub
(l,σ)(x ) =

∑
l-mers α in x

(φβ(α))β∈Σl
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where φβ(α) = 1 if β belongs to the mutation neighborhood M(l,σ)(α), and
φβ(α) = 0 otherwise.

4.2.4 Wildcard Kernels

Finally, we can define wildcard kernels (Leslie and Kuang, 2003) by augmenting
the alphabet Σ with a wildcard character denoted by ∗. Here, we map to a feature
space indexed by the set W of l-length subsequences from Σ∪{∗} having at most m

occurrences of the character ∗. The feature space has dimension
∑m

i=0

(
l

i

)
|Σ|l−i.

An l-mer α matches a subsequence β in W if all nonwildcard entries of β are equal
to the corresponding entries of α (wildcards match all characters). The wildcard
feature map is given byWildcard feature

map
ΦWildcard

(l,m,λ) (x ) =
∑

l-mers α in x

(φβ(α))β∈W

where φβ(α) = λj if α matches pattern β containing j wildcard characters,
φβ(α) = 0 if α does not match β, and 0 < λ ≤ 1.

Other variations of the wildcard idea, including specialized weightings and use of
groupings of related characters, are described in Eskin et al. (2003).

4.3 Efficient Computation

All the kernels we define above can be efficiently computed using a trie data
structure, similar to the mismatch tree approach first presented in Leslie et al.
(2003b). We review the mismatch kernel and gappy kernel (Leslie and Kuang, 2003)
computation in most detail, since the other kernels are easier adaptations of the
mismatch kernel computation. For simplicity, we explain how to compute a single
kernel value k(x , y) for a pair of input sequences; computation of the full kernel
matrix in one traversal of the data structure is a straightforward extension.

4.3.1 (l, m)-Mismatch Kernel Computation

We use a trie-based data structure, called a mismatch tree, to represent the feature
space (the set of all l-mers) and to organize a lexical traversal of all instances of
l-mers that occur (with mismatches) in the data. The entire kernel matrix can be
computed in one traversal of the tree, though for simplicity we discuss complexity
for a single kernel evaluation k(x, y). More details can be found in Leslie et al.
(2003b) and the forthcoming longer version of that paper.

An (l, m)-mismatch tree is a rooted tree of depth l where each internal nodeMismatch tree
has 20 (more generally, |Σ|) branches, each labeled with an amino acid (symbol
from Σ). A leaf node represents a fixed l-mer in our feature space, obtained by
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Figure 4.1 An (8, 1)-mismatch tree for a sequence AVLALKAVLL used for computing the
kernel matrix with l-mers of length 8 allowing 1 mismatch. The path from the root to
the node is the “prefix” of a particular l-mer feature. The leaf node stores the number
of mismatches between the prefix of an l-mer instance and the prefix of a feature and a
pointer to the tail of the l-mer. The figure shows the tree after expanding the path AL.

concatenating the branch symbols along the path from root to leaf. An internal node
represents the prefix for those l-mer features that are its descendants in the tree. We
perform a depth-first traversal of the data structure and store, at a node of depth
d, pointers to all substrings (“l-mer instances”) from the sample data set whose
d-length prefixes are within m mismatches from the d-length prefix represented by
the path down from the root; this set of substrings represents the valid instances
of the d-length prefix in the data. We also keep track, for each valid instance, of
how many mismatches it has when compared to the prefix. Note that the set of
valid instances for a node is a subset of the set of valid instances for the parent of
the node; when we descend from a parent to a child, each instance is either passed
down (with 0 or 1 additional mismatch), or it is eliminated because it has exceeded
m mismatches. When we encounter a node with an empty list of pointers (no valid
occurrences of the current prefix), we do not need to search below it in the tree.

When we reach a leaf node — corresponding to a particular feature l-mer
α — we have pointers to all instance l-mers occurring in the source sequences
that are up to m mismatches from α. Because for a source sequence x , the
instances with mismatches of α in x — the l-mers in x belonging to N(l,m)(α)
— are exactly the ones that contribute to the α-coordinate of the feature vector
Φ(x ), we can now sum the contributions of all instances occurring in each source
sequence and update the kernel value k(x , y): if nα(x ) and nα(y) are the number
of instances (with mismatches) of l-mer α in x and y, we perform the update
k(x , y)← k(x , y)+nα(x ) ·nα(y). Figure 4.1 gives an example of the mismatch tree
traversal.

During the kernel computation, we need only search down paths corresponding
to l-mers that occur (with mismatches) in the data. The number of l-mers within
m mismatches of any given fixed l-mer is
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traverse(currInstances,currMismatches,currDepth)

if currDepth == l

process leaf

else

for each symbol a in alphabet {

for each inst in currInstances {

if inst[currDepth] != a

if currMismatches{inst} < m {

add inst to newInstances

newMismatches{inst} = currMismatches{inst} + 1

}

else {

add inst to newInstances

newMismatches{inst} = currMismatches{inst}

}

}

if newInstances not empty

traverse(newInstances,newMismatches,currDepth+1)

}

Figure 4.2 Depth-first traversal for mismatch kernel computation.

m∑
i=0

(
l

i

)
(|Σ| − 1)i = O(lm|Σ|m).

To compute the kernel value k(x , y), we make one kernel update per leaf node thatMismatch kernel
complexity we reach in the traversal, and each l-mer instance that is counted at a leaf node is

processed l times as it is passed down the path from the root. Thus, to calculate a
single kernel value, the complexity is O(lm+1|Σ|m(|x |+ |y|)).

Another advantage of the mismatch algorithm is its efficient use of memory,
which also leads to faster running time in practice. Because we perform a depth-
first traversal, when we backtrack in the tree, we collapse the current node and
expand the next node. Thus the only expanded nodes are along the current search
path, and there is a maximum of l stored nodes (counting the root node) at any
time. However, bookkeeping information must be stored with each node along the
search path to guarantee the complexity given above. The kernel computation can
in fact be achieved by a recursive function, without explicitly building and storing
the full tree. Simplified pseudocode for such a recursive function is outlined in
figure 4.2. However, in this simple version, we do extra work because we process
each l-mer instance at an internal node Σ times in order to check which child nodes
it should be passed down to, resulting in an additional factor of |Σ| in the theoretical
complexity. Instead, by storing more bookkeeping information, we can process the
list of instances exactly once and set up all the lists of instances to be passed to
the child nodes before descending to the first child node. We provide the simplified
version of the pseudocode for greater readability.
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Figure 4.3 Trie traversal for gappy kernel. Expansion along a path from root to leaf
during traversal of the trie for the (5, 3)-gappy kernel, showing only the instance 5-mers
for a single sequence x = abaabab. Each node stores its valid 5-mer instances and the index
to the last match for each instance. Instances at the leaf node contribute to the kernel for
3-mer feature abb.

4.3.2 (g, l)-Gappy Kernel Computation

For the (g, l)-gappy kernel, we again represent our feature space as a rooted tree of
depth l where each internal node has |Σ| branches, each branch is labeled with a
symbol from Σ, and each leaf node represents a fixed l-mer in feature space.

Using a depth-first traversal of this tree, we now maintain at each visited node
a set of pointers to all g-mer instances in the input sequences that contain a
subsequence (with gaps) that matches the current prefix pattern; we also store,
for each g-mer instance, an index pointing to the last position we have seen so far
in the g-mer. At the root, we store pointers to all g-mer instances, and for each
instance, the stored index is 0, indicating that we have not yet seen any characters
in the g-mer.

As we pass from a parent node to a child node along a branch labeled with symbol
a, a g-mer instance from the parent’s list is passed down to the child only if the
remainder of the g-mer sequence contains the symbol a, and if the first occurrence
of this symbol would not include more than the allowable number of gaps. If such a
character exists, we pass the g-mer to the child node along with its updated index
(first occurrence of a from remainder of g-mer); otherwise, we drop the instance
and do not pass it to the child. Thus at each node of depth d, we have effectively
performed a greedy gapped alignment of g-mers from the input sequences to the
current d-length prefix, allowing insertion of up to g−l gaps into the prefix sequence
to obtain each alignment. When we encounter a node with an empty list of pointers
(no valid occurrences of the current prefix), we do not need to search below it in
the tree; in fact, unless there is a valid g-mer instance from each of x and y, we do
not have to process the subtree.
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traverse(currInstances,currIndices,currDepth)

if currDepth == l

process leaf

else

for each symbol a in alphabet {

for each inst in currInstances {

nextHit = findNextLocation(a,inst,currIndices{inst})

if nextHit <= (g - l + currDepth + 1) {

add inst to newInstances

newIndices{inst} = nextHit

}

}

if newInstances not empty

traverse(newInstances,newIndices,currDepth+1)

}

Figure 4.4 Depth-first traversal for gappy kernel computation.

When we reach a leaf node, we sum the contributions of all instances occurring
in each source sequence to obtain feature values for x and y corresponding to the
current l-mer, and we update the kernel by adding the product of these feature
values. Again, we can accomplish the depth-first traversal with a recursive function
and do not have to store the full trie in memory. Figure 4.3 shows expansion down a
path during the recursive traversal, and figure 4.4 gives simplified pseudocode for the
algorithm. As with the mismatch kernel algorithm, in order to guarantee theoretical
time complexity described below, we actually need to maintain more bookkeeping
information: we should process the full list of g-mer instances once and set up all
the child node lists before proceeding to the first recursive call. That is, to process
a g-mer instance, instead of iterating through the alphabet and scanning for the
first match of each symbol a, we should just add the g-mer instance to all child lists
corresponding to first occurrences of symbols in the remainder of the sequence. The
version above is given for understandability and ease of implementation.

The computation at the leaf node depends on which version of the gappy kernel
one uses. For the unweighted feature map, we obtain the feature values of x and
y corresponding to the current l-mer by counting the g-mer instances at the leaf
coming from x and y, respectively; the product of these counts gives the contribution
to the kernel for this l-mer feature. For the λ-weighted gappy feature map, we
need a count of all alignments of each valid g-mer instance against the l-mer
feature allowing up to g − l gaps. This can be computed with a simple dynamic
programming routine (similar to the Needleman-Wunsch algorithm), where we sum
over a restricted set of paths, as shown in figure 4.5. The complexity is O(l(g− l)),
since we fill a restricted trellis of (l+1)(g−l+1) squares. Note that when we align a
subsequence bi1bi2 . . . bil

against an l-mer a1a2 . . . al, we only penalize interior gaps
corresponding to nonconsecutive indices in 1 ≤ i1 < i2 . . . < il ≤ g. Therefore, the
multiplicative gap cost is 1 in the 0th and last rows of the trellis and λ in the other
rows.
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Figure 4.5 Dynamic programming at the leaf node. The left trellis shows the restricted
paths for aligning a g-mer against an l-mer, with insertion of up to g − l gaps in
the l-mer, for g = 5 and l = 3. The basic recursion for summing path weights is
S(i, j) = m(ai, bj)S(i − 1, j − 1) + g(i)S(i, j − 1), where m(a, b) = 1 if a and b match, 0 if
they are different, and the gap penalty g(i) = 1 for i = 0, l and g(i) = λ for other rows.
The right trellis shows the example of aligning ababb against 3-mer abb.

Each g-mer instance in the input data can contribute to(
g

l

)
= O(gg−l)

l-mer features (assuming that g − l is smaller than l). Therefore, we visit at most
O(gg−l(|x | + |y|) leaf nodes in the traversal. Since we iterate through at most g

positions of each g-mer instance as we pass from root to leaf, the traversal time is
O(gg−l+1(|x | + |y|)). The total processing time at leaf nodes is O(gg−l(|x | + |y|))Gappy kernel

complexity for the unweighted gappy kernel and O(l(g − l)gg−l(|x | + |y|)) for the weighted
gappy kernel. Therefore, in both cases, we have total complexity of the form
O(c(g, l)(|x |+ |y|)), with c(g, l) = O((g − l)gg−l+1) for the more expensive kernel.

4.3.3 (l, σ)-Substitution Kernel Computation

Similar to the mismatch kernel algorithm, for the substitution kernel we use a depth
l trie to represent the feature space. We store, at each depth d node that we visit,
a set of pointers to all l-mer instances α in the input data whose d-length prefixes
have current mutation score −∑d

i=1 log P (ai|bi) < σ of the current prefix pattern
b1b2 . . . bd, and we store the current mutation score for each l-mer instance. As
we pass from a parent node at depth d to a child node at depth d + 1 along a
branch labeled with symbol b, we process each l-mer α by adding − log P (ad+1|b)
to the mutation score and pass it to the child iff the score is still less than σ. As
before, we update the kernel at the leaf node by computing the contribution of the
corresponding l-mer feature.

The number of leaf nodes visited in the traversal is O(Nσ(|x | + |y|)), whereSubstitution
kernel complexity Nσ = maxα∈Σl |M(l,σ)|. We can choose σ sufficiently small to get any desired bound

on Nσ. Total complexity for the kernel value computation is O(lNσ(|x |+ |y|)).
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4.3.4 (l, m)-Wildcard Kernel Computation

Again, very similar to the mismatch kernel algorithm, the wildcard kernel uses a
depth l trie with branches labeled by characters in Σ∪{∗}, where we prune (do not
traverse) subtrees corresponding to prefix patterns with greater than m wildcard
characters. At each node of depth d, we maintain pointers to all l-mers instances
in the input sequences whose d-length prefixes match the current d-length prefix
pattern (with wildcards) represented by the path down from the root.

Each l-mer instance in the data matches at most
m∑

i=0

(
l

i

)
= O(lm)

l-length patterns having up to m wildcards. Thus the number of leaf nodes visited
is in the traversal is O(lm(|x | + |y|)), and total complexity for the kernel valueWildcard kernel

complexity computation is O(lm+1(|x |+ |y|)).

4.3.5 Comparison with Mismatch Kernel Complexity

As we have seen, for the (l, m) mismatch kernel, the size of the mismatch neigh-
borhood of an instance l-mer is O(lm|Σ|m), so total kernel value computation is
O(lm+1|Σ|m(|x |+ |y|)). The three newer kernels have running time O(ck(|x |+ |y|)),
where constant ck depends on the parameters of the kernel but not on the size
of the alphabet Σ. The difference comes from the fact that new inexact matching
neighborhoods we define – the gapped match set, the mutation neighborhood, and
the wildcard neighborhood – all have cardinality that does not depend on Σ. There-
fore, we have improved constant term for larger alphabets (such as the alphabet of
20 amino acids). In section 4.5, we show that these new, faster kernels have perfor-
mance comparable to the mismatch kernel in protein classification experiments.

4.4 Fast Prediction

Our string kernels provide an additional advantage when used with SVMs: the
particular form of the SVM solution combined with the definition of the feature map
allows us to implement fast prediction on test sequences. The learned SVM classifier
is given by f(x ) =

∑r
i=1 yiai〈Φ(xi), Φ(x )〉+ b, where xi are the training sequences

that map to support vectors, yi are labels (±1), and ai are weights obtained from
the dual SVM optimization problem. Note that the classification function evaluated
on the test sequence x is the sum of classification “scores” f(α) for the l-mers α

it contains (g-mers in the case of the gappy kernel). We can therefore precompute
and store all the non-zero l-mer scores. Then the prediction f(x ) can be calculatedLinear-time

prediction in linear time (i.e., O(|x |)) by scanning through the l-mers in x and looking up the
precomputed l-mer scores.
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For the mismatch kernel, one way to compute the l-mer scores is to use two
passes of the mismatch tree data structure. In the first pass, we compute the non-
zero coordinates of the normal vector w =

∑r
i=1 yiaiΦ(l,m)(xi). We traverse the

support sequences xi, and at leaf node corresponding to l-mer β, we compute the
weighted sum of valid instances to obtain the coordinate wβ of the normal vector.
In the second pass, we use the normal coordinates wβ to obtain the l-mer scores.
We traverse the set of l-mers β having non-zero wβ , and at leaf node corresponding
to l-mer α, we compute the sum

∑
β in N(l,m)(α) wβ to obtain the score for α.

Similar computation of the normal vector coordinates and l-mer (or g-mer) scores
can be performed for the other kernels.

4.5 Experiments

We tested the mismatch kernel and all the newer string kernels with SVM classifiers
on a benchmark SCOP (version 1.37) data set from Jaakkola et al. (2000), which is
designed for the remote protein homology detection problem, and reported results
in Leslie et al. (2003b) and Leslie and Kuang (2003). In these experiments, remote
homology is simulated by holding out all members of a target SCOP family from a
given superfamily as a test set, while examples chosen from the remaining families in
the same superfamily form the positive training set. The negative test and training
examples are chosen from disjoint sets of folds outside the target family’s fold, so
that negative test and negative training sets are unrelated to each other and to the
positive examples. More details of the experimental setup can be found in Jaakkola
et al. (2000).

We summarize these experimental results here in two parts. We first give a
method comparison of the mismatch kernel with the Fisher-SVM method and a
profile HMM-based method, showing that the mismatch kernel performs competi-
tively with the Fisher kernel. We then compare the SVM classification performance
of the three newer string kernels with both the mismatch kernel and the Fisher
kernel (Jaakkola et al., 2000). These results establish that the newer string kernels
can accomplish performance similar to the mismatch kernel while improving the
constant factor in the computational complexity.

All methods are evaluated using the receiver operating characteristic (ROC)
score, which is the area under the graph of the rate of true positives as a function
of the rate of false positives as the threshold for the classifier varies (Gribskov and
Robinson, 1996). Perfect ranking of all positives above all negatives gives a ROC
score of 1, while a random classifier has an expected score close to 0.5.

4.5.1 Mismatch Kernels

We use small values of l for the mismatch kernel because the test sets are designed
for remote homology detection. Without mismatches, the only reasonable values
are l = 3 and l = 4, since l ≥ 5 results in a spectrum kernel matrix that is
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Figure 4.6 Comparison of three homology detection methods for the SCOP data set.
The graph plots the total number of families for which a given method exceeds a ROC score
threshold. Each series corresponds to one of the homology detection methods described in
the text.

almost everywhere 0 off the diagonal (and l < 3 is not informative). When allowing
mismatches, we were therefore interested in slightly longer l and a very small
number of mismatches for efficiency in training. We tested (l, m) = (5, 1) and (6, 1),
where we normalized the kernel by k(x , y)← k(x ,y)√

k(x ,x)
√

k(y,y)
. Our results show that

(l, m) = (5, 1) yields slightly better performance, though results for both choices
were similar. [Data for (l, m) = (6, 1) not shown.]

In figure 4.6, we compare mismatch-SVM results against the original experimental
results from Jaakkola et al. (2000) for two methods, the SAM-T98 iterative HMM
and the SVM-Fisher method. The figure includes results for all 33 SCOP families,
and each series corresponds to one homology detection method. Qualitatively, the
curves for SVM-Fisher and mismatch-SVM are quite similar. When we compare the
overall performance of two methods using a two-tailed signed rank test with a p-
value threshold of .05 and a Bonferroni correction for multiple comparisons, we find
only the following significant differences: Fisher-SVM and mismatch-SVM perform
better than SAM-T98. There is no statistically significant difference between the
performance of Fisher-SVM and mismatch-SVM.

4.5.2 Other Inexact Matching Kernels

We tested the (g, l)-gappy kernel on the same SCOP experiments with parameter
choices (g, l) = (6, 4), (7, 4), (8, 5), (8, 6), and (9, 6). Among them (g, l) = (6, 4)
yielded the best results, though other choices of parameters had quite similar
performance (data not shown). We also tested the alternative weighted gappy
kernel, where the contribution of an instance g-mer to an l-mer feature is a weighted
sum of all the possible matches of the l-mer to subsequences in the g-mer with
multiplicative gap penalty λ (0 < λ ≤ 1). We used gap penalty λ = 1.0 and λ = 0.5
with the (6, 4) weighted gappy kernel. We found that λ = 0.5 weighting slightly
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Figure 4.7 Comparison of mismatch-SVM, Fisher-SVM, and gap-SVM. The graph plots
the total number of families for which a given method exceeds a ROC score threshold.
The (6, 4)-Gap-SVM uses the unweighted gappy string kernel. The (6, 4)-Weight-Gap-
SVM uses the weighted version of the gappy string kernel, which counts the total number
alignments of an l-mer against a g-mer with multiplicative gap penalty of λ.

weakened performance (results not shown). In figure 4.7, we see that unweighted
and weighted (λ = 1.0) gappy kernels have comparable results to (5, 1)-mismatch
kernel and Fisher kernel.

We tested the substitution kernels with (l, σ) = (4, 6.0). Here, σ = 6.0 was
chosen so that the members of a mutation neighborhood of a particular 4-mer would
typically have only one position with a substitution, and such substitutions would
have fairly high probability. Therefore, the mutation neighborhoods were much
smaller than, for example, (4, 1)-mismatch neighborhoods. The results are shown
in Figure 4.8 (left). Again, the substitution kernel has comparable performance with
mismatch-SVM and Fisher-SVM, though the results are perhaps slightly weaker for
more difficult test families.
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Figure 4.8 Comparison with substitution-SVM and wildcard-SVM. The graph plots the
total number of families for which a given method exceeds a ROC score threshold. Results
for the substitution kernel (left) and wildcard kernel (right) are shown.
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For comparison with the (5, 1)-mismatch kernel, we tested wildcard kernels with
parameters (l, m, λ) = (5, 1, 1.0) and (l, m, λ) = (5, 1, 0.5). Results are shown in
figure 4.8 (right). The wildcard kernel with λ = 1.0 seems to perform as well or
almost as well as the (5, 1)-mismatch kernel and Fisher kernel, whereas enforcing a
penalty on wildcard characters of λ = 0.5 seems to weaken performance somewhat.

4.6 Conclusion

We have described a number of different kernels that capture a notion of inexact
matching – the mismatch kernel, which counts l-mer occurrences with mismatches,
and three newer kernels that use restricted gaps, probabilistic substitutions, and
wildcards – but maintain fast computation time. Using a recursive function based
on a trie data structure, we show that for all these kernels, the time to compute
a kernel value k(x , y) is O(ck(|x | + |y|)), where the constant ck depends on the
parameters of the kernel. For the mismatch kernel, |Σ| as well as l and m controls the
size of the mismatch neighborhood and hence the constant ck. For the three newer
kernels, however, ck is independent of the size of the alphabet Σ, which significantly
improves on the constant factor involved in the mismatch kernel computation.

We present results on a benchmark SCOP data set for the remote protein
homology detection problem and show both that the mismatch kernel is competitive
with the best competing methods and that many of the new, faster kernels achieve
performance comparable to the mismatch kernel.

In certain biological applications, the l-length subsequence features that are
“most significant” for discrimination can themselves be of biological interest. In
the forthcoming longer version of Leslie et al. (2003b), we show how to extract
discriminative l-mers from an SVM classifier trained using the mismatch kernel.
More generally, it would be interesting to investigate feature selection on the set of
l-mer features used in these kernels, so that we identify a feature subset that both
improves discrimination and gives biologically interpretable differences between
positive and negative examples.

We also note that Cortes et al. (2003) have recently presented a framework
based on transducers (finite state automata) that can generate many previously
defined string kernels as rational kernels. In Leslie and Kuang (2003), we give
transducers for some of our inexact matching string kernels. By understanding
the connection between our trie-based data structures and computational methods
used in transducers, such as failure functions, or by extending suffix tree methods
(Vishwanathan and Smola, 2003) to these inexact matching kernels, we could hope
for improved constant factors in the kernel complexity.
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5 Fast Kernels for String and Tree Matching

S.V.N. Vishwanathan

Alexander Johannes Smola

In this chapter we present a new algorithm suitable for matching discrete objects
such as strings and trees in linear time, thus obviating dynamic programming with
quadratic time complexity.

This algorithm can be extended in various ways to provide linear time prediction
cost in the length of the sequence to be classified. We demonstrate extensions in the
case of position-dependent weights, sliding window classifiers for a long sequence,
and efficient algorithms for dealing with weights given in the form of dictionaries.
This improvement on the currently available algorithms makes string kernels a
viable alternative for the practitioner.

5.1 Introduction

Many problems in machine learning require a data classification algorithm to
work with a set of discrete objects. Common examples include biological sequence
analysis where data are represented as strings (Durbin et al., 1998), and natural
language processing (NLP), where the data are given in the form of a string
combined with a parse tree (Collins and Duffy, 2002) or an annotated sequence
(Altun et al., 2003).

In order to apply kernel methods one defines a measure of similarity between
discrete structures via a feature map φ : X → F. Here X is the set of discrete
structures (e.g., the set of all parse trees of a language) and F is a Hilbert space.
Since φ(x) ∈ F we can define a kernel by evaluating the scalar products

k(x, x′) = 〈φ(x), φ(x′)〉 (5.1)

where x, x′ ∈ X. The success of a kernel method employing k depends both on the
faithful representation of discrete data and an efficient means of computing k.
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Recent research effort has focused on defining meaningful kernels on strings.
Many ideas based on the use of substrings (Herbrich, 2002), gapped substrings
(Lodhi et al., 2002), k-length substrings (Leslie et al., 2002), and mismatch penalties
(Leslie et al., 2003b) have been proposed. This chapter presents a means of com-
puting substring kernels on strings (Herbrich, 2002; Leslie et al., 2002; Joachims,
2002) and trees in linear time in the size of the arguments, independent of the
weights associated with any of the matching subwords. We also present a linear
time algorithm for prediction which is independent of the number of support vec-
tors (SVs). This is a significant improvement, since the so-far fastest methods rely
on dynamic programming which incurs a quadratic cost in the length of the ar-
gument (Herbrich, 2002) or are additionally linear in the length of the matching
substring (Leslie et al., 2003b). Further extensions to finite-state machines, for-
mal languages, automata, etc. can be found in Vishwanathan (2002), Smola and
Vishwanathan (2003), and Cortes et al. (2003). Other means of generating kernels
via the underlying correlation structure can be found in Takimoto and Warmuth
(1999).

In a nutshell our idea works as follows: assume we have a kernel k(x, x′) :=∑
i∈I φi(x)φi(x′), where the index set I may be large, yet the number of nonzero

entries is small in comparison to |I| or the terms φi(x) have special structure. Then
an efficient way of computing k is to sort the set of non-zero entries of φ(x) and
φ(x′) beforehand and count only matching non-zeros.

This is similar to the dot product of sparse vectors in numerical analysis. As longSparse vectors
as the sorting is done in an intelligent manner, the cost of computing k is linear in
the sum of non-zero entries combined. In order to use this idea for matching strings
(which have a quadratically increasing number of substrings) and trees (which can
be transformed into strings), efficient sorting is realized by the compression of the
set of all substrings into a suffix tree. Moreover, dictionary keeping allows us to
use (almost) arbitrary weightings for each of the substrings and still compute the
kernels in linear time.

Our results improve on the algorithm proposed by Leslie et al. (2003b) in the
case of exact matches, as the algorithm is now independent of the length of
the matches and furthermore we have complete freedom in choosing the weight
parameters. For inexact matches, unfortunately, such modifications are (still) not
possible and we suggest the online construction of Leslie et al. (2003b) for an efficient
implementation.

The chapter is organized as follows. In section 5.2 we give the basic definition of
the string and tree kernels used in this chapter. Section 5.3 contains the main
result of the chapter, namely how suffix trees can be used to compute string
kernels efficiently. Sections 5.4 and 5.5 deal with the issue of computing weights
efficiently and how to use the newly established algorithms for prediction purposes
while keeping the linear-time property. Experimental results in section 5.6 and a
discussion (section 5.7) conclude the chapter.
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5.2 Kernels

5.2.1 String Kernels

We begin by introducing some notation. Let A be a finite set which we call the
alphabet, for example, A = {A, C, G, T}. The elements of A are characters. Let $ be
a sentinel character such that $ /∈ A. Any x ∈ Ak for k = 0, 1, 2 . . . is called a string.
The empty string is denoted by ε and A∗ represents the set of all nonempty strings—
the Kleene closure (Hopcroft and Ullman, 1979)—defined over the alphabet A.

In the following we use s, t, u, v, w, x, y, z ∈ A∗ to denote strings and a, b, c ∈ A

to denote characters. |x| denotes the length of x, uv ∈ A∗ the concatenation of two
strings u and v, au ∈ A∗ the concatenation of a character and a string. We use
x[i : j] with 1 ≤ i ≤ j ≤ |x| to denote the substring of x between locations i and
j (both inclusive). If x = uvw for some (possibly empty) u, v, w, then u is called
a prefix of x while v is called a substring (also denoted by v � x) and w is called
a suffix of x. Finally, numy(x) denotes the number of occurrences of y in x (i.e.,
the number of times y occurs as a substring of x). The types of kernels we will be
studying are defined byString kernel

definition
k(x, x′) :=

∑
s
x,s′
x′

wsδs,s′ =
∑

s∈A∗
nums(x) nums(x′)ws. (5.2)

That is, we count the number of occurrences of every substring s in both x and x′

and weight it by ws, where the latter may be a weight chosen a priori or after seeing
data, for example, inverse document frequency counting (Leopold and Kindermann,
2002). This includes a large number of special cases:

Setting ws = 0 for all |s| > 1 yields the bag-of-characters kernel, counting simply
single characters (Joachims, 2002).

The bag-of-words kernel is generated by requiring s to be bounded by whitespace,
that is, ws �= 0 iff s is bounded by a whitespace character on either side (Joachims,
2002).

Setting ws = 0 for all |s| > n yields limited range correlations of length n; that
is, we only consider the contributions due to substrings of length n or less.

The k-spectrum kernel takes into account substrings of length k (Leslie et al.,
2002). It is achieved by setting ws = 0 for all |s| �= k.

TFIDF weights (Salton, 1989) are achieved by first creating a (compressed) list of
all s, including frequencies of occurrence, and subsequently rescaling ws accordingly.

All these kernels can be computed efficiently via the construction of suffix trees, as
we will see in the following sections.

However, before we go about computing k(x, x′), let us turn to trees. The latter
are important for two reasons: first, since the suffix tree representation of a string
will be used to compute kernels efficiently, and second, since we may wish to
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compute kernels on trees, which will be carried out by reducing trees to strings
and then applying a string kernel.

5.2.2 Tree Kernels

A tree is defined as a simple, directed, connected graph with no cycles. A rooted tree
has a single special node called the root. An internal node has one or more child
nodes and is called the parent of its children. The root is a node with no parent.
A node with no children is referred to as a leaf. A sequence of nodes n1, n2, . . . , nk,
such that ni is the parent of ni+1 for i = 1, 2, . . . , k − 1 is called a path. Given two
nodes a and d, if there is a path from node a to d, then a is called an ancestor of d

and d is called a descendent of a. We define a subtree as a node in the tree together
with all its descendents. A subtree rooted at node n is denoted as Tn and t |= T is
used to indicate that t is a subtree of T . An ordered tree is a rooted tree in which
the order of the subtrees (hanging from every node) is significant. From this point
on all trees (and subtrees) we consider are ordered trees. If a set of nodes in the tree
along with the corresponding edges forms a tree, then we define it to be a subset
tree.

If every node n of the tree contains a label, denoted by label(n), then the tree
is called a labeled tree. If only the leaf nodes contain labels, then the tree is called
a leaf-labeled tree. Kernels on trees can be defined by defining kernels on matching
subset trees, as proposed by Collins and Duffy (2002), or (more restrictively) by
defining kernels on matching subtrees. In the latter case we haveTree kernel

definition
k(T, T ′) =

∑
t|=T,t′|=T ′

wtδt,t′ . (5.3)

where δt,t′ = 1 iff the ordered subtrees t and t′ are isomorphic and have the same
order of child nodes at every level. We can compute our (more restrictive) tree
kernels in linear time, but if we consider subset trees, as in Collins and Duffy
(2002), quadratic-time algorithms are required.

If a tree T̃ can be obtained from a tree T by swapping the order of child nodes,
then it is said to be equivalent. Alternatively, equivalent trees are obtained by per-
muting the order of the leaf nodes without disturbing any parent-child relationship
in the tree (see figure 5.1). The tree kernel, as defined in (5.3), does not take this
equivalence into account. While this may be desirable in many applications (where
ordered trees are naturally used), there are domains, for instance, phylogenetic trees
in bioinformatics, where it is desirable to reduce trees to a canonical form before
computing kernels. We achieve that by implicitly sorting (or ordering) the trees.

5.2.3 Ordering Trees

To order trees we assume that a lexicographic order is associated with the labels if
they exist. Furthermore, we assume that the additional symbols ‘[′, ‘]′ satisfy ‘[′< ‘]′,
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Figure 5.1 Two equivalent trees, which can be transformed into each other by swapping
the children of the root node.

and that ‘]′, ‘[′< label(n) for all labels. We will use these symbols to define tags for
each node as follows:

For an unlabeled leaf n define tag(n) := [].

For a labeled leaf n define tag(n) := [ label(n)].

For an unlabeled node n with children n1, . . . , nc define a lexicographically sorted
permutation π of the child nodes such that tag(nπ(i)) ≤ tag(nπ(j)) if π(i) < π(j)
and define

tag(n) = [ tag(nπ(1)) tag(nπ(2)) . . . tag(nπ(c))].

Tree to string
conversion For a labeled node perform the same operations as above and set

tag(n) = [ label(n) tag(nπ(1)) tag(nπ(2)) . . . tag(nπ(c))].

For instance, the root nodes of both trees depicted in figure 5.1 would be encoded
as [[[][]][]]. We now prove that the tag of the root node, indeed, is a unique identifier
and that it can be constructed in log linear time.

Theorem 5.1 Denote by T a binary tree with l nodes and let λ be the maximum
length of a label. Then the following properties hold for the tag of the root node:

1. tag(root) can be computed in (λ + 2)(l log2 l) time and linear storage in l.

2. Every substring s of tag(root) starting with ′[′ and ending with a balanced ′]′ has
a one-to-one mapping with a subtree Tn of T where s is the tag on node n.

3. If trees T and T̃ are equivalent, then their tag(root) is the same. Furthermore,
tag(root) allows the reconstruction of a unique element of the equivalence class.

Proof Claim 1 We use induction. The tag of a leaf can be constructed in constant
time by storing [, ], and a pointer to the label of the leaf (if it exists), that is,
in 3 operations. Next assume that we are at node n, with children n1, n2. Let
Tn contain ln nodes and Tn1 and Tn2 contain l1, l2 nodes respectively. By our
induction assumption we can construct the tag for n1 and n2 in (λ+2)(l1 log2 l1) and
(λ + 2)(l2 log2 l2) time respectively. Comparing the tags of n1 and n2 costs at most



118 Fast Kernels for String and Tree Matching

(λ +2)min(l1, l2) operations and the tag itself can be constructed in constant time
and linear space by manipulating pointers. Without loss of generality we assume
that l1 ≤ l2. Thus, the time required to construct tag(n) (normalized by λ + 2) is

l1(log2 l1 + 1) + l2 log2(l2) = l1 log2(2l1) + l2 log2(l2) ≤ ln log2(ln). (5.4)

Claim 2 Without loss of generality we consider a labeled tree and use induction
to show that every subtree of T is associated with a balanced substring of tag(root).
For a leaf node n we assign tag(n) = [label(n)] and it is clear that it corresponds
to a balanced substring of tag(root). Suppose we are at an internal node n with
two child nodes n1 and n2. Furthermore, assume that the subtrees Tn1 and Tn2

correspond to balanced substrings tag(n1) and tag(n2) respectively. Since we assign
tag(n) = [label(n) tag(n1) tag(n2)] it is clear that the substring corresponding to
Tn is balanced.

Conversely, by our recursive definition, every balanced substring of tag(root)
must be of the form [ label(n) tag(n1) tag(n2)] for some node n with children n1

and n2. But this precisely corresponds to the tag on node n and hence to the subtree
Tn. This proves claim 2.

Another way of visualizing our ordering is by imagining that we perform a DFS
(depth first search) on the tree T and emit a ′[′ followed by label(n), when we visit a
node n for the first time and a ′]′ when we leave a node for the last time. It is clear
that a balanced substring s of tag(root) is emitted only when the corresponding
DFS on Tn is completed.

Claim 3 Since leaf nodes do not have children their tag is clearly invariant under
permutation. For an internal node we perform lexicographic sorting on the tags of
its children. This sorting maps all the trees of the equivalence class into a canonical
representative. We then define the tag(root) of this tree as the string corresponding
to our given tree. This directly proves the first part of our claim.

Concerning the reconstruction, we proceed as follows: each tag of a subtree starts
with ‘[′ and ends in a balanced ‘]′, hence we can strip the first [] pair from the tag,
take whatever is left outside brackets as the label of the root node, and repeat the
procedure with the balanced [. . .] entries for the children of the root node. This will
construct a tree with the same tag as tag(root), thus proving our claim.

An extension to trees with d nodes is straightforward (the cost increases to d log2 d

of the original cost due to additional comparisons required in the sorting of the
leaves), yet the proof, in particular, (5.4) becomes more technical without providing
additional insight; hence we omit this generalization for brevity.

The above tree-to-string conversion algorithm along with claim 2 of theorem 5.1
yields the following straightforward corollary, whose proof is left as a simple exercise
for the reader.

Corollary 5.2 Given trees T, T ′ the subtree matching kernel defined in (5.3) can
be computed via string kernels, if we use the strings tag(T ) and tag(T ′) and require
that only balanced substrings s of the form [. . .] have nonzero weight ws.
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ab

c$

c$
b

c$abc$ abc$

Figure 5.2 Suffix Tree of ababc. The leaf containing $ hanging off the root node has
been omitted for readability.

This reduces the problem of tree kernels to string kernels and all we need to show
in the following is how the latter can be computed efficiently. For this purpose we
need to introduce suffix trees.

5.3 Suffix Trees and Matching Statistics

5.3.1 Definition

The suffix tree is a compacted trie (Knuth, 1998) that stores all suffixes of a given
text string (Weiner, 1973). We denote the suffix tree of the string x by S(x).
Moreover, let nodes(S(x)) be the set of all nodes of S(x) and let root(S(x)) be
the root of S(x). If w denotes the path from the root to a node we label the node
as w. For a node w, Tw denotes the subtree tree rooted at the node, lvs(w) denotes
the number of leaves in Tw and par(w) denotes it parent node.

We denote by words(S(x)) the set of all nonempty strings w such that wu ∈
nodes(S(x)) for some (possibly empty) string u, which means that words(S(x))
is the set of all possible substrings of x (Giegerich and Kurtz, 1997). For every
t ∈ words(S(x)) we define ceil(t) as the node w such that w = tu and u is
the shortest (possibly empty) substring such that w ∈ nodes(S(x)). That is, it
is the immediate next node on the path leading up to t in S(x). Finally, for every
t ∈ words(S(x)) we define floor(t) as the node w such that t = wu and u is the
shortest non-empty substring such that w ∈ nodes(S(x)). That is, it is the last
node encountered on the path leading up to t in S(x). For an internal node w it is
clear that ceil(w) = w and floor(w) is the parent of w. Given a string t and a suffix
tree S(x), we can decide if t ∈ words(S(x)) in O(|t|) time by just walking down the
corresponding edges of S(x) (Weiner, 1973).

If the sentinel character $ is added to the string x, then it can be shown that
for any t ∈ words(S(x)), lvs(ceil(t)) gives us the number of occurrence of t in x
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Table 5.1 Matching statistic of bcbab with respect to S(ababc) are shown here along
with the matching substrings.

String b c b a b

vi 2 1 3 2 1

x[i : vi] bc c bab ab b

ci bc$ c$ babc$ ab b

c′i b root b root root

(Giegerich and Kurtz, 1997). The idea works as follows: all suffixes of x starting
with t have to pass through ceil(t), hence we simply have to count the occurrences
of the sentinel character, which can be found only in the leaves. Note that a simple
DFS on S(x) will enable us to calculate lvs(w) for each node w of S(x) in O(|x|)
time and space.

Let aw be a node in S(x), and v be the longest suffix of w such that v ∈
nodes(S(x)). An unlabeled edge aw → v is called a suffix link in S(x). A suffix
link of the form aw → w is called atomic. It can be shown that all the suffix links
in a suffix tree are atomic (Giegerich and Kurtz, 1997, proposition 2.9). We add
suffix links to S(x), to allow us to perform efficient string matching: suppose we
found that aw is a substring of x by parsing the suffix tree S(x). It is clear that
w is also a substring of x. If we want to locate the node corresponding to w, it
would be wasteful to parse the tree again. Suffix links can help us locate this node
in constant time. The suffix tree building algorithms (e.g., Ukkonen [1995]) make
use of this property of suffix links and construct the suffix tree and all its suffix
links in linear time.

Note that suffix links are just a special case of so-called failure functions from
automata theory: there they allow one to backtrack gracefully and reuse some of
the information obtained in checking whether a string is accepted by an automaton
(Hopcroft and Ullman, 1979; Cortes et al., 2003).

5.3.2 Matching Statistics

Given strings x, y with |x| = n and |y| = m, the matching statistics of x with
respect to y are given by vectors v, c, and c′ with vi ∈ N and ci, c

′
i ∈ nodes(S(y))

for i = 1, 2, . . . , n. We define vi as the length of the longest substring of y matching a
prefix of x[i : n], vi := i + vi− 1, while ci is the node corresponding to ceil(x[i : vi])
and c′i is the node corresponding to floor(x[i : vi]) in S(y). For an example, see
table 5.1.

For a given x one can construct the matching statistics corresponding to y in
linear time. The key observation is that vi+1 ≥ vi−1, since if x[i : vi] is a substring
of y, then definitely x[i + 1 : vi] is also a substring of y. Besides this, the matching
substring in y that we find must have x[i+1 : vi] as a prefix. The matching statistics
algorithm of Chang and Lawler (1994) exploits this observation and uses it cleverly
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to walk down the suffix links of S(y) to compute the matching statistics in O(|x|)
time.

More specifically, given c′i the algorithm finds the intermediate node p′i+1 :=
floor(x[i + 1 : vi]) by first walking down the suffix link of c′i and then walking down
the edges corresponding to the remaining portion of x[i + 1 : vi] until it reaches
p′i+1. Now ci+1, c′i+1 and vi+1 can be found easily by walking from p′i+1 along the
edges of S(y) that match x[vi +1 : n], until we can go no further. The value of v1 is
found by simply walking down S(y) to find the longest prefix of x which matches
a substring of y.

5.3.3 Matching Substrings

Using the matching statistics we can read off the number of matching substrings
in x and y. The useful observation here is that the only substrings which occur in
both x and y are those which are prefixes of x[i : vi]. The number of occurrences
of a substring in y can be found by lvs(ceil(w)), as discussed in section 5.3.1. The
two lemmas below formalize this.

Lemma 5.3 w is a substring of x iff there is an i such that w is a prefix of x[i : n].
The number of occurrences of w in x can be calculated by finding all such i.

Proof Let w be a substring of x. For each occurrence of w in x we can write
w = x[i : j] for some unique indices i and j. Clearly x[i : j] is a prefix of x[i : n].
Conversely, for every index i, every prefix of x[i : n] is a substring of x.

Lemma 5.4 The set of matching substrings of x and y is the set of all prefixes of
x[i : vi].

Proof Let w be a substring of both x and y. By the above lemma there is an i

such that w is a prefix of x[i : n]. Since vi is the length of the maximal prefix of
x[i : n] which is a substring in y, it follows that vi ≥ |w|. Hence w must be a prefix
of x[i : vi].

Conversely, at any position i the longest prefix of x[i : n] which matches some
substring of y is x[i : vi]. Hence it follows that every prefix of x[i : vi] is a substring
of both x and y.

5.3.4 Efficient Kernel Computation

From the previous discussion we know how to determine the set of all longest
prefixes x[i : vi] of x[i : n] in y in linear time. The following theorem uses this
information to compute kernels efficiently.
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Theorem 5.5 Let x and y be strings such that v, c, and c′ be the matching statistics
of x with respect to y. Assume that

W (y, t) =
∑

p∈prefix(v)

wup − wu where u = floor(t) in S(y) and t = uv. (5.5)

can be computed in constant time for any t. Then k(x, y) defined in (5.2) can be
computed in O(|x| + |y|) time asFast kernel

computation

k(x, y) =
|x|∑
i=1

[val(c′i) + lvs(ci) ·W (y, x[i : vi])] (5.6)

where val(t) := val(par(t)) + lvs(t) ·W (y, t) and val(root) := 0.

Proof We first show that (5.6) can indeed be computed in linear time. We know
that for S(y) the number of leaves per node can be computed in O(|y|) time by
performing a DFS. Also, v, c, and c′ can be computed in O(|x|) time by a invocation
of the matching statistics algorithm. By assumption on W (y, t) and by exploiting
the recursive nature of val(t) we can precompute W (y, w) for all w ∈ nodes(S(y))
by using a simple top-down procedure in O(|y|) time.

Now we may compute each term in constant time by a simple lookup for val(c′i)
and lvs(ci) and by computing W (y, x[i : vi]) in constant time. Since we have |x|
terms, the whole procedure takes O(|x|) time, which proves the O(|x| + |y|) time
complexity.

Now we prove that (5.6) really computes the kernel. We know from lemma 5.4
that the sum in (5.2) can be decomposed into the sum over matches between y and
each of the prefixes of x[i : vi] (this takes care of all the substrings in x matching
with y). This reduces the problem to showing that each term in the sum of (5.6)
corresponds to the contribution of all prefixes of x[i : vi].

The key observation here is that all substrings of y which share the same ceil node
occur the same number of times in y. This allows us to bracket the contribution
due to each of the prefixes of x[i : vi] efficiently. Consider our previous example
with x = bcbab and y = ababc. To compute val(bab) we need to consider the
contributions due to bab, ba as well as b. Looking at S(y) immediately tells us that
b occurs twice in y (because lvs(ceil(b)) = 2) and hence its contribution must be
counted twice, while ba and bab occur only once in y and hence their contributions
must be counted only once.

Because of its recursive definition and by exploiting the above observation it is
clear that val(w) for each w ∈ nodes(S(y)) computes the contribution to the kernel
due to w and all its prefixes. Given an arbitrary substring t such that u = floor(t)
and t = uv there are two components of t which contribute to the kernel. One is
the contribution due to u and all the prefixes and the other is the contribution due
to all strings of the form us where s ∈ prefix(v). Since each such substring occurs
exactly lvs(ceil(t)) times in y we can perform efficient bracketing and use W (y, t)
to compute the kernel.



5.4 Weights and Kernels 123

Clearly, once S(y) and the annotations of S(y) have been computed, evaluating
another k(x, y) costs only O(|x|) rather than O(|x| + |y|) time. This suggests that
for prediction we can gain extra efficiency by precomputing a large part of the
kernel expansion. This idea is made more explicit in section 5.5.1. Before we do so,
however, we need to address the issue under which conditions W (y, t) can really be
computed in constant time.

5.4 Weights and Kernels

5.4.1 Length Dependent Weights

If the weights ws depend only on |s| we have ws = w|s|. Define ωj :=
∑j

i=1 wi and
compute its values beforehand up to ωJ where J ≥ |x| for all x. Then the sum in
W (y, t) telescopes and it follows that

W (y, t) =

⎡⎣ |t|∑
j=| floor(t)|

wj

⎤⎦−w|floor(t)| =
|t|∑

j=1

wj−
|floor(t)|∑

j=1

wj = ω|t|−ω|floor(t)| (5.7)

which can be computed in constant time by looking up the precomputed values.
Examples of such weighting schemes include decay factors wi = λ−i, or indicator
functions wi = 1, bounded range interactions wi = 1 if i ≤ n and wi = 0
otherwise, and character counts wi = δ1i (Joachims, 2002). Denote by τ := |t|
and γ := | floor(t)| the string boundaries. In this case we can compute W (y, t) as
follows:

W (y, t) =
(λ−γ − λ−τ )

λ− 1
Exponential decay (5.8)

W (y, t) = τ − γ Constant weight (5.9)

W (y, t) = max(0, min(τ, n)− γ) Bounded range (5.10)

W (y, t) =

{
1 if γ = 0

0 otherwise
Bag of characters (5.11)

5.4.2 Position-Dependent Weights

Next we study the case where the weights ws depend on |s| and the position of s

relative to the beginning of the strings x, y. That is, ws = w|s|φ(|ux|+1)φ(|uy|+1),
where x = uxsvx and y = uysvy.

Note that all words of y beginning at the same position i share the same weight,
namely φ(i). They also share the same terminal leaf in S(y) (recall that there is
exactly one leaf per suffix). Hence it is sufficient to enumerate the leaves and weigh
them based on the starting position of the suffix they correspond to. Recall that
in subsection 5.3.1 we defined lvs(w) as the number of leaves in Tw. If we assume
a unit weight placed on each of the leaves, then lvs(w) can be thought of as the
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sum of the weights of the leaves in Tw. In the case of position-dependent weights
each leaf contains a possibly different weight. Hence we generalize the above notion
to define lvs(w) as the sum of the weights of the leaves in Tw. Furthermore, to
compute the kernel, (5.6) needs to be rewritten as follows:

k(x, y) =
|x|∑
i=1

φ(i) [val(c′i) + lvs(ci) ·W (y, x[i : vi])] (5.12)

where val(ci) is as defined in theorem 5.5.

5.4.3 Dictionary Weights

Next assume that we have a set of strings D = {x1, x2, . . . , xk} with corresponding
weights wxi and that all other string-weights vanish, that is, wd = 0 for d �∈ D. Such
a method was recently put to good practical use by Ben-Hur and Brutlag (2003),
who use a set of motifs as the features used in classification of remote homologies.

We now provide a fast version of the motif-kernel algorithm, which does not
depend on the number of matching motifs or the number of SVs anymore, unlike
Ben-Hur and Brutlag (2003, figure 2), however, with the assumption that the motifs
do not contain any wildcards.

For the dictionary D we define |D| = ∑k
i=1 |xi|. The suffix tree of D is denoted

by S(D) and is defined as the compacted trie obtained by inserting all the suffixes
of all xi ∈ D. By a clever modification of the construction algorithm of McCreight
(1976) we can construct S(D) in O(|D|) time (Amir et al., 1994). Given a new string
xk+1 we can insert it into S(D) in O(|xk+1|) time. The suffix tree S(D) contains
a node corresponding to each of the strings in D. If none of the strings in D are
substrings of each other, then S(D) contains a unique leaf node corresponding to
each xi. To ensure that none of the strings in D are substrings of each other we
might need to append a new symbol $i to each string xi in the dictionary.

Given a text and a static or dynamic dictionary of patterns the problem of
reporting all occurrences of any pattern of the dictionary in the text has been well
studied (Aho and Corasick, 1975; Amir et al., 1994). Here we concentrate on the
static dictionary matching problem and sketch an algorithm which is close in spirit
to our string kernel algorithm.

The basic idea of our algorithm is as follows: Given strings x and y we first
construct S({x, y}). We then show that to compute the kernel k(x, y) it is sufficient
to annotate the nodes of this joint suffix tree. We then show how the annotation
can be performed by (conceptually) constructing the suffix tree S({x, y}⋃D).

We first prove the following technical lemma:

Lemma 5.6 Let x and y be strings such that v, c, and c′ be the matching statistics
of x with respect to y. The suffix tree S({x, y}) contains a node corresponding to
x[i : vi] for i = 1 . . . |x|.
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Proof By definition of matching statistics, x[i : vi] occurs as a substring of y

while x[i : vi + 1] does not. This implies that in S({x, y}) we can share the path
corresponding to x[i : vi] but to represent the string x[i : vi +1] and its superstrings
we will need to introduce a node.

Let w ∈ nodes(S({x, y})), we define lvsx(w) and lvsy(w) as the number of times
w occurs as a substring of x and y respectively. The following lemma provides an
alternative view of our string kernel by characterizing it in terms of the nodes of
S({x, y}).

Lemma 5.7 Given the strings x and y the string kernel defined in (5.2) can be
computed as

k(x, y) =
∑

t∈nodes(S({x,y}))
lvsx(t) · lvsy(t) ·W ({x, y}, t) (5.13)

where W ({x, y}, t) is defined as in theorem 5.5.

Proof We sketch the outline of the proof. We first observe that all strings which
share a common ceil (say t) in S({x, y}) occur lvsx(t), lvsy(t) number of times in
x and y respectively. From the previous lemma we know that x[i : vi] occurs as a
node in this joint suffix tree. These two observations allow us to bracket the terms
efficiently to compute the kernel.

In order to compute the kernel k(x, y) all that remains is to compute W ({x, y}, t)
efficiently for all nodes t ∈ nodes(S({x, y})). Let t be a node in S({x, y}) and w be
its parent. In order to compute W ({x, y}, t) we just need to sum up the weights of
all strings from the dictionary D which end on the edge connecting w to t. This can
be easily computed by keeping track of the weights on the path leading from string
w to string t in the suffix tree S(D). In fact this computation can be performed in
constant time if we annotate each node in S(D) with the sum of the weights on the
path from the root to the node.

A conceptually easy way to think of the above procedure is as follows: Assume
that we construct S({x, y}⋃D) (this can be done in O(|x| + |y|) time if S(D) is
already given (Amir et al., 1994)). Each t ∈ nodes(S({x, y})) is also a node in
S({x, y}⋃D). For each such node t let w be its parent in S({x, y}). We compute
the weights on the path from w to t in S({x, y}⋃D). As before, this computation
can be performed in constant time by annotating the nodes of S(D) beforehand.

Wildcards Mismatches can be taken into account if we allow for a rather simple
modification of the above algorithm (albeit at a somewhat higher runtime): treat
wildcards as an additional (special) symbol and build the suffix tree based on the set
of dictionary terms. When computing the matching statistics algorithm and parsing
the suffix tree, allow for multiple paths, that is, if a vertex contains a wildcard ’*’

and the symbol ’A’ in its children, then when observing ’A’ both paths would need
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to be followed. This means that the algorithm now is more expensive, exactly by
the number of concurrent paths that need to be taken into account simultaneously.

Another approach to account for wildcards is to build compact finite state
automata (FSA) to represent the dictionary patterns (Navarro and Raffinot, 1999).
This can be viewed as a generalization of suffix trees with failure functions.

5.4.4 Generic Weights

In the case of generic weights, where individual subwords are assigned weights
independent of each other, we proceed as in the dictionary approach. The main
difference is that here the dictionary is only given implicitly. Hence denote by
X = {x1, . . . , xm} the set of all arguments to be used for kernel evaluation purposes.

Compute ws for all substrings of xi and treat the result as a dictionary. This
reduces the present case to the situation above, which may result in superlinear
time to annotate S(D), due to the significantly larger number of non-zero weights.
However, this should not be surprising, since we need to read each of the weights
used in computing the kernel at least once.

Our approach offers the option to assign weights according to the frequency of
occurrence of strings in a text. For this purpose, build a suffix tree first, use the
latter to obtain string frequency counts, then compute the according weights, and
proceed by annotating the suffix tree. This allows one to implement kernels, such
as the ones proposed by Leopold and Kindermann (2002), efficiently.

5.5 Optimization and Prediction

Beyond the actual evaluation of scalar products, we can extend our techniques to
compute linear combinations of kernel functions efficiently. Crucial to this context
is the fact that the computation of k(x, y) is asymmetric in x and y insofar as a
suffix tree for y is computed, whereas x is merely compared to S(y).

In the following we extend this idea by manipulating the suffix tree of the set
of SVs directly, which will allow us to obtain O(|x|) time algorithms even for
combinations of kernels.

5.5.1 Linear Time Prediction

Let X = {x1, x2, . . . , xm} be the set of SVs. Recall that for prediction in a support
vector machine, we need to compute

f(x) =
m∑

i=1

αiyik(xi, x), (5.14)
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Figure 5.3 In a sliding window classifier we extend only those matches which cross the
current window boundary.

which implies that we need to combine the contribution due to matching substrings
from each one of the SVs. Using the definition of the string kernel we can expand
f as

f(x) =
m∑

i=1

∑
s
xi

∑
s′
x

αiyiwsδs,s′ . (5.15)

Previously each substring match contributed a weight of ws to the kernel. Now
substring s from SV xi contributes a weight of αiyiws. This suggests a simple
strategy akin to the one we used for position-dependent weights.

We first construct S(X) in linear time by using the algorithm of Amir et al.
(1994). Next, each leaf in S(X) arising from xi, is assigned the weight αiyi rather
than 1. All we need to do now is define at each node w an updated weight, given
byWeighted leaf

nodes
weight(w) =

m∑
i=1

αiyi lvsxi(w) (5.16)

where lvsxi(w) denotes the number of leaves of S(xi) at node ceil(w).
This allows us to take the contribution of all SVs into account simultaneously.

A straightforward application of the matching statistics algorithm of Chang and
Lawler (1994) shows that we can find the matching statistics of x with respect to
all strings in X in O(|x|) time. Now (5.6) can be applied verbatim to compute f(x).
See Vishwanathan (2002) for further details and a proof.

In summary, we can classify texts in linear time regardless of the size of the
training set. This makes SVM for large-scale text categorization practically feasible.
However, note that this ability comes at a cost: we have to store S(X), which has
memory requirements linear in the size of the SVs.

5.5.2 Sliding Windows

Now assume that we want to classify subsequences of a long string, for example, a
DNA sequence d. The typical approach in this case is to take d[i : i + n], where n
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specifies the window size, and compute f(d[i : i + n]) for all i ≤ |d| −n individually
without taking the correlation between the function values f(d[i : i + n]) into
account.

This is highly wasteful, since the difference between two adjoint strings, that is,
d[i : i + n] and d[i + 1 : i + n + 1] is just given by d[i] and d[i + n + 1]. All other
symbols and their order are identical. This means that a large part of what has
been computed for d[i : n] can be reused for its successor d[i + 1 : n + 1].

As before, we merge the suffix trees of all SVs into a master suffix tree denoted by
S(X). Next we compute the matching statistics of the entire long sequence x with
respect to S(X). Let cj

i and vj
i denote the matching statistics of the jth character

in the ith window, x[i : i + n]. Since a match cannot extend beyond the boundary
of the window it is clear that vj

i = min(n − j, vi+j) while cj
i = ceil(x[i : vj

i ]. This
means that we need not parse S(X) again and again for computing the matching
statistics of each window, which in turn will lead to implementation speedups.

An even more efficient strategy is to keep track of those strings whose matches end
on the current window boundary. In the worst case there can be n of them, but in
general the number will be typically smaller than n. When we perform estimation
for the next window we need to extend only those matches which ended on the
previous window boundary. If the number of matches that we need to extend is
less than n, then we can perform estimation for the next window in sublinear time
(that is less than O(n) time). Figure 5.3 depicts this strategy.

In general, vi denotes the length of the longest match at location i of string x.
This implies that the match corresponding to x[i : vi] will cross at most vi window
boundaries and hence will need to be extended exactly vi times. Thus the total
time required to compute the sliding window kernel is proportional to

∑
i min(vi, n)

which is typically much smaller than n|x|.

5.6 Experimental Results

For a proof of concept we tested our approach on a remote homology detection
problem1 (Jaakkola et al., 2000) using Stafford Noble’s SVM package2 as the
training algorithm. A length weighted kernel was used and we assigned weights
ws = λ|s| for all substring matches of length greater than 3 regardless of triplet
boundaries. To evaluate performance we computed the ROC50 scores.3

1. Details and data available from www.cse.ucsc.edu/research/compbio/discriminative.
2. Available from www.cs.columbia.edu/compbio/svm.
3. The ROC50 score (Gribskov and Robinson, 1996; Leslie et al., 2002) is the area under
the receiver operating characteristic curve (the plot of true positives as a function of false
positives) up to the first 50 false positives. A score of 1 indicates perfect separation of
positives from negatives, whereas a score of 0 indicates that none of the top 50 sequences
selected by the algorithm were positives.
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Figure 5.4 Total number of families for which an SVM classifier exceeds a ROC50 score
threshold.

Being a proof of concept, we did not try to tune the soft margin SVM parameters
(the main point of the chapter being the introduction of a novel means of evaluating
string kernels efficiently rather than applications—a separate paper focusing on
applications is in preparation).

Figure 5.4 contains the ROC50 scores for the spectrum kernel with k = 3
(Leslie et al., 2002) and our string kernel with λ = 0.75. We tested with λ ∈
{0.25, 0.5, 0.75, 0.9} and report the best results here. As can be seen, our kernel
outperforms the spectrum kernel based on the total number of families for which a
classifier based on our kernel exceeds a ROC50 score threshold.

It should be noted that this is the first method to allow users to specify weights
rather arbitrarily for all possible lengths of matching sequences and still be able to
compute kernels at O(|x| + |x′|) time, plus, to predict on new sequences at O(|x|)
time, once the set of SVs is established.4

5.7 Conclusion

We have shown that string kernels need not come at a superlinear cost in SVMs and
that prediction can be carried out at cost linear only in the length of the argument,

4. Leslie et al. (2002) obtain an O(k|x|) algorithm in the (somewhat more restrictive) case
of ws = δk(|s|).
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thus providing optimal runtime behavior. Furthermore, the same algorithm can be
applied to trees.

The methodology pointed out in this chapter has several immediate extensions:
for instance, we may consider coarsening levels for trees by removing some of the
leaves. For not too-unbalanced trees (we assume that the tree shrinks at least by
a constant factor at each coarsening) computation of the kernel over all coarsening
levels can then be carried out at cost, still linear in the overall size of the tree. The
idea of coarsening can be extended to approximate string matching. If we remove
characters, this amounts to the use of wildcards.

Likewise, we can consider the strings generated by finite-state machines and
thereby compare the finite-state machines themselves. This leads to kernels on
automata and other dynamical systems. More details and extensions can be found
in Vishwanathan (2002).
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6 Local Alignment Kernels for Biological

Sequences
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We present a family of kernels for strings based on the detection of local alignments,
a widely used principle to compare biological sequences. These kernels belong
to the family of convolution kernels introduced by Haussler (1999), and can be
implemented with dynamic programming. We highlight the relations between these
kernels and sequence alignment scores used in bioinformatics, and propose a solution
to overcome the issue of diagonal dominance they suffer from. When tested on their
ability to detect protein homology at the superfamily level on a benchmark data
set, they outperform other state-of-the-art methods.

6.1 Introduction

With the advent of high-throughput sequencing technologies, biological sequences
are accumulating at an unprecedented pace in databases. The need to analyze,
compare, and annotate these sequences is more than ever a central problem in
postgenomics. There has recently been a growing interest in the use of kernel
methods to process sequences, particularly for classification of sequences with
Support Vector Machines (SVMs). This trend has been accompanied by a growing
interest in the development of kernel functions for strings, which form the basic
ingredient that any kernel method is based on. Examples of string kernels include
the Fisher kernel (Jaakkola et al., 2000), spectrum kernel (Leslie et al., 2002),
mismatch kernel (Leslie et al., 2003b), pairwise kernel (Liao and Noble, 2002), and
the string kernel proposed by Lodhi et al. (2002).

A kernel function can often be thought of as a measure of similarity. Different
kernels correspond to different notions of similarity. For example, each string kernel
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mentioned above corresponds to one notion of similarity between strings, such as the
similarity of Fisher score vectors with respect to a hidden Markov model (HMM) for
the Fisher kernel, or the similarity of the frequency of small blocks in the sequences
for the spectrum kernel.

Independent of kernel methods, the problem of assessing the similarity between
biological sequences has been the object of much investigation in computational
biology over the last three decades. The notion of local alignments (which we
review below) has emerged as a powerful approach to detecting evolutionary
relationships between sequences, and the measure of the best local alignment with
the Smith-Waterman algorithm (Smith and Waterman, 1981) or its fast heuristics
gapped BLAST, PSI-BLAST (Altschul et al., 1997), and FASTA (Pearson, 1990)
is nowadays the method of choice to measure the similarity between sequences.

The main motivation behind this work is the observation that the notions of
similarity between sequences defined by the string kernels developed so far differ
considerably from the notion of similarity based on local alignment. This suggests
that biologically more relevant kernels might be defined if the notion of similarity
they induce are more similar to those found useful by the computational biology
community, namely the similarity based on local alignment scoring.

The most direct way to reconcile kernel methods and classic measures of similarity
for biological sequences would be to consider a classic measure of similarity such as
the Smith-Waterman score as a kernel. However, it turns out that this choice is not
a valid kernel because it violates the condition of positive definiteness for certain
choices of parameters, as we show in the experimental part. Still, following the
avenue paved by Haussler (1999) and Watkins (2000), we propose a family of string
kernels based on the scoring of local alignments. Two strings are similar with these
kernels when they have many high-scoring local alignments, which is the property
that motivates this work.

We present promising results on a benchmark problem of remote homology de-
tection, where the new kernels outperform all other string kernels tested. However,
this performance is only obtained at the price of performing an operation on the
kernel values, which otherwise can be exponentially small even for sequences with
meaningful similarities.

The chapter is organized as follows. In sections 6.2 and 6.3 we recall the two
main ingredients we need, namely the classic notions of local alignment and Smith-
Waterman score on the one hand, and the idea of convolution kernels on the
other hand. In section 6.4 we introduce a family of convolution kernels called local
alignment kernels and present some of their properties. Their implementation is
discussed in section 6.5 and the issue of diagonal dominance is raised in section 6.6.
We conclude with experimental results on the problem of detecting protein remote
homology in sections 6.7 and 6.8.
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6.2 Sequence Local Alignment

In this section we introduce basic notations and recall the classic notion of sequence
alignment and Smith-Waterman local alignment score.

6.2.1 Basic Notations

Let A be a finite set called the alphabet, typically the set of 20 amino acids or of
4 nucleotides {A,C,G,T}. Elements of the alphabet are called letters. A string of
length n ≥ 0 is a concatenation of n letters, x = x1 . . . xn. The empty string (of
length 0) is denoted by ε, and the set of all strings is denoted by X = {ε}∪⋃∞

n=1 An.
The length of a string x is denoted |x|. The concatenation of two strings (x,y) ∈ X2

is written xy.

6.2.2 Alignments and Smith-Waterman Score

With these basic notations we can introduce the notion of alignment that plays an
essential role below:

Definition 6.1 An alignment (with gaps) π of p ≥ 0 positions between twoSequence
alignment sequences (x,y) ∈ X2 is a pair of p-tuples:

π = ((π1(1), . . . , π1(p)) , (π2(1), . . . , π2(p))) ∈ N
2p

that satisfies

1 ≤ π1(1) < π1(2) < . . . < π1(p) ≤ |x|,
1 ≤ π2(1) < π2(2) < . . . < π2(p) ≤ |y|.

The simple idea behind this formal definition is that the alignment encodes p

positions in each sequence that are aligned to each other, that is, the π1(i)th letter
of x is aligned to the π2(i)th letter of y for i = 1, . . . , p. A convenient way to
represent an alignment is to write the two sequences one above the other, by placing
the p aligned positions on the same columns, and inserting the symbol ’−’ in both
sequences whenever necessary to ensure that only aligned letters are on the same
column (this representation is unique up to the choice of the position where the
symbol ’-’ is inserted between two consecutively aligned positions).

As an example, if x = GAATCCG and y = GATTGC, then the 4-letter alignment
π = ((1, 2, 4, 6), (1, 3, 4, 5)) is represented as follows:

G-AATCCG-

GAT-T-G-C

q The notion of alignment stems from the observation that the transformation
of sequences during evolution can roughly be described by substitutions of single
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letters, deletions, or insertions. As a result, a natural way to compare homologous
proteins is to align them in order to detect the conserved regions.

Let us denote by Π(x,y) the set of all possible alignments between two sequences
x and y, and by |π| the number of positions aligned by the alignment π ∈ Π(x,y).
In order to evaluate how ”good” an alignment π ∈ Π(x,y) is, and eventually find
the best one, various scoring schemes have been developed. We now present one of
the most widely used scoring schemes, often referred to as local alignment score. It
is defined in terms of a substitution matrix S ∈ R

A×A and a gap penalty function
g : N→ R such that g(0) = 0 as follows:

Definition 6.2 The local alignment score of an alignment π ∈ Π(x,y) is equal to

sS,g(π) :=
|π|∑
i=1

S
(
xπ1(i), yπ2(i)

)− |π|−1∑
i=1

[g(π1(i + 1)− π1(i)) + g(π2(i + 1)− π2(i))] .

(6.1)

In other words, the local alignment score of an alignment π is the sum of the
substitution scores between the letters at the aligned positions, minus the sum of
the gap penalty when ’-’ symbols must be inserted between aligned positions. The
name ”local alignment” comes from the fact that no gap penalty is counted before
the first and after the last aligned letters.

We can now define the local alignment score between sequences:

Definition 6.3 The local alignment score or Smith-Waterman score (denoted SWSmith-Waterman
score score below) between two sequences (x,y) ∈ X2 is the local alignment score of their

best alignment, that is:

SWS,g(x,y) := max
π∈Π(x,y)

sS,g(π). (6.2)

The SW score is a widely used measure of similarity between DNA or protein se-
quences. It can be computed with a complexity O(|x||y|) by dynamic programming
with the Smith-Waterman algorithm (Smith and Waterman, 1981), and lower com-
plexity heuristics are implemented in the widely used softwares gapped BLAST
(Altschul et al., 1997) and FASTA (Pearson, 1990).

6.2.3 Is the SW Score a Valid String Kernel?

A natural question at this point is the following: is the SW score (6.2) a valid kernel
for string? Remember that a function k : X2 → R is a valid kernel if it is symmetric,
that is, k(x,y) = k(y,x) for any (x,y) ∈ X2, and positive definite, that is:

∀n ∈ N, ∀(x1, . . . ,xn, a1, . . . , an) ∈ Xn × R
n,

n∑
i,j=1

aiajk(xi,xj) ≥ 0. (6.3)

We simply call such functions string kernels below. To the best of our knowledge,String kernels
there is no general result that states for which parameters S and g the local
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alignment score SWS,g is a string kernel. As the following toy example shows,
there are cases where the SW score is a string kernel:

Proposition 6.4 Let g = 0 (no gap penalty) and S be a substitution matrix null
except for one letter a ∈ A on the diagonal, that is, S(a, a) = 1 and S(u, v) = 0
except if u = v = a. Then the score SWS,g is a string kernel.

Proof Consider two sequences x and y with, respectively, mx and my occurrences
of the letter a. With no gap penalty and no contribution to the score of aligned
letters except for pairs of a, the highest score is obtained when as many a as possible
are aligned, that is, min(mx, my). Each aligned pair of a adds 1 to the score, which
shows that

SWS,g(x,y) = min(mx, my).

This is clearly a valid kernel, as it can be written as an inner product φ(x).φ(y)
between two vector representations of x and y, for instance, by the mapping
φ : X→ R

N defined by φ(x)i = 1 if i ≤ mx, 0 otherwise.

On the other hand, for more classic parameter S and g, we observe empirically
(see section 6.7) that the SW score can lack positive definiteness. This motivates
the study of convolution kernels in the next section, and the development of string
kernels based on local alignment scores in section 6.4.

6.3 Convolution Kernels

In this section we recall the notion of convolution kernels for strings introduced
in a more general framework by Haussler (1999). Roughly speaking, convolution is
a powerful operation to combine two string kernels into a single one, particularly
suited to the detection of local similarities between sequences. More formally, they
are defined as follows:

Definition 6.5 Let k1 and k2 be two functions X×X→ R. The convolution of k1Convolution
kernel and k2, denoted by k1 � k2, is the following function:

∀(x,y) ∈ X2, k1 � k2(x,y) :=
∑

x1x2=x,y1y2=y

k1(x1,y1)k2(x2,y2). (6.4)

Haussler (1999) proved the following important result:

Theorem 6.6 The convolution of two string kernels is a string kernel.

This theorem implies that we can build complex string kernels by convolving
simple ones. Moreover, it can easily be checked that the convolution operation is
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associative, and that the convolution of p kernels k1, · · · , kp is the following string
kernel:

∀(x,y) ∈ X2, k1 � · · · � kp(x,y) =
∑

x1···xp=x,y1···yp=y

k1(x1,y1) · · · kp(xp,yp).

Convolution kernels were introduced by Haussler (1999) in a more general context
than string kernels, and were, for instance, successfully applied to define kernels for
trees with applications in natural language processing (Collins and Duffy, 2002). In
the context of biological sequences, Haussler (1999) showed that the probability
P (x,y) of a pair of sequences under a pair HMM (Durbin et al., 1998) is aPair HMM
convolution of basic string kernel and is therefore a valid string kernel, under some
assumptions on the model parameters. This result, which was proved independently
by Watkins (2000), makes a first link between string kernels and string alignment
scores. Indeed the probability P (x,y) studied by Haussler (1999) and Watkins
(2000) is related to the score obtained by global alignment of two strings with
the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970), at least if the
probability is replaced by a log-odds score which takes the form

s(x,y) = log
P (x,y)
q(x)q(y)

,

where q is a background model (Durbin et al., 1998).
The results, however, are of little practical interest for at least two reasons. First,

it is commonly recognized in computational biology that local alignment scores like
the SW score are more relevant than global alignment scores to assess the similarity
between sequences. Second, the probabilities of two sequences under a pair HMM
model are usually much too small (typically 10−100 to 10−1000) to be of any interest
as kernels. The objects of the next two sections are to overcome both these issues,
first by proposing a convolution kernel based on local alignment score (section 6.4),
and then on making it useful in real-world application (section 6.6).

6.4 Local Alignment Kernels

Following the approach pioneered by Haussler (1999), we define in this section a
complex string kernel by convolution and sum of simple kernels. Let us therefore
start by defining three basic string kernels, which will serve as ”basic blocks” to
derive a more complex kernel. To do so, we assume a substitution matrix S and a
gap penalty function g are given, and we define the three kernels as functions of S

and g.
The first basic kernel, denoted by k0, is a trivial kernel constantly equal to 1,

that is:

∀(x,y) ∈ X2, k0(x,y) := 1. (6.5)
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This kernel is useful to compare the parts of two sequences that don’t contribute
to the local alignment score, that is, the substrings before and after the alignment.

The second basic kernel, which we call ka, is used to quantify the similarity of
aligned letters. It is defined as follows:

∀(x,y) ∈ X2, k(β)
a (x,y) :=

{
0 if |x| �= 1 or |y| �= 1,

exp (βS(x,y)) otherwise,
(6.6)

where β ≥ 0 is a parameter. Observe that it is null as soon as one of the sequences is
not exactly reduced to a single letter. Observe also that this is only a string kernel
for the values of β which ensure that the matrix (exp (βS(a, b)))a,b∈A is positive
definite. This is the case whatever β ≥ 0 iff the matrix (S(a, b))a,b∈A is conditionally
positive definite (Berg et al., 1984), which can be checked case by case (this holds
in particular if the matrix (S(a, b))a,b∈A is positive definite).

Finally, to translate the penalty gap model, we define the third basic string kernel,
which we denote kg, as follows:

∀(x,y) ∈ X2, k(β)
g (x,y) := exp [β (g(|x|) + g(|y|))] , (6.7)

where β ≥ 0 is the same parameter as in (6.6), and g is the gap penalty function. kg

is a valid string kernel, because it can be written as a scalar product k
(β)
g (x,y) =

φ
(β)
g (x).φ(β)

g (y) between 1-dimensional vectors given by φ
(β)
g (x) = exp (βg(|x|)).

Let us now combine these three basic kernels by convolution. For any fixed n > 0,
consider first the following string kernel:

k
(β)
(n) := k0 �

(
k(β)

a � k(β)
g

)(n−1)

� k(β)
a � k0.

This kernel quantifies the similarity between two strings x and y based on local
alignments of exactly n residues. Indeed the convolution operation sums up the
contributions of all possible decompositions of x and y simultaneously into an
initial part (whose similarity is measured by k0), a succession of n aligned residues
(whose similarity is measured by k

(β)
a ) possibly separated by n − 1 gaps (whose

similarity is measured by k
(β)
g ), and a terminal part (whose similarity is measured

by k0). For n = 0 (no residue aligned), we simply define the kernel k
(β)
(0) = k0.

In order to compare two sequences through all possible local alignments, it is
necessary to take into account alignments with different numbers n of aligned
residues. A simple solution is to sum up the contributions of all kernels k

(β)
(n) for

n ≥ 0, which results in the following local alignment kernel (which we call LALocal alignment
kernel kernel below):

k
(β)
LA :=

∞∑
i=0

k
(β)
(i) . (6.8)

Note that for any pair of finite-length sequences (x,y) ∈ X2 the right-hand term of
(6.8) estimated at (x,y) is a convergent series, because it has only a finite number
of non-null terms. Therefore k

(β)
LA is defined as a pointwise limit of string kernels,
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and is therefore a string kernel by closure property of the class of positive definite
kernels under pointwise limit (Berg et al., 1984).

The following theorem, whose proof is postponed to appendix A, highlights the
relations between the LA string kernel, the local alignment scores of all possible
alignments, and the SW score:

Theorem 6.7 The LA kernel (6.8) is expressed in terms of local alignment scores
as follows:

∀(x,y) ∈ X2, k
(β)
LA(x,y) =

∑
π∈Π(x,y)

exp (βsS,g(x,y, π)) . (6.9)

The SW score (6.2) is related to the LA kernel by the following equality:

∀(x,y) ∈ X2, lim
β→+∞

1
β

ln k
(β)
LA(x,y) = SWS,g(x,y). (6.10)

These equations clarify the link between the LA kernel (6.8) and the SW score
(6.2), and highlight why the SW score might fail to be a valid string kernel. First,
the SW score only keeps the contribution of the best local alignment to quantify
the similarity between two sequences, instead of summing up the contributions of
all possible local alignments like the LA kernel does. Second, the SW score is the
logarithm of this alignment score, and taking the logarithm is usually an operation
which does not preserve the property of being positive definite (Berg et al., 1984).

6.5 Kernel Computation

A naive computation of the LA kernel using (6.9) would require a sum over |Π(x,y)|
alignments, resulting in a complexity exponential with respect to |x| and |y|. In this
section we show that this expression can be factorized and computed using dynamic
programming by a slight modification of the Smith-Waterman algorithm, at least
if the gap penalty function is affine. This efficient computation is summarized in
the following theorem:

Theorem 6.8 Let (x,y) ∈ X2 be two strings, and g be an affine gap penalty
function: {

g(0) = 0,

g(n) = d + e(n− 1) if n ≥ 1,
(6.11)

then the LA kernel k
(β)
LA(x,y) between x and y is equal to

k
(β)
LA(x,y) = 1 + X2(|x|, |y|) + Y2(|x|, |y|) + M(|x|, |y|),
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where M(i, j), X(i, j), Y (i, j), X2(i, j), and Y2(i, j) for 0 ≤ i ≤ |x|, and 0 ≤ j ≤ |y|
are recursively defined by the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M(i, 0) = M(0, j) = 0,

X(i, 0) = X(0, j) = 0,

Y (i, 0) = Y (0, j) = 0,

X2(i, 0) = X2(0, j) = 0,

Y2(i, 0) = Y2(0, j) = 0,

and for i = 1, . . . , |x| and j = 1, . . . , |y|:Dynamic
programming ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(i, j) = exp(βS(xi, yj))

[1 + X(i− 1, j − 1) + Y (i− 1, j − 1) + M(i− 1, j − 1)] ,

X(i, j) = exp(βd)M(i− 1, j) + exp(βe)X(i− 1, j),

Y (i, j) = exp(βd) [M(i, j − 1) + X(i, j − 1)] + exp(βe)Y (i, j − 1),

X2(i, j) = M(i− 1, j) + X2(i− 1, j),

Y2(i, j) = M(i, j − 1) + X2(i, j − 1) + Y2(i, j − 1).

The proof of theorem 6.8 is postponed to appendix B. One can observe that the
Smith-Waterman algorithm (Smith and Waterman, 1981) to compute the SW score
is obtained from these equations by replacing each addition by a max operation,
and taking the logarithm of the result divided by β.

An equivalent way to describe the implementation of the LA kernel is through the
weighted finite-state transducer (WFST) shown in figure 6.1 (see the legend for an
explanation). The implementation as a WFST is possible because each basic kernelRational kernels
we defined can be implemented using such automata, and because the addition and
convolution of WFST can be computed by WFST. Such kernels are called rational
kernels (Cortes et al., 2003).

6.6 Diagonal Dominance Issue

In many cases of practical interest the LA kernel defined in (6.8) suffers from the
diagonal dominance problem, namely the fact that k

(β)
LA(x,x) is easily orders of

magnitudes larger than k
(β)
LA(x,y) for two different sequences x and y, even though x

and y might share interesting similarities. This is particularly evident for increasing
values of the parameter β, because from (6.10)

k
(β)
LA(x,x)

k
(β)
LA(x,x)

∼ exp β (SWS,g(x, xb)− SWS,g(x,y))

when β → ∞. In practice, it has been observed that SVMs don’t perform well in
this situation. Indeed diagonal dominance implies that different objects are almost
orthogonal in the feature space, and it can be shown that instead of learning a
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Figure 6.1 A weighted finite-state transducer is a directed graph with an initial state
B and a terminal state E. To each edge is attached a label of the form u : v/w. The label
corresponds to an action of processing an input sequence x and an output sequence y,
and a weight associated with the action. The action of a label u : v/w is ”read nothing
(if u = 0) or one letter a ∈ (if u = a) in x, and output nothing (if v = 0) or one letter
b ∈ (if v = b) in y”. The weight associated with the action is w, with the conventions
that m(a, b) = exp(βS(a, b)), D = exp(βd), and E = exp(βe). A path from B to E is
compatible with two sequences x and y if the successive actions performed on the edges
along the path correspond to reading x and outputting y. The score of a compatible path
is the product of its edge weights. The kernel k

(β)
LA(x,y) is computed by the automaton

shown on this picture as the sum of the scores of all compatible paths with x and y.
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classifier with good generalization performances, an SVM tends only to memorize
the data in that case.

The exponential dependency of the LA kernel with respect to the β parameters
suggests the following normalization, in order to remove the diagonal dominance
when β increases:

k̃
(β)
LA(x,y) =

1
β

ln k
(β)
LA(x,y). (6.12)

An obvious problem with this operation is that the logarithm of a positive definite
kernel is not a positive definite kernel in general (Berg et al., 1984). Still k̃

(β)
LA has

several interesting properties. It increases monotonically with k
(β)
LA, and by (6.9)

it is always non-negative, because at least one local alignment between any two
sequences has a non-negative score (at worst the score of aligning no residue is
null). Besides, by (6.10), k̃

(β)
LA behaves like the SW score for large β. Intuitively, k̃

(β)
LA

is therefore of the order of magnitude of the SW score but includes contributions
from all possible local alignments.

Because k̃
(β)
LA might not be a positive definite kernel, some care must be taken

to ensure that the SVM converges to a large margin discrimination rule during
learning. We tested two approaches to make the symmetric function k̃

(β)
LA positive

definite on a given training set of sequences, which we now describe.
The first approach we propose is to add to the diagonal of the training Gram

matrix a non-negative constant large enough to make it positive definite. In allSpectral
translation experiments presented below we perform this operation by subtracting from the

diagonal the smallest negative eigenvalue of the training Gram matrix, if there are
negative eigenvalues. The resulting kernel, which we call LA-eig, is equal to k̃

(β)
LA

except eventually on the diagonal.
We compare this approach to the method proposed in Schölkopf et al. (2002)

which consists in working with the empirical kernel map. In this case, for a givenEmpirical kernel
map training set x1, . . . ,xn of sequences, each possible sequence x is mapped to the

n-dimensional vector
(
k̃

(β)
LA(x,x1), . . . , k̃

(β)
LA(x,xn)

)�
. These vector representations

are then used to train the SVM and predict the class of new sequences. The
corresponding kernel between two sequences x and y, which we call the LA-ekm
kernel, is therefore equal to

∑n
i=1 k̃

(β)
LA(x,xi)k̃

(β)
LA(y,xi). On the training set, this

amounts to taking
(
k̃

(β)
LA

)�
.k̃

(β)
LA as a new symmetric positive definite Gram matrix.

6.7 Experiments

The accuracy of an SVM combined with the LA-eig and LA-ekm kernels is evaluated
with the benchmark procedure used in Liao and Noble (2002). Three other state-of-
the-art methods were also run on this benchmark, in order to compare them with
the method proposed in this chapter: SVM with a Fisher kernel (Jaakkola et al.,
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2000), SVM-pairwise (Liao and Noble, 2002), and SVM with a mismatch kernel
(Leslie et al., 2003b).

The problem is to classify protein domains into superfamilies in the structural
classification of proteins (SCOP) (Murzin et al., 1995) version 1.53. The data,Remote

homology
detection

already used in Liao and Noble (2002),1 consists of 4352 sequences extracted from
the Astral database (similar sequences were removed with an E-value threshold
of 10−25), grouped into families and superfamilies. For each family, the protein
domains within the family are considered positive test examples, and protein
domains within the superfamily but outside the family are considered positive
training examples. This yields 54 families with at least 10 positive training examples
and 5 positive test examples. Negative examples for the family are chosen from
outside of the positive sequences’ fold, and were randomly split into training and
test sets in the same ratio as the positive examples. For more details on this data set
and the experiments, the reader is referred to Liao and Noble (2002) and Jaakkola
et al. (2000).

To measure the quality of the methods, the receiver operating characteristic
(ROC) scores, the ROC50 scores, and the median rate of false positives (RFP)
are used. The ROC score is the normalized area under a curve that plots true
positives against false positives for different possible thresholds for classification
(Gribskov and Robinson, 1996). The ROC50 is the area under the ROC curve up
to 50 false positives, and is considered a useful measure of performance for real-
world application. The median RFP is the number of false positives scoring as high
or better than the median-scoring true positives. These measures were used for
evaluation in Jaakkola et al. (2000) and Liao and Noble (2002).

6.7.1 SVM

All methods based on SVM were tested with a common procedure, which we now
describe. We used the Gist publicly available SVM software2 which implements the
soft margin optimization algorithm described in Jaakkola et al. (2000). For each
kernel k to be tested, the following systematic preprocessing was performed. First,
all points were normalized to unit norm in the feature space and separated from
the origin by adding a constant to the kernel, resulting in the following kernel:

knorm(x,y) =
k(x,y)√

k(x,x)k(y,y)
+ 1. (6.13)

The necessity to separate the points from the origin stems from the fact that in
the implementation we use, all separating hyperplanes are required to pass through
the origin. Second, because most classification problems below are very unbalanced
in the sense that the numbers of positive and negative examples are very different,

1. Available from www.cs.columbia.edu/compbio/svm-pairwise .
2. Available from http://microarray.cpmc.columbia.edu/gist .
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we used a class-dependent regularization parameter. This amounts to adding to
the diagonal a constant 0.02α+/0.02α− to all positive/negative examples, where
α+/α− is the fraction of positive/negative examples in the training set (see Liao
and Noble, 2002; Jaakkola et al., 2000, for details and justifications).

6.7.2 SVM-Pairwise Kernel

We reproduced the implementation of the best method tested in Liao and Noble
(2002). For a given training set of size n, each sequence x ∈ X is represented by
a feature vector Upw(x) of dimension n, where each coordinate is the E-value of
the SW scores SW (x,yi) (1 ≤ i ≤ n) between x and a sequence yi in the training
set, as computed by the SSearch software (Lipman and Pearson, 1988). The Smith-
Waterman algorithm here uses the BLOSUM 62 substitution matrix, gap opening
penalty of 11, and gap extension penalty of 1. Following Liao and Noble (2002) the
kernel is defined as a radial basis function kernel on the vectors Upw(x) normalized
to unit length, that is:

kpw(x,y) = exp

(
− 1

2σ2

(
Upw(x)
||Upw(x)|| −

Upw(y)
||Upw(y)||

)2
)

,

where the width σ is the median Euclidean distance (in the feature space) from any
positive training example to the nearest negative example.

6.7.3 SVM-Fisher Kernel

The SVM-Fisher method (Jaakkola et al., 2000) represents any sequence x ∈ X by
a fixed-length vector U(x), namely the gradient of the log-likelihood of x under a
profile HMM probabilistic model, with respect to the emission parameters of the
model. We followed exactly the procedure described in Jaakkola et al. (2000).

6.7.4 Mismatch Kernel

The mismatch kernel (Leslie et al., 2003b) consists in representing a sequence by the
set of fixed-length blocks it contains (typically three to six amino acids long), and
augmenting this set by the blocks obtained by mutating a small number of amino
acids (typically one or two) in the blocks observed. The mismatch kernel between
two sequences is the inner products between these bag-of-blocks representations.
We tested the kernel based on blocks of length 5, with up to 1 mutation, as it was
reported to have the best performance in Leslie et al. (2003b).

6.7.5 Local Alignment Kernels

As explained in section 6.5 we compute the LA kernels using dynamic programming.
These kernels have several parameters: the gap penalty parameters e and d, the
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Table 6.1 ROC, ROC50 and median RFP averaged over 54 families for different kernels.
The LA-eig and LA-ekm kernels with β = +∞ correspond to the SW score (modified to
become positive definite on the set of proteins used to train the SVM).

Kernel Mean ROC Mean ROC50 Mean mRFP

LA-eig (β = +∞) 0.908 0.591 0.0654

LA-eig (β = 1) 0.912 0.612 0.0626

LA-eig (β = 0.8) 0.908 0.597 0.0679

LA-eig (β = 0.5) 0.925 0.649 0.0541

LA-eig (β = 0.2) 0.923 0.661 0.0637

LA-eig (β = 0.1) 0.868 0.429 0.111

LA-ekm (β = +∞) 0.916 0.585 0.0580

LA-ekm (β = 1) 0.920 0.587 0.0539

LA-ekm (β = 0.8) 0.916 0.585 0.0592

LA-ekm (β = 0.5) 0.929 0.600 0.0515

LA-ekm (β = 0.2) 0.877 0.453 0.125

LA-ekm (β = 0.1) 0.596 0.052 0.500

Pairwise 0.896 0.464 0.0837

Mismatch 0.872 0.400 0.0837

Fisher 0.773 0.250 0.204

amino acid mutation matrix s, and the factor β which controls the influence of
suboptimal alignments in the kernel value. A precise analysis of the effects of these
parameters would be beyond the scope of this chapter so we limit ourselves to the
analysis of the effect of the β parameter. In order to be consistent with the SVM-
pairwise method the substitution matrix is always the BLOSUM 62 matrix and the
gap parameters are always (e = 11,d = 1) below.

6.8 Results

Table 6.1 summarizes the performance of the different methods in terms of ROC,
ROC50, and RFP scores averaged over all 54 families tested. We tested the local
alignment kernels LA-eig and LA-ekm for several values of β ranging from +∞, in
which case they are derived from the SW score (6.12), to β = 0.1.

These results show that both LA-eig and LA-ekm perform best for β in the range
of 0.2 to 0.5, and have almost similar performances in that case. This suggests that
the normalization of k̃

(β)
LA into a positive definite kernel through the empirical kernel

map of Schölkopf et al. (2002) or by subtracting the smallest negative eigenvalue
from the diagonal has little influence on the final performance.

Second, the fact that the performance of the LA-eig and LA-ekm kernels is better
for β in the range of 0.2 to 0.5 than for β = ∞ shows that the SW score as a



6.8 Results 145

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

N
o.

 o
f f

am
ili

es
 w

ith
 g

iv
en

 p
er

fo
rm

an
ce

ROC

LA kernel
SW kernel

SVM-pairwise
Mismatch kernel

Fisher kernel

Figure 6.2 ROC score distribution for different kernels. The curve denoted LA kernel
corresponds to the LA-eig kernel with β = 0.5. The curve denoted SW kernel corresponds
to the LA-eig kernel with β = ∞, which is equal to the SW score up to a constant on the
diagonal.

kernel is outperformed by variants which take into account suboptimal alignments
to quantify the similarity between protein sequences.

The results obtained with the Fisher, pairwise, and mismatch kernels are consis-
tent with Jaakkola et al. (2000), Liao and Noble (2002), and Leslie et al. (2003b).
The pairwise and mismatch kernels perform almost at the same level, with some
advantage for the pairwise kernel in terms of ROC and ROC50 scores. They both
outperform the Fisher kernel on this benchmark, but this is likely due to the facts
that only a single HMM is used to build the Fisher score vector for each family,
on the one hand, and that no protein outside the training data set was used to
train the HMM, on the other hand. In more realistic conditions, the Fisher ker-
nel performs roughly at the same level as the mismatch kernel (C. Leslie, private
communication).

More important, most of the LA kernels tested slightly outperform all three other
methods in this benchmark. As an illustration, the distribution of ROC, ROC50, and
median RFP scores for all three methods and the LA-eig kernel with β = 0.5 and
β =∞ are shown in figures 6.2, 6.3 and 6.4. In each case a higher curve corresponds
to a more accurate remote homology detection method. The LA-eig kernel with
β = 0.5 retrieves more than twice as many families as the best other method tested
(the pairwise method) at a ROC50 score of 0.8 or higher. This remains true for a
wide range of values for β, including β = +∞. This means that the SW score as a
kernel also outperforms the Fisher, pairwise, and mismatch kernels.
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Figure 6.3 ROC50 score distribution for different kernels.

6.8.1 Complexity

Another important factor for practical use of these kernels is their computation
cost and speed. The mismatch kernel has a linear complexity with respect to the
sum of the sequence lengths, and is by far the fastest to operate. The complexity
of the LA kernel is proportional to the product of the sequence lengths. Moreover,
the LA kernel is faster to compute for β = +∞ (SW score) than for other values of
β, because in that case all computations can be performed with sum and max
operations on integer instead of logarithms on floating point real numbers. In
our experiments the computation of the SW kernel was 4 times slower than the
computation of the mismatch kernel (using the SSEARCH software for the SW
score, and an implementation of the mismatch kernel described in Leslie et al.
(2003b), likely to be optimized in the future). The computation of the LA kernel
for other values of β was 2 orders of magnitude slower than the case β =∞, using
a very naive implementation of the dynamic programming algorithm.

The computation of the kernel Gram matrix on the training set for SVM-pairwise
and the LA-ekm kernels requires O(n3) further operations to multiply the empirical
kernel map matrix by its transpose. Only O(n2) are approximately required by the
LA-eig kernels to compute the smallest eigenvalue using the power method (Golub
and Van Loan, 1996) and subtract it from the diagonal. However, in both cases
this operation is very fast compared to the time required to compute the LA kernel
values or E-values.

Finally, classification of a new sequence with SVM-pairwise or the LA-ekm kernels
requires computing the explicit empirical kernel map representation of the sequence,
that is, computing n E-value or LA kernels. In the case of the spectrum and LA-eig



6.9 Discussion and Conclusion 147

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

N
o.

 o
f f

am
ili

es
 w

ith
 g

iv
en

 p
er

fo
rm

an
ce

median RFP

LA kernel
SW kernel

SVM-pairwise
Mismatch kernel

Fisher kernel
0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

N
o.

 o
f f

am
ili

es
 w

ith
 g

iv
en

 p
er

fo
rm

an
ce

median RFP

LA kernel
SW kernel

SVM-pairwise
Mismatch kernel

Fisher kernel

Figure 6.4 Median RFP distribution for different kernels.

kernels, the kernels are only computed between the new sequence and the support
vector sequences, which usually form only a subset of the training set. Because the
performances of LA-eig and LA-ekm are very similar, this suggests a preference for
the former.

6.9 Discussion and Conclusion

In this chapter we introduced a family of kernels specifically adapted to protein
sequences, based on the detection of high-scoring local alignments. These kernels
are biologically motivated, and extend classic work on local alignment scoring to
the framework of kernel functions.

The theoretically valid local alignment kernels we come up with suffer in practice
from diagonal dominance. Hence we employed tricks to turn them into useful
kernels, by taking a logarithm and adding a constant on the diagonal, or by using the
empirical kernel map. The resulting kernels significantly outperform all other state-
of-the-art methods on a benchmark experiment of SCOP superfamily recognition,
which was designed to simulate the problem of remote homology detection.

The remarkable accuracy of our method certainly comes from the combination
of two widely used algorithms. On the one hand, the SVM algorithm is based
on a sound mathematical framework and has been shown to perform very well
on many real-world applications. One of its particularities is that it can perform
classification of any kind of data, such as strings in our case, as soon as a kernel
function is provided. On the other hand, local alignment scores, in particular the
SW score, have been developed to quantify the similarity of biological sequences.
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Their parameters have been optimized over the years to provide relevant measures
of similarity for homologous sequences, and they now represent core tools in
computational biology.

However, direct pairwise comparisons of sequences through local alignment scores
such as the SW scores are often considered naive and weak methods to detect remote
homology. They are usually outperformed by methods such as PSI-BLAST which
extend pairwise comparisons to pools of sequences extracted iteratively. The main
contribution of this chapter is to show that pairwise sequence comparison can be
extremely powerful when used as a kernel function combined with an SVM, and
that the SW score itself provides a state-of-the-art method for remote homology
detection when used as a kernel. An interesting conclusion of our experiments is that
the SW score, however, is outperformed by local alignment scores which sum up the
contributions of all possible local alignments. Summing up over local alignments hasSuboptimal

alignments an important cost in terms of computation time due to the operations required with
floating point numbers, but can be worth the cost when one is interested in precision
more than speed. On the other hand the SW score itself is computed by dynamic
programming and is therefore slower to compute than the mismatch kernel which
it outperforms. Here again a tradeoff must be found between speed and accuracy,
depending on the application. However, due to its wide use in computational biology
the SW score has been precomputed and stored in databases such as KEGG’s SSDB
(Kanehisa et al., 2002) for virtually all known or predicted proteins of sequenced
genomes, which suggests that practical applications for the Smith-Waterman kernel
could be implemented in relation to such databases.

The only parameter whose influence was tested is the parameter β of the LA
kernel, which controls the importance of the contribution of nonoptimal localParameter setting
alignments in the final score. It should be pointed out here that the optimal values
for β we observed (in the range of 0.2 to 0.5) are only optimal for an average
performance on the 54 families tested, and that the optimal value for each family
might fluctuate. Moreover, a number of other parameters could be modified, in
particular the gap penalty parameters and the similarity matrix between amino
acids, and the optimal values for β might also depend on these parameters. Further
theoretical and practical studies, which are beyond the scope of this chapter, should
be performed to evaluate the influence of these parameters. In particular, it would
be interesting to know for which values of these parameters the SW score itself is
a valid kernel, and which parameter tuning results in the most accurate remote
protein homology detection.

An important open problem with the LA kernels as well as with most other
string kernels is the following: how to make the kernel independent of the lengths
of the sequences compared. Indeed long sequences typically result in small kernelLength

normalization values when the kernel is normalized with (6.13). While much work has been done
to estimate the significance of alignment scores for varying sequence length, these
approaches remain difficult to adapt to the kernel framework. The importance of
this issue might be underestimated in the benchmark experiment presented in
this chapter, because protein sequences in a SCOP family tend to have similar
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sequence lengths. However applying kernel-based homology detection in a more
realistic setting might reveal important effects on this issue.

While we focused in this paper on the application of the new kernels to the
problem of remote homology detection, it should finally be pointed out that
possible use of these kernels, and more generally of all other string kernels, go
beyond this single goal. In combination with SVM, string kernels can be applied
to various classification and regression tasks such as gene function, localization, or
structure prediction. Moreover recent studies suggest that kernels provide a useful
framework for integrating and performing inference from heterogeneous data (Vert
and Kanehisa, 2003b; Yamanishi et al., 2003), which we plan to investigate in the
future.
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Appendix A: Proof of Theorem 6.7

In this proof we assume the similarity matrix S and gap penalty function g are
fixed, and remove them as subscripts in sS,g and SWS,g for convenience. For any
two sequences (x,y) ∈ X2, let

Π0
n(x,y) = {π ∈ Πn(x,y) : π1(n) = |x|, π2(n) = |y|} .

We can prove a first useful result:

Lemma 6.9 With the notations of theorem 6.7, the following holds for any two
sequences (x,y) ∈ X2 and n ≥ 1:∑

π∈Π0
n(x,y)

exp (βs(x,y, π)) = k0 � ka � (kg � ka)n−1 (x,y), (6.14)

and for n = 0: ∑
π∈Π0

0(x,y)

exp (βs(x,y, π)) = k0(x,y) (6.15)
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Proof Let us proceed by induction on n. For n = 0, Π0
n(x,y) is reduced to the

singleton {∅} (the alignment where no position is aligned), which has a null score.
As a result: ∑

π∈Π0
0(x,y)

exp (βs(x,y, π)) = exp (βs(x,y, ∅)) = 1 = k0(x,y),

which proves (6.15) for any (x,y) ∈ X2.
For n = 1, Π0

n(x,y) is reduced to the singleton {(|x|, |y|)} (only the last letters
are aligned). The score of this alignment is S(x|x|, y|y|). On the other hand, by
(6.4), (6.5), and (6.6), the following holds:

k0 � ka(x,y) =
∑

x1x2=x,y1y2=y

k0(x1,y1)ka(x2,y2) = exp
[
βS(x|x|, y|y|)

]
.

This proves (6.14) in the case n = 1, for any (x,y) ∈ X2.
Let us now suppose that (6.14) is true at the level n − 1, and prove it is

then true at the level n. Let (x,y) ∈ X2 be two sequences. Then any alignment
π ∈ Π0

n(x,y) induces a decomposition x = x1x2x3, with x1 = x1 · · ·xπ1(n−1),
x2 = xπ1(n−1)+1 · · ·x|x|−1, and x3 = x|x| (and similarly for y = y1y2y3). By
construction, the alignment f(π) obtained from π by removing the last aligned
positions satisfies f(π) ∈ Π0

n(x1,y1). Conversely, it is easy to see that for any
decompositions x = x1x2x3 and y = y1y2y3 with |x3| = |y3| = 1, and for any
π ∈ Π0

n−1(x1,y1), we can find a unique π′ ∈ Π0
n(x,y) such that f(π′) = π,

namely the alignment obtained by adding to the alignment π′ the pair (|x|, |y|).
This bijection enables us to write∑

π∈Π0
n(x,y)

exp (βs(x,y, π)) =

∑
x=x1x2x3,y=y1y2y3

∑
π′∈Π0

n−1(x1,y1)

exp
(
βs(x1,y1, f

−1(π′))
)
, (6.16)

where the first sum in the right-hand side is over all decompositions of x and y
with |x3| = |y3| = 1.

By definition of the local alignment score (6.1), we have for any π ∈ Π0
n(x,y):

s(x,y, π) = s(x1,y1, f(π)) + g(|x2|) + g(|y2|) + S(x|x|, y|y|),

and therefore, by (6.7) and (6.6):

exp (βs(x,y, π)) = exp (βs(x1,y1, f(π))) .kg(x2,y2).ka(x3,y3). (6.17)
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Observing that ka(x3,y3) is null when x3 or y3 is not reduced to a single letter, we
can plug (6.17) into (6.16) to get∑

π∈Π0
n(x,y)

exp (βs(x,y, π))

=
∑

x=x1x2x3,y=y1y2y3

∑
π∈Π0

n−1(x1,y1)

exp (βs(x1,y1, f(π))) .kg(x2,y2).ka(x3,y3),

(6.18)

where the first sum in the right-hand side is now over all possible decompositions
of x and y with (x1,x2,x3,y1,y2,y3) ∈ X6.

Using the induction hypothesis and the definition of convolution we can now
conclude as follows:∑

π∈Π0
n(x,y)

exp (βs(x,y, π))

=
∑

x=x1x2x3,y=y1y2y3

∑
π∈Π0

n−1(x1,y1)

exp (βs(x1,y1, π)) .kg(x2,y2).ka(x3,y3)

=
∑

x=x1x2x3,y=y1y2y3

k0 � ka � (kg � ka)n−2 (x1,y1).kg(x2,y2).ka(x3,y3)

= k0 � ka � (kg � ka)n−1 (x,y),
(6.19)

Going back to the proof of theorem 6.7, let n > 0 and (x,y) ∈ X. Observing
that any alignment π ∈ Πn(x,y) is in fact an element of Π0

n(x1,y1) where
x1 = x1 · · ·xπ1(n) and y1 = y1 · · · yπ2(n), we can write∑

π∈Πn(x,y)

exp (βs(x,y, π)) =
∑

x=x1x2,y=y1y2

∑
π∈Π0

n(x1,y1)

exp (βs(x1,y1, π))

=
∑

x=x1x2,y=y1y2

k0 � ka � (kg � ka)n−1 (x1,y1)

= k0 � ka � (kg � ka)n−1
� k0(x,y),

(6.20)

where the first equality is obtained by organizing the alignments in terms of π1(n)
and π2(n), the second is the consequence of lemma 6.9, and the last is the definition
of convolution. (6.9) now follows by summing this equality over n.
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In order to prove (6.10) we derive from (6.9) the following:

1
β

log k
(β)
LA(x,y) =

1
β

log

⎛⎝ ∑
π∈Π(x,y)

exp (βs(x,y, π))

⎞⎠
= SW (x,y) +

1
β

log

⎛⎝ ∑
π∈Π(x,y)

exp [β (s(x,y, π) − SW (x,y))]

⎞⎠ .

(6.21)

By definition of the SW score (6.2) it follows that:

lim
β→+∞

log

⎛⎝ ∑
π∈Π(x,y)

exp [β (s(x,y, π) − SW (x,y))]

⎞⎠ = log l, (6.22)

where l is the number of alignments in Π(x,y) with maximal alignment. (6.10) is
now a consequence of (6.21) and (6.22), which concludes the proof of theorem 6.7.

Appendix B: Proof of Theorem 6.8

For any sequences (x,y) ∈ X2 let us first introduce some notations. For 0 ≤ i ≤ |x|
and 0 ≤ j ≤ |y|, we define the following sets of alignments:

Πi,j := {π ∈ Π(x,y)\{∅} : π1(|π|) ≤ i, π2(|π|) ≤ j} ,
Π0

i,j := {π ∈ Πi,j : π1(|π|) = i, π2(|π|) = j} ,

Π1
i,j := {π ∈ Πi,j : π1(|π|) < i, π2(|π|) = j} ,

Π2
i,j := {π ∈ Πi,j : π1(|π|) < i, π2(|π|) < j} .

(6.23)

Hence Πi,j is the set of alignments that only involve up to the first i and j letters
of x and y, and the three subsets Π0

i,j , Π1
i,j , and Π2

i,j form a partition of Πi,j .
Let us also introduce a score si,j for the alignments of Πi,j derived from the local
alignment score (6.1) by

∀π ∈ Πi,j , si,j(π) := s(π) − g (i− π1(|π|)) − g (j − π2(|π|)) . (6.24)

In other words, si,j is an alignment score that penalizes the unaligned part after
the last aligned letters, contrary to s. With these definitions we can state a key
lemma that explains the meaning of the functions computed in theorem 6.8
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Lemma 6.10 With the notations of theorem 6.8, the following equalities hold for
0 ≤ i ≤ |x| and 0 ≤ j ≤ |y|:

M(i, j) =
∑

π∈Π0
i,j

exp (βsi,j(π)) =
∑

π∈Π0
i,j

exp (βs(π)) ,

X(i, j) =
∑

π∈Π1
i,j

exp (βsi,j(π)) ,

Y (i, j) =
∑

π∈Π2
i,j

exp (βsi,j(π)) ,

X2(i, j) =
∑

π∈Π1
i,j

exp (βs(π)) ,

Y2(i, j) =
∑

π∈Π2
i,j

exp (βs(π)) .

Proof This lemma is proved by induction in (i, j). If i = 0 or j = 0, then
Πi,j = ∅ and the statements are true. To prove the statements for i > 0 and
j > 0, consider first the statement about M(i, j). Let f : Π(x,y)→ Π(x,y) be the
application that removes the last pair of aligned position in an alignment. Then
f is clearly a bijection between Π(0)

i,j and Πi−1,j−1 ∪ {∅}, and s(π) = si,j(π) =
si−1,j−1(f(π)) + S(xi, yj) for any π ∈ Π0

i,j . We therefore can write∑
π∈Π0

i,j

exp (βs(π))

=
∑

π∈Π0
i,j

exp (βsi,j(π))

=
∑

π∈Πi−1,j−1∪{∅}
exp (βsi−1,j−1(π) + βS(xi, yj))

= eβS(xi,yj) (M(i− 1, j − 1) + X(i− 1, j − 1) + Y (i− 1, j − 1) + 1)

= M(i, j),

where the third equality uses the induction hypothesis and the fourth one the
definition of M(i, j). The same approach can be followed to prove the other
statements of lemma 6.10, so we don’t explicitly write them down for lack of space.

Let m = |x| and n = |y|. theorem 6.8 is now a direct consequence of lemma 6.10
by using (6.9) and observing that Π(x,y) = Πm,n is the disjoint union of {∅}, Π0

m,n,
Π1

m,n and Π2
m,n.
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This chapter discusses the construction of kernel functions between labeled graphs.
We provide a unified account of a family of kernels called label sequence kernels
that are defined via label sequences generated by graph traversal. For cyclic graphs,
dynamic programming techniques cannot simply be applied, because the kernel is
based on an infinite dimensional feature space. We show that the kernel computation
boils down to obtaining the stationary state of a discrete-time linear system, which is
efficiently performed by solving simultaneous linear equations. Promising empirical
results are presented in classification of chemical compounds.

7.1 Introduction

Many real-world data are represented not as vectors but as graphs, including se-
quences and trees as special cases. Examples of such data include biological se-
quences, phylogenetic trees, RNA structures (Durbin et al., 1998), natural lan-
guage texts (Manning and Schütze, 1999), semistructured data such as HTML and
XML (Abiteboul et al., 2000), and so on. In computational biology, graph data
are attracting considerable attention in drug design. Chemical compounds can be
represented as labeled graphs and their automatic classification to predict the ef-
fectiveness or toxicity of drugs is of crucial importance to the rationalization of
drug discovery processes (Kramer and De Raedt, 2001; Inokuchi et al., 2000). In
protein engineering, three-dimensional structures of proteins are often represented
as distance graphs (Holm and Sander, 1993).

Kernel methods such as support vector machines (SVMs) are becoming increas-
ingly popular for their high performance (Schölkopf and Smola, 2002). In kernel
methods, all computations are done via a kernel function, which is defined as the
inner product of two vectors in a feature space. A kernel function needs to be de-
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signed to capture the characteristics of the objects appropriately, and at the same
time, to be computed efficiently. Furthermore it must satisfy the mathematical
property called positive definiteness. A kernel function should deliberately be de-
signed to satisfy this property, because ad hoc similarity functions are not always
positive definite; see, for example, Shimodaira et al. (2002) and Bahlmann et al.
(2002).

Haussler (1999) introduced “convolution kernels”, a general framework for han-
dling discrete data structures by kernel methods. In convolution kernels, objects are
decomposed into parts, and kernels are defined in terms of the (sub)kernels between
parts. After Haussler’s seminal paper, a number of kernels for structured data were
proposed, for example, Watkins (2000), Jaakkola et al. (2000), Leslie et al. (2003b),
Lodhi et al. (2002), and Tsuda et al. (2002b) for sequences, and Vishwanathan
and Smola (2003), Collins and Duffy (2002), and Kashima and Koyanagi (2002)
for trees. Most of them are basically based on the same idea. An object such as
a sequence or a tree is decomposed into substructures, for example, substrings,
subsequences, and subtrees, and a feature vector is composed of the counts of the
substructures. Since the dimensionality of feature vectors is typically very high, the
explicit computations of feature values should be avoided. So most of the kernels
adopt efficient procedures such as dynamic programming or suffix trees.

In this chapter, we discuss the construction of kernel functions between labeled
graphs.1 We try to give a unified overview on the recent researches for graph
kernels (Kashima and Inokuchi, 2002; Kashima et al., 2003; Gärtner, 2002; Gärtner
et al., 2003). A common point of these works is that features are composed of the
counts of label sequences produced by graph traversal. For the labeled graph shown
in figure 7.1, a label sequence is produced by traversing the vertices, and looks like

(A, c, C, b, A, a, B), (7.1)

where the vertex labels A, B, C, D and the edge labels a, b, c, d appear alternately.
The essential difference among the kernels lies in how graphs are traversed and how
weights are involved in computing a kernel. We call this family of kernel “label
sequence kernels”. This family of kernels can be computed efficiently and capture
essential features of labeled graphs. As we will see below, label sequence kernels
are closely related to the kernels between probability distributions (Jebara and
Kondor, 2003), especially the kernels between hidden Markov models (HMMs).
Mathematically it is possible to consider a kernel based on more complicated
substructures such as subgraphs. However, the practical computation becomes
considerably more difficult, because counting the number of all possible subgraphs
turns out to be NP-hard (Gärtner et al., 2003).

1. Note that they should be distinguished from kernels in graph-structured input spaces
such as kernels between two vertices in a graph, for example, diffusion kernels (Srinivasan
et al., 1996; Kondor and Lafferty, 2002; Lafferty and Lebanon, 2003) or kernels between
two paths in a graph, for example, path kernels (Takimoto and Warmuth, 2002).
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A D

C A
B

b

c

b

d

a

a

Figure 7.1 An example of labeled graphs. Vertices and edges are labeled by uppercase
and lowercase letters, respectively. By traversing along the bold edges, the label sequence
(7.1) is produced.

When the graphs are acyclic, the label sequence kernels are computed simply by
dynamic programming, as shown in subsection 7.2.3. However, when the graphs are
cyclic, label sequences of infinite length can be produced because the traversal may
never end. In that case, the number of features becomes infinite. For computing
a kernel based on infinite-dimensional vectors, we exploit recursive structures in
features, and it will be shown that the kernel computation is reduced to finding the
stationary state of a discrete-time linear system (Rugh, 1995), which can be done
efficiently by solving simultaneous linear equations with a sparse coefficient matrix.

In the following, we describe the kernel function proposed by Kashima et al.
(2003).2 This kernel is defined as the expectation of a string kernel over all possible
label sequences, which is regarded as a special case of marginalized kernels (Tsuda
et al., 2002b). The relations to other label sequence kernels are discussed, and
several extensions are proposed as well. Finally, in order to investigate how well our
kernel performs on the real data, we show promising results on classifying chemical
compounds.

7.2 Label Sequence Kernel between Labeled Graphs

In this section, we introduce a kernel between labeled graphs. First of all, let us
define a labeled graph. Let ΣV , ΣE be the sets of vertex labels and edge labels,Labeled graph
respectively. Let X be a finite nonempty set of vertices, v be a function v : X→ ΣV ,
L be a set of ordered pairs of vertices called edges, and e be a function e : L→ ΣE .
Then G = (X, v, L, e) is a labeled graph with directed edges. figure 7.1 shows such
a graph. For the time being, we assume that there are no multiple edges from one
vertex to another. Our task is to construct a kernel function k(G, G′) between two
labeled graphs.

2. Notice that the notations here are in part changed from those in Kashima et al. (2003)
for better presentation.



158 Kernels for Graphs

7.2.1 Random Walks on Graphs

For extracting features from graph G, a set of label sequences is produced by random
walking. At the first step, x1 ∈ X is sampled from an initial probability distribution
ps(x1). Subsequently, at the ith step, the next vertex xi ∈ X is sampled subject
to a transition probability pt(xi|xi−1), or the random walk ends with probability
pq(xi−1):

|X|∑
xi=1

pt(xi|xi−1) + pq(xi−1) = 1. (7.2)

When we do not have any prior knowledge, we can set ps to be the uniform
distribution, the transition probability pt to be a uniform distribution over the
vertices adjacent to the current vertex, and the termination probability pq to be a
small constant probability.

From the random walk, we obtain a sequence of vertices called path:

x = (x1, x2, . . . , x�), (7.3)

where � is the length of x (possibly infinite). The probability for the path x is
described as

p(x|G) = ps(x1)
�∏

i=2

pt(xi|xi−1)pq(x�).

Let us define a label sequence as an alternating sequence of vertex labels and edgeLabel sequence
labels:

h = (h1, h2, . . . , h2�−1) ∈ (ΣV ΣE)�−1ΣV .

Associated with a path x, we obtain a label sequence

hx = (vx1 , ex1,x2 , vx2 , . . . , vx�
).

The probability for the label sequence h is equal to the sum of the probabilities of
the paths emitting h,

p(h|G) =
∑
x

δ(h = hx) ·
(

ps(x1)
�∏

i=2

pt(xi|xi−1)pq(x�)

)
,

where δ is a function that returns 1 if its argument holds, 0 otherwise.

7.2.2 Label Sequence Kernel

Next we define a kernel kz between two label sequences h and h′. We assume that
two kernel functions, kv(v, v′) and ke(e, e′), are readily defined between vertex labels



7.2 Label Sequence Kernel between Labeled Graphs 159

and edge labels, respectively. We constrain both kernels kv(v, v′), ke(e, e′) ≥ 0 to
be non-negative.3 An example of a vertex label kernel is the identity kernel,Vertex and edge

kernels
kv(v, v′) = δ(v = v′). (7.4)

If the labels are defined in R, the Gaussian kernel,

kv(v, v′) = exp(− ‖ v − v′ ‖2 /2σ2), (7.5)

could be a natural choice (Schölkopf and Smola, 2002). Edge kernels are defined
similarly. The kernel for label sequences is defined as the product of label kernels
when the lengths of two sequences are equal (� = �′):

kz(h,h′) = kv(h1, h
′
1)

�∏
i=2

ke(h2i−2, h
′
2i−2)kv(h2i−1, h

′
2i−1). (7.6)

If the lengths are different (� �= �′), then kz is simply zero (kz(h,h′) = 0).
The function kz is proved to be a valid kernel function as follows: The set of all

possible label sequences H can be divided into subsets according to their lengths
as H1, H2, . . .. Let us define k

(j)
z as kz whose domain is limited to the subset

Hj × Hj , then k
(j)
z is a valid kernel as it is described as the tensor product of

kernels (Schölkopf and Smola, 2002). Now let us expand the domain of k
(j)
z to the

whole set H ×H by assigning zero when one of the inputs is not included in Hj ,
and call it k̄

(j)
z . This operation is called zero extension (Haussler, 1999), which

preserves positive definiteness. Since kz is the sum of all k̄
(j)
z ’s, it turns out to be a

valid kernel.
Finally, our label sequence kernel is defined as the expectation of kz over allLabel sequence

kernel possible h and h′.

k(G, G′) =
∑
h

∑
h′

kz(h,h′)p(h|G)p(h′|G′). (7.7)

This kernel is valid, because it is described as an inner product of two vectors
p(h|G) and p(h′|G′).

3. This constraint will play an important role in proving the convergence of our kernel in
section 7.2.5.
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7.2.3 Efficient Computation of Label Sequence Kernels

The label sequence kernel (7.7) can be expanded as

k(G, G′) =
∞∑

�=1

∑
h

∑
h′

(
kv(h1, h

′
1)

�∏
i=2

ke(h2i−2, h
′
2i−2)kv(h2i−1, h

′
2i−1)

)
×(∑

x

δ(h = hx) ·
(

ps(x1)
�∏

i=2

pt(xi|xi−1)pq(x�)

))
×(∑

x′
δ(h = hx′) ·

(
ps(x′

1)
�∏

i=2

pt(x′
i|x′

i−1)pq(x′
�)

))
,

where
∑

h :=
∑

h1∈ΣV

∑
h2∈ΣE

· · ·∑h2�−1∈ΣV
and

∑
x :=

∑|X|
x1=1 · · ·

∑|X|
x�=1. The

straightforward enumeration of all terms to compute the sum takes a prohibitive
computational cost. For cyclic graphs, it is simply impossible because � spans from
1 to infinity. Nevertheless, there is an efficient method to compute this kernel as
shown below. The method is based on the observation that the kernel has the
following nested structure.Nested structure

k(G, G′) = lim
L→∞

L∑
�=1

∑
x1,x′

1

s(x1, x
′
1)

⎛⎝∑
x2,x′

2

t(x2, x
′
2, x1, x

′
1)

⎛⎝∑
x3,x′

3

t(x3, x
′
3, x2, x

′
2)×⎛⎝· · ·

⎛⎝∑
x�,x′

�

t(x�, x
′
�, x�−1, x

′
�−1)q(x�, x

′
�)

⎞⎠⎞⎠ · · ·
⎞⎠ , (7.8)

where

s(x1, x
′
1) := ps(x1)p′s(x

′
1)kv(vx1 , v

′
x′
1
)

t(xi, x
′
i, xi−1, x

′
i−1) := pt(xi|xi−1)p′t(x

′
i|x′

i−1)kv(vxi , v
′
x′

i
)ke(exi−1xi , ex′

i−1x′
i
) (7.9)

q(x�, x
′
�) := pq(x�)p′q(x

′
�).

Acyclic Graphs Let us first consider acyclic graphs, that is, directed graphs
without cycles. Precisely, it means that if there is a directed path from vertex x1 to
x2, then there is no directed paths from vertex x2 to x1. When a directed graph is
acyclic, the vertices can be numbered in a topological order4 such that every edge
from a vertex numbered i to a vertex numbered j satisfies i < j (see figure 7.2).

Since there are no directed paths from vertex j to vertex i if i < j, we can employ
dynamic programming. When G and G′ are directed acyclic graphs, (7.8) can beDynamic

programming

4. Topological sorting of graph G can be done in O(| | + | |) (Cormen et al., 1990).



7.2 Label Sequence Kernel between Labeled Graphs 161

Figure 7.2 A topologically sorted directed acyclic graph. The label sequence kernel can
be efficiently computed by dynamic programming running from right to left.

written as

k(G, G′) =
∑

x1.x′
1

s(x1, x
′
1)q(x1, x

′
1) + lim

L→∞

L∑
�=2

∑
x1,x′

1

s(x1, x
′
1)× (7.10)

⎛⎝ ∑
x2>x1,x′

2>x′
1

t(x2, x
′
2, x1, x

′
1)

⎛⎝ ∑
x3>x2,x′

3>x′
2

t(x3, x
′
3, x2, x

′
2)×⎛⎝· · ·

⎛⎝ ∑
x�>x�−1,x′

�>x′
�−1

t(x�, x
′
�, x�−1, x

′
�−1)q(x�, x

′
�)

⎞⎠⎞⎠ · · ·
⎞⎠ .

The first and second terms correspond to the label sequences of length 1 and those
longer than 1, respectively. By defining

r(x1, x
′
1) := q(x1, x

′
1) + lim

L→∞

L∑
�=2

⎛⎝ ∑
x2>x1,x′

2>x′
1

t(x2, x
′
2, x1, x

′
1)×⎛⎝· · ·

⎛⎝ ∑
x�>x�−1,x′

�>x′
�−1

t(x�, x
′
�, x�−1, x

′
�−1)q(x�, x

′
�)

⎞⎠⎞⎠ · · ·
⎞⎠ ,(7.11)

we can rewrite (7.10) as the following:

k(G, G′) =
∑
x1,x′

1

s(x1, x
′
1)r(x1, x

′
1).

The merit of defining (7.11) is that we can exploit the following recursive equation.

r(x1, x
′
1) = q(x1, x

′
1) +

∑
j>x1,j′>x′

1

t(j, j′, x1, x
′
1)r(j, j

′). (7.12)

Since all vertices are topologically ordered, r(x1, x
′
1) for all x1 and x′

1 can be
efficiently computed by dynamic programming (figure 7.3). The worst-case time
complexity of computing k(G, G′) is O(c · c′ · |X| · |X′|) where c and c′ are the
maximum out degree of G and G′, respectively.

General Directed Graphs In the case of cyclic graphs, we do not have topo-
logically sorted graphs anymore. This means that we cannot employ the one-pass
dynamic programming algorithm for acyclic graphs. However, we can obtain a re-
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Figure 7.3 Recursion for computing r(x1, x
′
1) using recursive equation (7.12). r(x1, x

′
1)

can be computed based on the precomputed values of r(x2, x
′
2), x2 > x1, x′

2 > x′
1.

cursive form of the kernel like (7.12), and reduce the problem to solving a system
of simultaneous linear equations. Let us rewrite (7.8) as

k(G, G′) = lim
L→∞

L∑
�=1

∑
x1,x′

1

s(x1, x
′
1)r�(x1, x

′
1),

where for � ≥ 2,

r�(x1, x
′
1) :=

⎛⎝∑
x2,x′

2

t(x2, x
′
2, x1, x

′
1)

⎛⎝∑
x3,x′

3

t(x3, x
′
3, x2, x

′
2)×⎛⎝· · ·

⎛⎝∑
x�,x′

�

t(x�, x
′
�, x�−1, x

′
�−1)q(x�, x

′
�)

⎞⎠⎞⎠ · · ·
⎞⎠ ,

and r1(x1, x
′
1) := q(x1, x

′
1). Replacing the order of summation, we have the follow-

ing:

k(G, G′) =
∑

x1,x′
1

s(x1, x
′
1) lim

L→∞

L∑
�=1

r�(x1, x
′
1)

=
∑

x1,x′
1

s(x1, x
′
1) lim

L→∞
RL(x1, x

′
1), (7.13)

where

RL(x1, x
′
1) :=

L∑
�=1

r�(x1, x
′
1).

Thus we need to compute R∞(x1, x
′
1) to obtain k(G, G′).

Now let us restate this problem in terms of linear system theory (Rugh, 1995).
The following recursive relationship holds between rk and rk−1 (k ≥ 2):Linear system
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rk(x1, x
′
1) =

∑
i,j

t(i, j, x1, x
′
1)rk−1(i, j). (7.14)

Using (7.14), the recursive relationship for RL also holds as follows:

RL(x1, x
′
1) = r1(x1, x

′
1) +

L∑
k=2

rk(x1, x
′
1)

= r1(x1, x
′
1) +

L∑
k=2

∑
i,j

t(i, j, x1, x
′
1)rk−1(i, j)

= r1(x1, x
′
1) +

∑
i,j

t(i, j, x1, x
′
1)RL−1(i, j). (7.15)

Thus RL can be perceived as a discrete-time linear system (Rugh, 1995) evolving
as the time L increases. Assuming that RL converges (see section 7.2.5 for the
convergence condition), we have the following equilibrium equation:

R∞(x1, x
′
1) = r1(x1, x

′
1) +

∑
i,j

t(i, j, x1, x
′
1)R∞(i, j). (7.16)

Therefore, the computation of our kernel finally boils down to solving simultaneous
linear equations (7.16) and substituting the solutions into (7.13).

Now let us restate the above discussion in the language of matrices. Let s, r1,Matrix
computation and r∞ be |X| · |X′| dimensional vectors such that

s = (· · · , s(i, j), · · · )�, r1 = (· · · , r1(i, j), · · · )�, r∞ = (· · · , R∞(i, j), · · · )�,

(7.17)
respectively. Let the transition probability matrix T be a |X||X′| × |X||X′| matrix,

[T ](i,j),(k,l) = t(i, j, k, l).

Equation (7.13) can be rewritten as

k(G, G′) = rT
∞s (7.18)

Similarly, the recursive equation (7.16) is rewritten as

r∞ = r1 + T r∞.

The solution of this equation is

r∞ = (I − T )−1r1.

Finally, the matrix form of the kernel is

k(G, G′) = (I − T )−1r1s. (7.19)

Computing the kernel requires solving a linear equation or inverting a matrix
with |X||X′| × |X||X′| coefficients. However, the matrix I − T is actually sparse
because the number of non-zero elements of T is less than c · c′ · |X| · |X′| where
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c and c′ are the maximum out degree of G and G′, respectively [see (7.9) for
the definition of T ]. Therefore, we can employ efficient numerical algorithms that
exploit sparsity (Barrett et al., 1994). In our implementation, we employed a simple
iterative method that updates RL by using (7.15) until convergence starting from
R1(x1, x

′
1) = r1(x1, x

′
1).

7.2.4 Allowing Multiple Edges between Vertices

Up to this point, we assumed that there are no multiple edges from one vertex
to another. However, a slight modification allows incorporation of multiple edges.
Suppose that there are Mxi−1xi directed edges from vertex x′

i−1 to vertex x′
i with

labels em
xi−1xi

, and transition probabilities pm
t (xi|xi−1) (m = 1, 2, . . . , Mxi−1xi).

Instead of (7.9), by considering all pair of em
xi−1xi

and em
x′

i−1x′
i
, we have only to

redefine t(xi, x
′
i, xi−1, x

′
i−1) as the following.

t(xi, x
′
i, xi−1, x

′
i−1) := k(vxi , v

′
x′

i
)×

Mxi−1xi∑
m=1

M ′
xi−1xi∑
m′=1

pm
t (xi|xi−1)p′m

′
t (x′

i|x′
i−1)k(em

xi−1xi
, em′

x′
i−1x′

i
)

7.2.5 Convergence Condition

Since loops are allowed in general directed graphs, an infinite number of paths can
be generated. Therefore some convergence condition is needed to justify (7.16). The
following theorem holds:

Theorem 7.1 The infinite sequence limL→∞ RL(x1, x
′
1) converges for any x1 ∈

{1, · · · , |X|} and x′
1 ∈ {1, · · · , |X′|}, if the following inequality holds for i0 ∈

{1, · · · , |X|} and j0 ∈ {1, · · · , |X′|},
|X|∑
i=1

|X′|∑
j=1

t(i, j, i0, j0)q(i, j) < q(i0, j0). (7.20)

For the proof, see Kashima et al. (2003). The condition (7.20) seems rather
complicated, but we can have a simpler condition, if the termination probabilities
are constant over all vertices.

Corollary 7.2 If pq(i) = p′q(j) = γ for any i and j, the infinite sequence
limL→∞ RL(x1, x

′
1) converges if

kv(v, v′)ke(e, e′) <
1

(1− γ)2
. (7.21)

Apparently, the above lemma holds if 0 ≤ kv, ke ≤ 1. Standard label kernels such
as (7.4) and (7.5) satisfy this condition.
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Figure 7.4 A chemical compound is conventionally represented as an undirected graph
(left). Atom types and bond types correspond to vertex labels and edge labels, respectively.
The edge labels s and d denote single and double bonds, respectively. As our kernel assumes
a directed graph, undirected edges are replaced by directed edges (right).

7.3 Experiments

We applied our kernel to the prediction of properties of chemical compounds.
A chemical compound can naturally be represented as an undirected graph byChemical

compound considering the atom types as the vertex labels, for example, C, Cl, and H, and the
bond types as the edge labels, for example, s (single bond) and d (double bond). For
our graph kernel, we replaced an undirected edge by two directed edges (figure 7.4)
since the kernel assumes directed graphs.

7.3.1 Pattern Discovery Algorithm

We compare our graph kernel with the pattern-discovery (PD) method of Kramer
and De Raedt (2001) which is one of the best state-of-the-art methods in predictive
toxicology. Like our graph kernel, the PD method counts the number of label
sequences appearing in the graph.5 There are other methods which count more
complicated substructures such as subgraphs (Inokuchi et al., 2000), but we focus
on Kramer and De Raedt (2001) whose features are similar to ours.

Assume that we have n graphs G1, . . . , Gn. Let us define #(h, G) as the number
of appearances of a label sequence h in G. The PD method identifies the set of all
label sequences H which appear in more than m graphs:

H = {h |
n∑

i=1

δ (# (h, Gi) > 0) ≥ m},

where the parameter m is called the minimum support parameter. Furthermore, it
is possible to add extra conditions, for example, selecting only the paths frequent

5. Notice that the definition of label sequences is different from ours in several points, for
example, a vertex will not be visited twice in a path. See Kramer and De Raedt (2001)
for details.
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in a certain class and scarce in the other classes. Each graph G is represented by a
vector as

G→ (#(x1, G), . . . ,#(x|H|, G)), (7.22)

whose dimensionality is the cardinality of H. The PD method is useful for extracting
comprehensive features. However, as the minimum support parameter gets smaller,
the dimensionality of the feature vectors becomes so large that a prohibitive amount
of computation is required. Therefore, the user has to control the minimum support
parameter m, such that the feature space does not lose necessary information and,
at the same time, computation stays feasible.

The PD method contrasts markedly with our method. Our kernel method puts
emphasis on dealing with infinite, but less interpretable features, while the PD
method tries to extract a relatively small number of meaningful features. Looking
at the algorithms, our method is described by just one equation (7.16), while the
PD method’s algorithm is rather complicated (De Raedt and Kramer, 2001).

7.3.2 Data sets

We used two data sets, the PTC (predictive toxicology challenge) data set (Helma
et al., 2001) and the Mutag data set (Srinivasan et al., 1996). The PTC data set is
the result of the following pharmaceutical experiments. Four types of test animals—
male mouse (MM), female mouse (FM), male rat (MR), and female rat (FR)—
were given 417 compounds. According to its carcinogenicity, each compound was
assigned one of the following labels: {EE, IS, E, CE, SE, P, NE, N}, where CE, SE,
and P indicate “relatively active,” NE and N indicate “relatively inactive,” and
EE, IS, and E indicate “cannot be decided.” To simplify the problem, we relabeled
CE, SE, and P as “positive,” and NE and N as “negative.” The task is to predict
whether a given compound is positive or negative for each type of test animal.
Thus we eventually had four two-class problems. In the Mutag data set, the task is
a two-class classification problem to predict whether each of the 188 compounds has
mutagenicity or not. Several statistics of the data sets are summarized in table 7.1.

7.3.3 Experimental Settings and Results

Assuming no prior knowledge, we defined the probability distributions for random
walks as follows. The initial probabilities were simply uniform, that is, ps(x) =
1/|X|. The termination probabilities were determined as a constant γ over all
vertices. The transition probabilities pt(x|x0) were set as uniform over adjacent
vertices. We used (7.4) as the label kernels. In solving the simultanous equations,
we employed a simple iterative method (7.15). In our observation, 20 to 30 iterations
were enough for convergence in all cases. For the classification algorithm, we used
the voted kernel perceptron (Freund and Shapire, 1999), whose performance is
known to be comparable to SVMs. In the pattern discovery method, the minimum



7.4 Related Works 167

Table 7.1 Several statistics of the data sets such as numbers of positive examples (#pos-
itive) and negative examples (#negative), maximum degree (max. degree), maximum size
of graphs (max. | |), average size of graphs (avg. | |), and numbers of vertex labels (|ΣV |)
and edge labels (|ΣE |).

MM FM MR FR Mutag

#positive 129 143 152 121 125

#negative 207 206 192 230 63

max. | | 109 109 109 109 40

avg. | | 25.0 25.2 25.6 26.1 31.4

max. degree 4 4 4 4 4

|ΣV | 21 19 19 20 8

|ΣE | 4 4 4 4 4

Table 7.2 Classification accuracies (%) of the pattern discovery method. MinSup shows
the ratio of the minimum support parameter to the number of compounds m/n.

MinSup MM FM MR FR Mutag

0.5% 60.1 57.6 61.3 66.7 88.3

1.0% 61.0 61.0 62.8 63.2 87.8

3.0% 58.3 55.9 60.2 63.2 89.9

5.0% 60.7 55.6 57.3 63.0 86.2

10% 58.9 58.7 57.8 60.1 84.6

20% 61.0 55.3 56.1 61.3 83.5

support parameter was determined as 0.5%, 1%, 3%, 5%, 10%, and 20% of the
number of compounds, and the simple dot product in the feature space (7.22) was
used as a kernel. In our graph kernel, the termination probability γ was changed
from 0.1 to 0.9.

Tables 7.2 and 7.3 show the classification accuracies in the five two-class problems
measured by leave-one-out cross-validation. No general tendencies were found to
conclude which method is better (the PD was better in MR, FR, and Mutag, but
our method was better in MM and FM). Thus it would be fair to say that the
performances were comparable in this small set of experiments. Even though we
could not show that our method is constantly better, this result is still appealing,
because the advantage of our method lies in its simplicity both in concepts and in
computational procedures.

7.4 Related Works

We have presented one kernel for graphs based on label sequences, but variants can
be obtained by changing the following two points:
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Table 7.3 Classification accuracies (%) of our graph kernel. The parameter γ is the
termination probability of random walks, which controls the effect of the length of label
sequences.

γ MM FM MR FR Mutag

0.1 62.2 59.3 57.0 62.1 84.3

0.2 62.2 61.0 57.0 62.4 83.5

0.3 64.0 61.3 56.7 62.1 85.1

0.4 64.3 61.9 56.1 63.0 85.1

0.5 64.0 61.3 56.1 64.4 83.5

0.6 62.8 61.9 54.4 65.8 83.0

0.7 63.1 62.5 54.1 63.2 81.9

0.8 63.4 63.4 54.9 64.1 79.8

0.9 62.8 61.6 58.4 66.1 78.7

Removing probabilistic constraints: In our setting, the random walk parameters
are determined such that the probabilities of all label sequences sum to 1. One can
remove these constraints and simply consider transition “weights,” not probabilities.

Changing the rate of weight decay: The probabilities (or weights) associated with
a label sequence could decay as the length of the sequence increases. Variants can
be obtained by introducing an extra decaying factor depending on the sequence
length.

Recently, Gärtner et al. (2003) proposed two graph kernels called geometric and
exponential kernels. Let wt(xi|xi−1) denote a weight of transition from xi−1 to xi.Geometric and

exponential
kernels

Their kernels can be recovered in our framework by setting ps(·) = 1, pq(·) = 1 and
replacing the transition probability pt(xi|xi−1) with√

λkwt(xi|xi−1)

where λk is the decaying factor depending on the current sequence length k. In our
setting, when the random walk passes through an edge, the probability is multiplied
by the same factor regardless of the current sequence length. However, in their
setting, the decay rate may get larger when the edge is visited later, that is, after
traversing many vertices.

In the geometric kernel, λk does not depend on k, that is, λk = λ. This kernel
is quite similar to our kernel and is computed by means of matrix inversion, as in
(7.19). An interesting kernel, called the exponential kernel, is derived when

λk =
β

k
.

It turns out that this kernel is computed efficiently by the matrix exponential:

k(G, G′) =
∑

i

∑
j

[
lim

L→∞

L∑
�=1

(βT )�

�!

]
ij

=
∑

i

∑
j

[
eβT

]
ij

.
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Obviously, possible variants are not limited to these two cases, so there remains a
lot to explore.

Label sequence kernels have an intrinsic relationship to the kernels between
probability distributions called probability product kernels (Jebara and Kondor,
2003). Here the kernel between two probability distributions p and p′ is defined as

k(p, p′) =
∫

Ω

p(x)ρp′(x)ρdx (7.23)

When ρ = 1, the kernel is called expected likelihood kernel. Also, when ρ = 1/2, theExpected
likelihood kernel kernel is called Bhattacharrya kernel, which is related to the Hellinger distance. In

fact, when edges are not labeled and the vertex kernel is determined as the identity
kernel, our kernel can be regarded as the expected likelihood kernel between two
Markov models. In such cases. the graph G is perceived as a transition graph of
a Markov model and random walking amounts to the emission of symbols. The
same idea can be extended to define a kernel for HMMs (Lyngsø et al., 1999). AnKernels for

HMMs HMM can be regarded as a labeled graph where edges are not labeled and vertices
are probabilistically labeled, that is, a vertex randomly emits one of the symbols
according to some probability distribution.

If we regard the kernel kz(h,h′) as a joint distribution pz(h,h′) that emits a pair
of sequences h and h′, it can be an instance of rational kernels (Cortes et al., 2003),

Rational kernels

k(x,x′) =
∑
h

∑
h′

pz(h,h′)p(h|x)p′(h′|x′),

that define a kernel between two probabilistic automata p(h|x) and p′(h′|x′) via
probabilistic transducer pz(h,h′). The rational kernels are not limited to the
probabilistic setting, and provide a unified framework for designing kernels via
weighted transducers. Cortes et al. (2003) provided no algorithms for acyclic cases.
The techniques we introduced in this chapter can be easily applied to the rational
kernels for cyclic cases.

7.5 Conclusion

This chapter discussed the design of kernel functions between directed graphs with
vertex labels and edge labels. We defined the label sequence kernel by using random
walks on graphs, and reduced the computation of the kernel to solving a system of
simultaneous linear equations. In contrast to the PD method, our kernel takes into
account all possible label sequences without computing feature values explicitly. The
structure we dealt with in this chapter is fairly general, and promising in a wide
variety of problems in bioinformatics. Potential targets would be DNA and RNA
sequences with remote correlations, HTML and XML documents in MEDLINE,
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topology graphs, and distance graphs of 3D protein structures, just to mention
some.



 

8 Diffusion Kernels

Risi Kondor

Jean-Philippe Vert

Graphs are one of the simplest types of objects in mathematics. In chapter 7 we
saw how to construct kernels between graphs, that is, when the individual examples
x∈X are graphs. In this chapter we consider the case when the input space X is
itself a graph and the examples are vertices in this graph.

Such a case may arise naturally in diverse contexts. We may be faced with a
network, trying to extrapolate known values of some quantity at specific nodes to
other nodes. An illustrative example might be the graph of interactions between
the proteins of an organism, which can be built from recent high-throughput
technologies. Let’s say we are trying to learn the localization of proteins in the cell,
or their functions. In the absence of other knowledge, a reasonable starting point is
to assume that proteins that can interact are likely to have similar localization or
functions. Other examples of naturally occurring networks include metabolic and
signaling pathways, and also social networks, the World Wide Web, and citation
networks.

In other cases we might be faced with something much more intricate that is not
itself a network, but can conveniently be modeled as one. Assume we are interested
in predicting the physical properties of organic molecules. Clearly, the set of all
known organic molecules is very large and it is next to impossible to impose a
global metric on it or sensibly fit it into a vector space. On the other hand, it is not
so difficult to come up with rules for which molecules are expected to be similar.
The saturation of a single bond or the addition of an extra link to a long carbon
chain is unlikely to dramatically change the global properties of a molecule. We can
ask a human expert to supply us with a set of empirical rules from which we can
build a similarity graph and treat our domain as if it were a network.

The challenge is to build learning algorithms that can exploit such graphical
structures. The modularity of kernel-based learning suggests that information about
the graph should be incorporated in the kernel. Once we have fabricated a good
kernel for the graph, we can plug it into our favorite algorithm (support vector



172 Diffusion Kernels

machine [SVM], kernel regression, kernel principal component analysis [KPCA],
etc.) and expect the algorithm to perform similarly to how it performs in more
conventional settings.

The function of the kernel is to provide a global similarity metric, whereas graphs
incorporate information on local similarity. The kernel must be able to express the
degree of similarity between any two examples x,x′∈X with fine distinctions in the
degree to which x and x′ are distant from each other in the graph. In contrast, the
graph itself only expresses whether x and x′ are neighbors or not. In section 8.1 we
show how the physical process of diffusion suggests a natural way of constructing
a kernel from such local information, and section 8.2 discusses how to compute the
diffusion kernel in specific cases. In section 8.3 we highlight the interpretation of
the diffusion kernel in the context of regularization operators.

In section 8.4 we then apply these ideas to the network of chemical pathways in
the cell and show how this can boost microarray analysis. Finally, section 8.5 recasts
the central ideas of this chapter in a slightly more abstract form and provides an
outlook on their role in generalizing kernel-based learning to not just graphs but a
wide variety of mathematical objects, from finite groups to Riemannian manifolds.

8.1 Random Walks and Diffusion

The role of the kernel k is to provide a similarity metric on the input space X. Let
X be the vertices, labeled from 1 to n, of an unirected graph G. For now, we assume
that G is unweighted, that is, any two vertices i and j in G are either neighbors,
denoted i∼ j, or they are not neighbors, denoted i �∼ j.

A kernel must also satisfy the mathematical requirements of being symmetricPositive definite-
ness and positive definite. Recall that positive definiteness means that for any choice of

x1,x2, . . . ,xm ∈X and any choice of coefficients c1, c2, . . . , cm ∈R,
m∑

i=1

m∑
j=1

cicjk(xi,xj) ≥ 0,

this being the crucial condition for the existence of the feature mapping Φ : X �→ F

satisfying k(x,x′) = 〈Φ(x), Φ(x′)〉. For finite graphs, the kernel can equivalently be
specified by an n×n matrix K, with Ki,j = k(xi,xj). Since k and K are essentially
the same object, we shall refer to both as “the kernel” and alternate between the
two notations depending on whether we want to emphasize the functional or the
matrix aspect.

The simplest measure of similarity on G is the shortest-path distance d(i, j), butShortest-path
distance it is not clear how to construct a positive definite function from d. Furthermore, d is

extremely sensitive to the insertion/deletion of individual edges. In many potential
applications, the connectivity information is itself derived from data, and as such
is subject to noise. A more robust similarlity measure, perhaps involving averaging
over many paths, is more desirable.
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This leads to the idea of random walks. Recall that a random walk is a processRandom walks
generating paths z0z1z2 . . . zT . Starting from a given vertex z0, at each timestep
t = 1, 2, . . . , T the new vertex zt is chosen at random from among the neighbors of
zt−1, each neighbor having the same probability of being selected.

A compact representation of this process is provided by the adjacency matrix
indexgraph!adjacency matrix

Aij =

{
1 if i ∼ j

0 otherwise

or rather the normalized adjacency matrix

Qij =

{
1/γj if i ∼ j

0 otherwise
(8.1)

where γj is the degree of vertex j, that is, the number of edges incident at j. It is
easy to see that if pt =(p(t)

1 , p
(t)
2 , . . . , p

(t)
n )� describes the probability of finding the

random walker at each vertex at time t, then pt+1 = Qpt. We say that Q is the
transition matrix of the random walk. Applying this relation recursively shows that
raising the normalized adjacency matrix to the power T ,

PT = QT , (8.2)

gives the matrix whose i, j element describes the probability of a random walker
starting from j being found at i at time T .

Generally, random walks have a tendency to meander about close to their origin.
This is because when i and j are close and T is reasonably large, in most graphs
there is a very large number of possible length T paths from i to j. When i and
j are far apart the choice of paths is much more restricted and [PT ]i,j will be
correspondingly small. Unfortunately, PT is not suitable as a kernel, for a number
of reasons:

1. There is no clear prescription for how to choose T . Any choice less than
the diameter of G will lead to pairs of vertices not reachable from one
another, and a corresponding absolute cutoff in the kernel. Kernels with
such limited horizon do not have a sense of the global structure of G. On
the other hand, choosing too large a T might make the peak of [PT ]i,j
around i very flat, resulting in a kernel unable to differentiate betweeen
nearby vertices.

2. If the graph has symmetries, particular choices of T might make certain
vertices unreachable. For example, if G is just a cycle, an even number of
steps could never take us from vertex i to either of its neighbors. Similarly,
if T is odd, we could not get back to the vertex we started from.



174 Diffusion Kernels

3. Finally, and most seriously, PT is generally not positive definite; in fact,
it is not even guaranteed to be symmetric.

To see how to overcome these difficulties we first need to take a brief detour to
continuous spaces. Physical ideas borrowed from the continuous case will help us
construct a modified random walk leading to a natural kernel on G.

One of the most popular kernels on X=R
N is the Gaussian radial basis functionThe Gaussian

kernel and
diffusion

kernel (Gaussian RBF or just Gaussian kernel)

k(x,x′) =
1

(2πσ2)N/2
e−‖x−x′ ‖2/(2σ2) (8.3)

with length scale parameter σ. It may not be immediately obvious from its func-
tional form, but the Gaussian kernel is positive definite on RN.

The Gaussian has many famous properties, but for now we are going to concen-
trate on the fact that fixing x′ =x0 and letting t = σ2/2,

kx0(x, t) =
1

(4πt)N/2
e−‖x−x0 ‖2/(4t)

is the solution of the diffusion equation

∂

∂t
kx0(x, t) =

[
∂2

∂x2
(1)

+
∂2

∂x2
(2)

+ . . . +
∂2

∂x2
(N)

]
kx0(x, t), (8.4)

with Dirac delta initial conditions kx0(x, 0) = δ(x−x0). Here we use parenthesized
indices to make it clear that we are differentiating with respect to the ith coordinate
and not the ith training example. The second-order differential operator in (8.4)
is called the Laplacian and is often denoted simply by Δ, reducing the diffusion
equation to

∂

∂t
kx0(x, t) = Δ kx0(x, t) . (8.5)

The physical meaning of these equations is clear: (8.5) describes how heat, gases,
and so on, introduced at x0, diffuse with time in a homogeneous, isotropic medium.
In learning theory, using the Gaussian kernel amounts to evoking a similar picture
of the diffusion of labels y1, y2, . . . , ym in X. Every learning algorithm must make
some sort of assumption about how similarity between inputs x,x′∈X will lead to
similarity between the corresponding outputs (labels) y, y′. The assumption behind
the Gaussian kernel is essentially that y(x) is to be approximated by diffusing the
training labels to the rest of X. Using a sophisticated algorithm such as a SVM
complicates the picture somewhat, but the underlying idea remains the same.
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Now we ask how to transplant these ideas to the discrete setting, in particular, to
when X is a graph. Going back to the idea of random walks, the key modification
we make to (8.2) is to make time continuous by taking the limit

Kβ = lim
s→∞

(
I +

βL

s

)s

s∈N, (8.6)

which corresponds to a random walk with an infinite number of infinitesimallyDiffusion on
graphs small steps (I is the identity matrix and β is a real parameter). The time evolution

of this “continuous time random walk” is now governed by the matrix L, which we
again define as a close relative of the adjacency matrix,Graph Laplacian

Lij =

⎧⎪⎪⎨⎪⎪⎩
1 if i ∼ j

−γi if i = j

0 otherwise.

(8.7)

The negative elements on the diagonal serve the same function as dividing by
γj in (8.1): their presence guarantees that each column of Kβ , regarded as a
probability distribution over vertices, remains normalized. In spectral graph theory
L is known as the graph Laplacian, already suggesting that we are on the right
track in developing the analogy with the continuous case. The kernel (8.6) we call
the diffusion kernel or the heat kernel on G.

By analogy with the exponentiation of real numbers, the limit in (8.6) is calledProperties of
diffusion kernels the matrix exponential of L:

eβL = lim
s→∞

(
I +

βL

s

)s

s∈N . (8.8)

Note that eβL yields a matrix, but is not equivalent to componentwise exponentia-
tion Jij = eβLij . Matrix exponentiation shares many properties with the ordinary
exponential function, including the power series expansion

eβL = I + βL +
β2

2
L2 +

β3

6
L3 + . . .

and the fact that eβL satisfies the differential equation

∂

∂β
eβL = L eβL. (8.9)

One important difference is that in general the identity

eβ(A+B) = eβA eβB

does not hold in the matrix case.
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An important effect of defining kernels in such an exponential form is that we
get positive definiteness “for free,” as can be seen by writing

eβL = lim
s→∞

(
I +

βL

s

)s

= lim
2s→∞

(
I +

βL

2s

)2s

and appealing to the well-known fact that any even power of a symmetric matrix is
always positive definite. In fact, it is possible to prove that any continuous family
of positive definite matrices Kβ indexed by a real parameter β in such a way that
K0 = I is of the form Kβ = eβH for some symmetric matrix H .

The diffusion kernel will generally increase with increasing shortest-path distanceAnalogies
between vertices, but there is no simple one-to-one relationship between d and Kβ.
Rather, it is helpful to think of K in terms of actual physical processes of diffusion.
The function of the parameter β is to control the extent of the diffusion, or to
specify the length scale, similarly to σ in the Gaussian kernel.

The correspondence between diffusion kernels and the Gaussian kernel is spelled
out even more clearly by considering an infinite regular square grid on R

N . Restrict-
ing ourselves to two dimensions for notational simplicity and labeling the vertices
with their integer coordinates, the Laplacian becomes

L(i1,i2),(j1,j2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if i1 = j1 and i2 = j2 ± 1

1 if i2 = j2 and i1 = j1 ± 1

−4 if i1 = j1 and i2 = j2

0 otherwise .

Applied to a function f : X �→ R [regarded as a vector indexed by (i1, i2) pairs],
this gives

(Lf)i1,i2 = fi1,i2+1 + fi1,i2−1 + fi1+1,i2 + fi1−1,i2 − 4fi1,i2 ,

which is a well-known formula for the finite differences discretization of the con-
tinous Laplace operator Δ, commonly used in the numerical solution of partial
differential equations. Hence, L can be regarded as just the discretized counterpart
of Δ, and, correspondingly, K can be regarded as the discretized Gaussian RBF.
The correspondence can be made exact by proving that in the limit of the grid
spacing going to zero, K will indeed approach the Gaussian kernel (8.3).

On more general graphs the key to understanding diffusion kernels is the differ-
ential equation (8.9). This expresses that starting from the identity matrix K0 = I,
the kernel Kβ is generated by successive infinitesimal applications of L. Note that
the Laplacian encodes strictly local information about the graph. However, through
this continuous process expressed by the differential equation, L is lifted to a smooth
global similarity measure on G, which is exactly what a kernel is supposed to be.
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Figure 8.1 Two examples of elementary graphs for which the diffusion kernel can be
found in closed form: the complete graph and the closed chain over seven vertices.

8.2 Computing the Diffusion Kernel

At this point, the reader might be wondering how he or she might compute the limit
(8.8) on a computer in a finite amount of time. In general, the way to proceed is to
compute the normalized eigenvectors v1, v2, . . . , vn and corresponding eigenvalues
λ1, λ2, . . . , λn of L and exploit orthogonality to write

Ls =

(
n∑

i=1

vi λi v�i

)s

=
n∑

i=1

vi λs
i v�i ,

from which

eβL = I +

(
n∑

i=1

vi βλi v
�
i

)
+

(
n∑

i=1

vi
(βλi)2

2
v�i

)
+ . . . =

n∑
i=1

vi eβλi v�i , (8.10)

reducing matrix exponentiation to real exponentiation. Unfortunately, the complex-
ity of diagonalizing the Laplacian is of order n3, which threatens to be computation-
ally more expensive than the learning itself for most learning algorithms. However,
there are a few special graphs for which the diffusion kernel can be computed in
closed form.

In the complete graph of order n every vertex is linked to every other vertex, soComplete graphs
the Laplacian is Lij = 1− nδij . In this case (8.9) can be solved explicitly giving

k(i, j) = Ki,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + (n−1) e−nβ

n
for i = j

1− e−nβ

n
for i �= j,

showing that with increasing β, the kernel relaxes exponentially to k(i, j) = 1/n.
The asymptotically exponential character of this solution converging to the uniform
kernel is a direct consequence of the form of the diffusion equation. We shall see
this type of behavior recur in other examples.
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When G is a single closed chain, k(i, j) can clearly only depend on the distance
d(i, j) along the chain between i and j. Labeling the vertices consecutively from 0Closed chains
to n−1 and fixing i (without loss of generality, taking i=0), k0(j)=k(0, j) can be
expressed in terms of its discrete Fourier transform

k(0, j) = k0(j) =
1√
n

n−1∑
ν=0

k̂0(j) cos
2πνj

n
.

The heat equation implies

d

dβ
k0(j) = k0((j +1)modn)− 2k0(j) + k0((j−1)modn),

which after some trigonometry translates into

d

dβ
k̂0(ν) = − 2

(
1− cos

2πν

n

)
k̂0(ν),

showing that each Fourier coefficient decays independently. Now applying the
inverse Fourier transform, the solution corresponding to the initial condition k0(i)=
δi,0 at β =0 can be expressed as

k0(j) =
1
n

n−1∑
ν=0

e−ωνβ cos
2πνj

n
,

where ων = 2
(
1− cos 2πν

n

)
. Hence the full kernel is

k(i, j) =
1
n

n−1∑
ν=0

e−ωνβ cos
2πν(i−j)

n
.

There also exist special solutions for tree-shaped graphs, albeit infinite treesp-regular trees
with no root. A p-regular tree is an infinite graph with no cycles in which every
vertex has exactly p neighbors (figure 8.2). Clearly, such a tree looks the same from
every vertex, so k(i, j) can only depend on the shortest-path distance d(i, j). Even
for such simple, highly symmetric graphs, the formula for the diffusion kernel is not
trivial and has only recently been derived (Chung and Yau, 1999):

k(i, j) =
2

π(k−1)

∫ π

0

e
−β 1− 2

√
k−1
k cos x sin x [ (k−1) sin(d+1)x− sin(d−1)x ]

k2 − 4 (k−1) cos2 x
dx

for d = d(i, j) ≥ 1, and

k(i, i) =
2k(k−1)

π

∫ π

0

exp (−β (1− 2
√

k−1
k cosx)) sin2 x

k2 − 4 (k−1) cos2 x
dx

for the diagonal elements. The case of infinite rooted trees can be reduced to p-
regular trees using a trick from physics called the “method of images,” as described
in Kondor and Lafferty (2002).
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Figure 8.2 Left, A few edges of the three-regular tree. The tree extends to infinity in all
directions. Right, The four-dimensional hypercube can be regarded as the complete graph
of order two (two vertices joined by a single edge) “cubed.”

Another way to compute diffusion kernels is to reduce complex graphs to ele-
mentary ones. Specifically, let G1 and G2 be two undirected, unweighted graphsProduct graphs
with n1 and n2 vertices, respectively. The direct product graph G = G1 ×G2 will
then have n1 · n2 vertices labeled by pairs of integers (i1, i2), with 1 ≤ i1 ≤ n1 and
1 ≤ i2 ≤ n2. Two vertices (i1, i2) and (j1, j2) will then be neighbors either if i1 =j1
and i2 ∼ j2 or if i2 = j2 and i1 ∼ j1. The infinite square grid that we encountered
at the end of section 8.1 is an example of such a structure. More generally, also
encompasssing weighted graphs, the adjacency matrix of the product graph will be
related to the adjacency matrices of the factor graphs by

A = A1 ⊗ I2 + I1 ⊗A2,

where I1 and I2 are the n1×n1 and n2×n2 unit matrices, respectively. The Laplacians
are similarly related:

L = L1 ⊗ I2 + I1 ⊗ L2

and the corresponding diffusion kernel will be the direct product of the diffusion
kernels on the factor graphs:

Kβ = K
(1)
β ⊗K

(2)
β ,

as can easily be seen by plugging this into the diffusion equation

∂

∂β
Kβ = LKβ

and invoking the product rule for differentiation.
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The product graph construction makes it possible to compute diffusion kernels
on the D-dimensional hypercube, regarded as the D-fold power of a complete graph
of order 2:Hypercubes

k(x,x′) ∝
(

1− e−2β

1 + e−2β

)d(x,x′)

= (tanhβ)d(x,x′)
,

where d(x,x′) is the Hamming distance betweeen vertices x and x′. More generally,
we may consider products of complete graphs of orders g1, g2, . . . gD, and compute
the kernel

k(x,x′) ∝
D∏

i=1

[
1− e−βgi

1 + (gi−1)e−βgi

]di(x,x′)

,

where di(x,x′) = 0 if x and x′ match in the ith index and 1 otherwise. This
construction can be used to apply diffusion kernels to learning problems involving
categorical data (Kondor and Lafferty, 2002), assuming D distinct attributes with
g1, g2, . . . gD possible values.

8.3 Regularization Theory

The correspondence between kernel-based algorithms and regularization theory is
now widely recognized in the machine learning community (Smola et al., 1998;
Girosi, 1998; Girosi et al., 1995; Tikhonov and Arsenin, 1977). SVMs, Gaussian
processes, and so on, can all be cast in the form of searching some linear space of
functions H to find f : X �→ Y minimizing the regularized risk

Rreg[f ] =
m∑

i=1

L(f(xi), yi) + Ω[f ], (8.11)

where Ω[f ] is expressed in terms of a regularization operator P : H �→ H as

Ω[f ] =
∫

X

[(Pf)(x)]2 dx .

Without going into detail, we note that (8.11) expresses a tradeoff between fitting
the training data and generalizing well to future examples. Given a loss function L,
the first term tries to minimize the error of f on the training set, while the second
term stands for the competing objective of restricting f to “desirable” functions
according to some criterion embodied in P . The choice of algorithm corresponds to
choosing L and the choice of kernel to choosing the regularization operator.

When X is a finite graph, f is just a vector, P is a matrix, and the regularization
term becomes

Ω[f ] = ‖P f ‖2 = f�(P�P )f. (8.12)
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Since P�P is symmetric, its normalized eigenvectors v1, v2, . . . , vn form an or-
thonormal basis, and expressing f as f =

∑n
i=1 civi, (8.12) becomes

Ω[f ] =
n∑

i=1

λic
2
i ,

where λ1, λ2, . . . , λn are the eigenvalues corresponding to v1, v2, . . . , vn. The effect
of the regularization term in (8.11) will be to force most of the energy in f to the
low eigenvalue modes of P�P . From the learning theory point of view, our goal is
to make f as smooth as possible, in the sense of making few sudden jumps between
neighboring vertices. Jagged functions are likely to overfit the training data and
not generalize well to future examples. Hence, we are interested in regularization
operators whose eigenfunctions form a progression from the smoothest to the
roughest functions on our graph.

To see how diffusion kernels fare from the regularization theory point of view, itConnection
between K and P remains to find the connection between the kernel and the regularization operator

already alluded to. For concreteness, consider support vector regression, which aims
to fit to the data a function f of the form f(x) = 〈w, Φ(x)〉 for some feature space
vector w by minimizing

1
2
‖w ‖+ C

m∑
i=1

| f(xi)− yi |ε ,

where | f(x)− y |ε is the ε-insensitive loss function max { 0 , | f(x)− y | − ε } (Vap-
nik, 1995). As in other kernel methods, the solution of this minimization problem
will be of the form

f(x) =
m∑

i=1

αik(xi,x), (8.13)

reducing it to finding the coefficients α1, α2, . . . , αm minimizing
m∑

i=1

m∑
j=1

αiαj k(xi,xj) +
m∑

i=1

m∑
j=1

|αjk(xj ,xi)− yj |ε . (8.14)

When X is discrete, if we collect the coefficients in a vector, the first term becomes
just α�Kα. Similarly, the regularization term (8.12) can be written as Ω[f ] =
α�K(P�P )Kα. Then comparing (8.14) with (8.11) we see that the two can be
made equivalent by setting

P�P = K−1 and L(f(x), y) = 2C | f(x)− y |ε .

Since K is positive definite, we may just take P = K−1/2. The relationship between
kernel and regularization is rather direct.
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Specifically, referring back to (8.10), L, K, and P�P share the same orthonormal
system of eigenvectors v1, v2, . . . , vn and their eigenvalues are related by

λ
(K)
i = exp(β λ

(L)
i ) λ

(P�P )
i = exp(−β λ

(L)
i ). (8.15)

Furthermore, from the definition of the graph Laplacian (8.7),

−λ
(L)
i = − v�i Lvi =

∑
x∼x′

(vi(x)− vi(x′)2 ,

which can be interpreted as how many edges vi “violates.” Ordering v1, v2, . . . , vn

so that −λ1 ≤ −λ2 ≤ . . . ≤ −λn, the first eigenvector will always be the constant
function on G with eigenvalue 0. The second eigenvector will tend to be positive
on roughly one half of G and negative on the other half with a smooth transition
in between. The third, fourth, and so on, eigenvectors correspond to successive
subdivisions, all the way to the last eigenvectors, which oscillate rapidly, changing
sign between most pairs of neigboring vertices. Together with (8.15) this shows
that the regularization operator corresponding to the diffusion kernel does indeed
establish a basis of functions on G sorted by smoothness.

The natural analogy is the Fourier basis of sine and cosine functions on R
N . In

general, K acts as a smoothing operator, since it dampens the “high frequency”
modes of the Laplacian, while P is a coarsening operator, because it exaggerates
them.

This type of analysis involving operators and their eigensystems (albeit in a
somewhat more rigorous form) is at the center of spectral graph theory (Chung,
1997), some of the cornerstones of which are the Laplacian and the heat kernel. In
fact, we could have motivated this whole chapter purely by regularization ideas, and
derived the diffusion kernel that way, instead of talking about the actual physical
process of diffusion, or appealing to the analogy with the Gaussian kernel.

8.4 Applications

In this section we present an application of the diffusion kernel idea to the analysis of
gene expression data and metabolic pathways. We first present in subsection 8.4.1
a graph of gene, called the metabolic gene network, which encodes our current
knowledge of metabolic pathways. We then show how the regularization operator
associated with the diffusion kernel on this graph can be useful for extracting
pathway activity from gene expression data, and illustrate this approach by a short
analysis of gene expression during two cell cycles. More details on this approach
can be found in Vert and Kanehisa (2003b), and more data analysis is presented in
Vert and Kanehisa (2003a).
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Figure 8.3 Top, The first three reactions of the glycolysis pathway, together with the
catalyzing enzymes in the yeast S. cerevisiae. Bottom, The metabolic gene network derived
from these reactions by linking two genes whenever they can catalyze two successive
reactions.

8.4.1 The Metabolic Gene Network

At the molecular level life can be described as an continual flow of chemical reactions
that degrade, synthesize, or transform various molecules for various purposes. In
particular, metabolism encompasses the processes by which energy is provided for
vital processes and activities, and by which new material is assimilated. Metabolic
processes are usually organized into series of chemical reactions, called metabolic
pathways , that take place sequentially in the cell. As an example, glycolysis isMetabolic

pathways the metabolic pathway in charge of degrading glucose into pyruvate with the
concomitant production of adenosine triphosphate (ATP) molecules. Figure 8.3
(top) shows the first three reactions of glycolysis: addition of a phosphate group to
the glucose molecule to obtain glucose-6P, followed by an izomerization of glucose-
6P into fructose-6P, and by the addition of a second phosphate group to obtain
fructose-1,6P2.

Each reaction in a pathway usually requires the presence of a particular molecule,
called an enzyme, to occur. Enzymes catalyze reactions, that is, they facilitate the
reaction usually by placing the various substrates in a precise spatial configuration.
Most enzymes in biochemistry are proteins synthesized by the cell itself, which
are encoded in the genome of the organism. In Figure 8.3 (top) the enzymes
are characterized by the name of the genes that encode them. For example, the
izomerization from glucose-6P to fructose-6P is catalyzed by the protein encoded
by the gene PGT1 in yeast. When several genes are associated with a single reaction,
it is either because the proteins they encode form a complex, or because several
different proteins can catalyze the same reaction.

The metabolic gene network is derived from the set of metabolic pathways asMetabolic gene
network follows. It is an undirected graph whose vertices are the genes of a given organism,
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and with an edge between two genes whenever the proteins they encode can
participate in the catalysis of two successive reactions, that is, two reactions such
that the main product of the first one is the main substrate of the second one. As
an example, the local metabolic graph network for the yeast derived from the first
three reactions of glycolysis is shown in Figure 8.3 (bottom).

When all known metabolic pathways are considered, the resulting metabolic gene
network is complex for at least two reasons. First, the same chemical compound
(such as glucose) can be present in different metabolic pathways, and therefore
edges can link genes which catalyze reactions in different pathways. Second, a given
gene can usually catalyze more than one reaction.

In the following we use the metabolic gene network for the yeast Sacchromyces
cerevisiae derived from the metabolic pathways available in the LIGAND database
of chemical compounds of reactions in biological pathways (Goto et al., 2002). The
resulting graph contains 774 nodes linked through 16,650 edges.

8.4.2 Gene Expression

Reactions in a metabolic pathway occur when both the necessary subtrates and
the necessary enzymes are present. As a result, a cell can control its metabolism
by controlling the quantity of each enzyme. Because enzymes are proteins, the
first level of control of their concentrations is the control of gene expression. For
example, in the bacterium Escherichia coli, the presence of tryptophan inhibits the
expression of the genes that encode the enzymes which catalyze the reactions of
the tryptophan synthesis pathway.

DNA microarray technology enables the monitoring of gene expression for allDNA microarrays
genes of an organism simultaneously. It is therefore tempting to try to make sense
of gene expression data in terms of pathways, at least for the genes that encode
enzymes. More precisely, by following the expression of enzyme genes through
various experiments, one can hope to detect activated or inhibited pathways, suggest
new pathways, or detect mistakes in the current pathway databases. As a first step
toward these ambitious goals we now present a method for automatically detecting
activity levels of known pathways by confronting gene expression data with the
metabolic gene network.

8.4.3 Mathematical Formulation

Let us represent the set of genes by the finite set X. The metabolic gene network is
a simple graph Γ = (X, E) with the genes as vertices. The set of expression profiles
measured by DNA microarray for a gene x ∈ X is a vector e(x) ∈ R

p, where p is
the number of microarray measurements. By subtracting the mean profile from all
genes, we suppose below that the set of profiles is centered, that is,

∑
x∈X e(x) = 0.

We formulate our problem as the problem of automatically finding profiles which
exhibit some coherence with respect to the graph topology. Formally speaking, a
profile is a vector v ∈ R

p. We don’t require v to be any actual gene expression



8.4 Applications 185

profile, but rather use it to represent some more abstract or hidden information,
such as the quantity of some substance in the cell, or the activity of a pathway.
Intuitively, if v represents the evolution of such a biological quantity, then expression
profiles of genes participating in or affected by this event should exhibit some form
of correlation with v.

For a zero-mean candidate profile v ∈ R
p (i.e.,

∑p
i=1 vi = 0), let us therefore

call f1(x) := vT e(x) the correlation between the profile v and the gene expression
profile e(x). Typically, if v represents the activity level of a pathway where gene x
plays a regulatory role, then f1(x) is likely to be either strongly positive or strongly
negative.

These remarks lead to a key observation. If v represents the activity of a pathway,
then f1(x) is likely to be particularly positive or negative for several of the enzymes
x that catalyze the corresponding reactions. Observed on the metabolic gene graph,
this suggests that f1 should have less variations on average between adjacent nodes
if v corresponds to a true biological process than otherwise. Indeed, we can at leastSmoothness on

the network expect some local regularities in the regions of the graph that correspond to the
pathways related to the process.

This is where the diffusion kernel becomes useful. Recall from section 8.3 that
the diffusion kernel K1 on the metabolic gene network defines a regularization
operator Ω1[f ] on functions f : X→ R that is small when f has little high-frequency
energy. This suggests looking for candidate profiles v such that Ω1[f1] be as small
as possible. Writing f1 in a dual form f1 = K1α, this means requiring αT K1α/αT α

to be as small as possible.
On the other hand, minimizing Ω1[f1] over v is likely to be an ill-posed or at least

an ill-conditioned problem. First observe that any component of v orthogonal to the
linear span of {e(x) : x ∈ X} does not modify f1. This suggests restricting v to this
subspace, that is, writing v as v =

∑
x∈X β(x)e(x), and therefore f1 = K2β where

K2 is the Gram matrix of the linear kernel K2(x,y) = e(x)T e(y) and β : X→ R is a
dual form of f1. Second, when the linear span of {e(x) : x ∈ X} is large, eventually
the whole space of centered profiles, then a perfectly smooth function might be
found whether or not a ”true” biological correlation exists between the profiles
and the graph. This suggests imposing some form of regularity on v, such as
being close to the directions of natural variations between profiles. This is achievedNatural

variations by requiring Ω2[f1] = β′K2β/β′β to be as small as possible. In order to end up
with a computationally feasible formulation, Vert and Kanehisa (2003b) proposed
decoupling the problem as follows: find two different functions f1 = K1α and
f2 = K2β such that Ω1[f1] and Ω2[f2] are both small, while f1 and f2 are as
similar as possible. A possible measure of similarity between f1 and f2 being their
correlations f�

1 , f2, the different goals can be fulfilled simultaneously by maximizing
the following functional:

γ(α, β) :=
αT K1K2β

(αT (K2
1 + δK1) α)

1
2 (βT (K2

2 + δK2) β)
1
2
, (8.16)
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where δ is a parameter that controls the tradeoff between regularities of f1 and f2

on the one hand, and similarity of f1 and f2 on the other hand. It turns out that
(8.16) can be seen as a regularized form of canonical component analysis (Bach and
Jordan, 2002), equivalent to the following generalized eigenvalue problem:Kernel CCA (

0 K1K2

K2K1 0

)(
α

β

)
= ρ

(
K2

1 + δK1 0

0 K2
2 + δK2

)(
α

β

)
(8.17)

As pointed out in Bach and Jordan (2002) and Vert and Kanehisa (2003b) this
problem can be solved efficiently and results in a series of pairs of features
{(αi, βi) , i = 1, . . . , n} with decreasing values of γ(αi, βi). The corresponding pro-
files can be recovered by vi =

∑
x∈X βi(x)e(x).

8.4.4 Analysis of α Factor Release

In order to illustrate this method on a real-world example we compared the
metabolic gene network with a collection of 18 expression measurements for 6198
yeast genes, collected every 7 minutes after cells were synchronized in G1 by addition
of α factor (Spellman et al., 1998). The original goal of Spellman et al. (1998) was
to detect genes whose expression exhibits periodicity related to the cell cycle.

The analysis that follows is restricted to the 756 genes of the metabolic gene
netwok with an expression profile in this set. The profiles contain 18 points, hence
17 pairs or features with dual coordinates (αi, βi)i=1,...,17 were extracted. We solved
(8.17) using the free and publicly available program Octave.1 Following experiments
detailed in Vert and Kanehisa (2003b) the regularization parameter δ of (8.16) was
set to 0.01.

Figure 8.4 shows the first two profiles extracted, and table 8.1 contains a list
representative of the genes with highest or lowest correlation with each profile, as
well as the pathways they participate in in the KEGG database.

The first extracted profile is essentially a strong signal immediately follow-
ing the beginning of the experiment. Several pathways positively correlated with
this pattern are involved in energy metabolism (oxidative phosphorylation, tri-
carboxylic acid cycle, glycerolipid metabolism), while pathways negatively corre-
lated are mainly involved in protein synthesis (aminoacyl-tRNA biosynthesis, RNA
polymerase, pyrimidine metabolism). Hence this profile clearly detects the suddenDetection of

experimental bias change of environment, and the priority fueling the start of the cell cycle with fresh
energetic molecules rather than synthesizing proteins. This result highlights the
experimental bias in the data: while the goal of the experiment was to study the
evolution of gene expression during the cell cycle, the strongest signal we detected
is related to the need to synchronize the cells by addition of α factor.

The second extracted profile exhibits a strong sinusoidal shape corresponding to
the progression in the cell cycle experiment, but the first one is more visible than

1. Available at http://www.octave.org.
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Table 8.1 Pathways and genes with highest and lowest scores on the first 2 features
extracted.

Feature Correlation Main pathways and genes

1 + Glycolysis/gluconeogenesis (PGK1, GPM2, ALD4,6),
TCA cycle (CIT2, MDH1,2, SDH1, LSC1), pentose
phosphate pathway (RBK1, SOL4, ZWF1, YGR043C),
glycerolipid metabolism (GPD1,2,3, ALD4,6), glyoxylate
and dicarboxylate metabolism (MDH1,2, CIT2, ICL2),
sulfur metabolism (MET2,14,16,17).

1 - Pyrimidine metabolism (RPA12,34,49,190, RPB2,5,
RPC53, DUT1, TRR1, POL5, URK1, MIP1, PUS1),
purine metabolism (RPA12,34,49,190, RPB2,5, RPC53,
CDC19, APT2, POL5, MIP1), aminoacyl-tRNA biosyn-
thesis (ILS1, FRS2, MES1, YHR020W, GLN4, ALA1,
CDC60), starch and sucrose metabolism (MPS1, HPR5,
SWE1, HSL1, EXG1).

2 + Pyrimidine metabolism (DEG1, PUS1,3,4, URA1,2,
CPA1,2,FCY1), folate biosynthesis (ENA1,5, BRR2,
HPR5, FOL1), starch and sucrose metabolism (ENA1,5,
BRR2, HPR5, PGU1), phenylalanine, tyrosine, and tryp-
tophan biosynthesis (TRP2,3,4, ARO2,7), sterol biosyn-
thesis (ERG7,12, HGM1,2).

2 - Starch and sucrose metabolism (CDC7, ENA1, GIN4,
HXK2, HPR5, SWE1, UGP1, HSL1, FKS1, MEK1),
purine and pyrimidine metabolism (POL12, ADK2,
DUT1, RNR2, HYS2, YNK1, CDC21), fructose and
mannose metabolism (MNN1, PMI40, SEC53, HXK2),
cell cycle (CDC7, GIN4, SWE1, HSL1).

the second one because the synchronization in the yeast colony decreased while the
experiment progressed. Several genes directly involved in DNA synthesis . Two cellDetection of the

cell cycle cycles took place during the (YNK1, RNR2, POL12) can be recognized in the list of
genes anticorrelated with the second feature (corresponding to maximum expression
in the S phase). Some pathways such as the starch metabolism have genes which
exhibit either strong correlation or strong anticorrelation with the second profile,
corresponding to the various regimens in the normal cell cycle (e.g., periods of
energy storage alternate with periods of energy consumption).

8.5 Extensions

In weighted graphs each edge has an associated weight wij = wji > 0 or wij = 0 ifWeighted graphs
i and j are not connected. Weighted graphs can naturally be incorporated in the
diffusion kernel framework by defining the Laplacian as

Lij =

{
wij if i �=j

−∑n
l=1 wil if i=j.
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The rest of the development follows exactly as in the unweighted case. Unfor-
tunately, no similarly straightforward solution suggests itself for directed graphs
(wij �=wji), since the symmetry of L is essential for the positive definiteness of k.

A different line of generalizing diffusion kernels, expounded in Smola and Kondor
(2003), focuses on replacing eβL with a general expansion in terms of the eigenvalues
and eigenvectors of L,Other kernels

k =
n∑

i=1

vi
1

r(λi)
v�i

for some function r : R �→ R+. Choosing r(λ) = exp(σ2λ/2) gives the diffusion
kernel, but other choices lead to interesting new kernels such as

r(λ) = 1 + σ2λ (regularized Laplacian kernel)

r(λ) = (aI − λ)−p (p-step random walk kernel)

r(λ) = cos(πλ/4) (inverse cosine kernel) ,

although these generally cannot boast a similarly rich collection of interpretations.
The most farreaching avenue of generalizing the ideas in this chapter involvesMetric spaces

applying the same framework to other mathematical objects, not just graphs. The
ideas of diffusion and corresponding regularization are natural and well-studied
concepts on a whole spectrum of different metric spaces. Indeed, the Laplacian
and the spectral theory induced by it are two of the great unifying concepts of
mathematics. For want of space here we can only sketch the wealth of possibilities
this leads to.

For X=R
N we have already encountered the Laplacian

Δ =
∂2

∂x2
(1)

+
∂2

∂x2
(2)

+ . . . +
∂2

∂x2
(N)

and we have seen that the explicit solution of the diffusion equation is the Gaussian
kernel

k(x,x′) =
1

(4πβ)N/2
e−‖x−x′ ‖/(4β).

It should not come as a surprise that the eigenfunctions of K in this case are the
harmonic eigenfunctions

sin(2πk ·x) and cos(2πk ·x), k∈R
N

with corresponding eigenvalues e−‖ k ‖2/(4β).
The generalization of the Laplacian to curved spaces (Riemannian manifolds) isRiemannian

manifolds
Δ =

1√
det g

∑
ij

∂i

(√
det g gij∂j

)
,
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where g is the metric tensor and ∂i denotes differentiation with respect to the ith
coordinate. Plugging this operator into the diffusion equation (8.5) we can solve for
k. Locally the diffusion kernel will be very similar to the Gaussian kernel, but not so
further away, due to the curvature and possibly nontrivial topology. Unfortunately,
there are very few manifolds on which k can be computed in closed form and one
has to resort to using asymptotic expansions.

In various domains, most notably image analysis, data often fall on curved
manifolds embedded in a higher-dimensional space. Constraining the kernel, and
hence the whole learning problem, to this manifold can improve the performance
of learning algorithms. Unfortunately, in most cases the manifold is not known and
may have very complicated geometry. Belkin and Niyogi (2002) and Belkin and
Niyogi (2003) have proposed approximating the manifold by a mesh obtained by
connecting data points, for example, according to a k-nearest neighbor rule. The
diffusion kernel on the manifold can then be approximated by the diffusion kernel
on this mesh, treated as a graph. What is especially attractive in this procedure is
that it provides a natural use for unlabeled data. Unlabeled data points will not,
of course, feature in a support vector expansion such as (8.13), but they can still
play an important role in the learning process as vertices of the mesh, helping to
form a good kernel. This can make learning possible in scenarios where only a very
small fraction of data points are labeled.

Another context in which manifolds appear in learning theory is informationThe statistical
manifold geometry (Amari and Nagaoka, 2000). Consider a family of probability distributions

{pθ(x)} parameterized by θ∈Rd. The natural metric on this space of distributions,
for a variety of reasons that we do not have space to go into here, is the Fisher
metric

gij = Eθ [(∂i�θ)(∂j�θ)] =
∫

(∂i log p(x|θ)) (∂j log p(x|θ)) p(x|θ) dx,

where �θ(x) = log p(x|θ). The Riemannian manifold this metric gives rise to is called
the statistical manifold. The geometry of such manifolds can get rather involved and
explicit calculations on them are almost never possible. However, a few celebrated
special cases do exist. Lafferty and Lebanon (2003) have shown how the diffusion
kernel can be computed in closed form on the statistical manifold of the spherical
normal family and how it can be approximated for the multinomial family, in which
case the geometry happens to be identical to that of a quadrant of a hypersphere.
Assuming one of these two models generate the data, the kernel between two data
points can be defined as the information diffusion kernel between the model fit
to one and the other. Combined with SVMs, the authors successfully employ this
technique to text classification with impressive results.



8.5 Extensions 191

Acknowledgments

At about the same time that diffusion kernels were introduced by R.K. and
John Lafferty (Kondor and Lafferty, 2002), Mikhail Belkin and Partha Niyogi
were independently applying similar ideas from spectral graph theory to learning
problems in a slightly different context (Belkin and Niyogi, 2002). The problem
of partially labeled data is treated in Belkin and Niyogi (2003). Alex Smola
has contributed by extending Laplacian-based kernels on graphs beyond diffusion
kernels (Smola and Kondor, 2003) and working out the corresponding regularization
theory. The application of diffusion kernels to bioinformatics was pioneered by J.-
P.V. and Minoru Kanehisa (Vert and Kanehisa, 2003b) and information diffusion
kernels were introduced by Lafferty and Lebanon (2003). In mathematics, the ideas
of spectral geometry go back a little bit further, at least to Marquis Pierre Simon
de Laplace (1749-1827).

The authors thank all of the above for many exchanges of ideas and for their role
in bringing the concepts sketched in this chapter into the mainstream of machine
learning. This work was partially supported by NSF grant CCR-0312690.



 

9 A Kernel for Protein Secondary Structure

Prediction

Yann Guermeur

Alain Lifchitz

Régis Vert

Multiclass support vector machines (SVMs) have already proved efficient in protein
secondary structure prediction as ensemble methods, to combine the outputs of sets
of classifiers based on different principles. In this chapter, their implementation as
basic prediction methods, processing the primary structure or the profile of multiple
alignments, is investigated. A kernel devoted to the task is introduced, which
incorporates high-level pieces of knowledge. Initial experimental results illustrate
the potential of this approach.

9.1 Introduction

Knowing the structure of a protein is prerequisite to gaining a thorough understand-
ing of its function. The large-scale sequencing projects which have multiplied in re-
cent years have produced an exploding number of protein sequences. Unfortunately,
the number of known protein structures has not increased in the same proportion.
Indeed, the experimental methods available to determine the three-dimensional
structure, x-ray crystallography and nuclear magnetic resonance (NMR), are highly
labor-intensive and do not ensure the production of the desired result (e.g., some
proteins simply do not crystallize). As a consequence, predicting the tertiary struc-
ture of proteins ab initio, that is, starting from their sequences, has become one ofProtein structure

prediction the most challenging problems in structural biology. In the sixties, Anfinsen pro-
posed his “thermodynamic hypothesis” (Anfinsen et al., 1963), which implies that
there is sufficient information contained in the protein sequence to guarantee correct
folding from any of a large number of unfolded states. In other words, the problem
of interest can theoretically be solved. However, due to its practical difficulty, high-
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Figure 9.1 Schematic representation of the structural elements of protein G.

lighted, for instance, in Karplus and Petsko (1990), it is seldom tackled directly,
but rather through a divide-and-conquer approach. In that context, a useful inter-
mediate step consists in predicting first the secondary structure, which is a way to
simplify the prediction problem by projecting the very complicated 3D structure
onto one dimension, that is, onto a string of secondary structural assignments for
each residue (amino acid). Protein secondary structure refers to regular, repeatedSecondary

structure patterns of folding of the protein backbone. The two most common folding patterns
are the α helix and the β strand. Figure 9.1 is a schematic representation of the
secondary structure of protein G (Derrick and Wigley, 1994), which was obtained
with the RASMOL software (Sayle and Milner-White, 1995). This structure has
two main parts: an α helix and a β sheet made up of four strands.

From the point of view of pattern recognition, protein secondary structure pre-
diction can be seen as a 3-class discrimination task, which consists in assigning
to each residue of a sequence its conformational state, either α helix, β strand or
aperiodic (coil). People started working on this problem as early as the late sixties.
Since then, almost all the main families of machine learning methods have been as-
sessed on it. Currently, the best prediction methods are connectionist architectures
(see Rost and O’Donoghue, 1997; Baldi and Brunak, 2001; Rost, 2001 for surveys).

Although kernel methods have already found many applications in bioinformat-
ics, as can be seen in other chapters of this book, to the best of our knowledge,
they have only been applied to protein secondary structure prediction twice. Hua
and Sun (2001a) implemented different combinations of biclass SVMs to perform
the prediction from alignment profiles generated by BLAST. Guermeur (2002)
and Guermeur et al. (2004) used different multiclass SVMs (M-SVMs) to combine
several prediction methods, as well as the modules (BRNNs) of the current best
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prediction method, SSpro (Baldi et al., 1999; Pollastri et al., 2002). In both cases,
the experimental results appeared promising, which was all the more satisfactory
that only standard kernels were used. In this chapter, we build on these initial
works, introducing an M-SVM devoted to the prediction of the secondary structure
from the primary structure, or profiles of multiple alignments. Its originality rests
in the nature of its kernel, designed to exploit expert knowledge on the task. The
parameterization of this kernel makes use of an original extension of the principle
of kernel alignment (Cristianini et al., 2001, 2002b) to the multiclass case. Once
more, experimental results appear promising, as they highlight the relevance of the
specification performed. In short, our M-SVM, adequately dedicated, proves supe-
rior to a multilayer perceptron in all the contexts where the latter is incorporated
in the prediction methods.

The organization of the chapter is as follows. Section 9.2 provides a short
introduction to M-SVMs, as well as a description of the standard local approach
implemented to predict the secondary structure, an approach based on the use
of a sliding window. The main part of our contribution, the specification and
parameterization of a kernel exploiting this input, is discussed in section 9.3. This
section details our extension of the kernel alignment. Last, the resulting machine is
assessed in section 9.4, where it is compared with a multilayer perceptron.

9.2 Multiclass SVMs for Protein Secondary Structure Prediction

This section introduces the M-SVMs, and the general principle of their implemen-
tation for protein secondary structure prediction.

9.2.1 M-SVMs

In the early days of the development of the SVM method, multiclass discrimination
was implemented with biclass machines, through decomposition schemes. The first
of them was the so-called one-against-the-rest or one-per-class approach (Schölkopf
et al., 1995; Vapnik, 1995). Later on came the pairwise-coupling decomposition
scheme (Mayoraz and Alpaydin, 1998; Weston and Watkins, 1998). The first mul-
ticlass SVM, more precisely the first SVM algorithm devoted to a multivariateMulticlass SVM
affine architecture, was the k-class SVM proposed independently by Vapnik and
Blanz (Vapnik, 1998), Weston and Watkins (1998), and Bredensteiner and Bennett
(1999), among others. Alternative possibilities were then investigated in Crammer
and Singer (2001), Lee et al. (2001), Hsu and Lin (2002), and Guermeur (2002). In
(Guermeur et al., 2003), all these machines were endowed with a unifying theoret-
ical framework.

All the M-SVMs share the same architecture, which corresponds, in the feature
space, to a multivariate affine model. This is expressed formally below. Let X be the
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space of description (input space), Q ≥ 3 the number of categories, k the Mercer
kernel used, and Φ a map into the feature space F induced by k. Let F be the set
of vector-valued functions f = [fj ], (1 ≤ j ≤ Q), from X into RQ, computed by the
M-SVMs. We have then precisely :

∀x ∈ X, ∀j ∈ {1, . . . , Q} , fj(x) = 〈wj , Φ(x)〉 + bj

Thus, each category is associated with one hyperplane, and the discriminant
function computed is obtained by application of the standard max rule: a pattern
x is assigned to the category Cj∗ satisfying j∗ = argmax j {fj(x)}. In its primal
formulation, training thus amounts to finding the optimal values of the couples
(wj , bj), (1 ≤ j ≤ Q), for a given choice of the kernel k and the soft margin
constant C. In the biclass case, this choice is performed so as to maximize the (soft)
margin. Strangely enough, in the first papers dealing with M-SVMs, the algorithms
proposed were not related, at least explicitly, to the maximization of some notion of
margin. This could be due to the fact that the standard pathways used to express
the fat-shattering dimension of an SVM in terms of the constraints on the norm of
w, such as the use of a Rademacher’s sequence (see, e.g., Bartlett and Shawe-Taylor,
1999; Cristianini and Shawe-Taylor, 2000; Gurvits, 2001), do not extend nicely to
the multiclass case. Indeed, our efforts to endow the M-SVMs with the standard
results derived in the framework of the theory of large margin classifiers (Guermeur
et al., 2003) call for additional work. To the best of our knowledge, the only other
study on the generalization capabilities of M-SVMs involving an extended notion
of margin is reported in Crammer and Singer (2001). As usual, the corresponding
quadratic programming (QP) problem is solved in its Wolfe dual form (Fletcher,
1989). Several algorithms can be applied to perform the optimization. Our software
of the k-class SVM, used in the experiments described below, and available through
the website of kernel machines,1 implements a variant of the Frank-Wolfe algorithm
(Frank and Wolfe, 1956) which includes a decomposition method (see also Elisseeff,
2000).

9.2.2 Selection of the Predictors

The standard way to perform protein secondary structure prediction with statistical
discriminant methods consists in applying a local approach. Precisely, the predictors
used to predict the conformational state of a given residue are the amino acids
contained in a window of fixed size centered on this residue. To code the contentWindow encoding
of each position in the window, a vector of 22 components is used. Each of the
20 first components corresponds to a specific amino acid (there are 20 of them),
whereas the 2 remaining ones are used to take into account unknown amino acids,
usually designed by an “X” in the databases, as well as empty positions in the
window. Empty positions occur when the window extends over the N-terminus

1. Available from http://www.kernel-machines.org.
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or the C-terminus of the chain of interest. In short, the coding used to represent
the window content is the standard orthonormal one, which induces no correlation
between the symbols of the alphabet. What appears a priori as an advantage is an
inconvenience here, as is pointed out below. Given a window size |W | = 2n + 1
(typically, n will range from 5 to 10), the number of predictors is thus equal to
(2n + 1).22, only 2n + 1 of them being equal to 1, the rest being equal to 0. We
thus end up with large but very sparse vectors. Things are different when profiles
of multiple alignments are used in place of the primary structure. Special attention
must be paid to the inclusion of evolutionary information in this form, since it is
known to improve significantly the performance of the prediction methods (see, e.g.,
Rost and Sander, 1993; Geourjon and Deléage, 1995). For the sake of simplicity,
details on this alternative possibility are postponed to section 9.3.3.

9.3 Specification of the Kernel

Protein secondary structure prediction is a field that has emerged more than 30
years ago, and since then has been the subject of intensive researches. Nowadays,
improvements over the state-of-the-art cannot be expected unless one uses a dis-
criminant method specifically designed for the task. In the case of a kernel method,
this means, of course, designing a new kernel. The one that is introduced in this
section rests on very simple biological considerations.

9.3.1 Shortcomings of the Standard Kernels

Consider the vector x used to predict the conformational state of a given
residue. Then, according to the choice of predictors described above, x =
[x−n, . . . , xi, . . . , xn]T ∈ {0, 1}(2n+1).22, where xi is the canonical coding of the
amino acid which occupies the ith position in the window. Consequently, the func-
tion computed by a Gaussian kernel applied on two window contents x and x′ can
be rewritten asStandard kernel

k(x,x′) = exp
(
−‖x− x′‖2

2σ2

)
= exp

(
− (2n + 1)−∑n

i=−n δxi,x′
i

σ2

)
, (9.1)

where δ is the Kronecker symbol. The right-hand side of (9.1) highlights the fact that
the kernel only depends on the Hamming distance between the two strings. ThisHamming

distance is a poor summary of the information contained in the data. Indeed, two segments
corresponding to 3D-superposable parts of homolog proteins, and thus sharing the
same secondary structure, can differ significantly due to two evolution phenomena,
insertion/deletion and substitution. The Hamming distance is very sensitive to the
first one, whereas it does not take into account the nature of the substitutions,
just their number. As a consequence, one cannot expect such a combination of
kernel and coding (things would be similar with the other standard kernels) to
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give satisfactory results for the problem of interest. This simple observation is at
the origin of the work on kernel design described in the following subsections, work
which makes central use of an original extension to the multiclass case of the notion
of kernel alignment.

9.3.2 Multiclass kernel alignment

Framework Kernel alignment was introduced by Cristianini et al. (2001), as a
means to assess the degree of fitness of a kernel for a given learning task, and
adapt in consequence the Gram matrix to increase this fitness. It is thus basically a
method conceived to perform transduction, since the resulting kernel is not available
in analytical form. However, we use it here for another purpose, namely to estimate
some kernel parameters. The reason for this choice is the following. Consider a
family of kernels where each element is characterized by the value of a formal
parameter θ belonging to a set Θ. This family, (kθ)θ∈Θ, is supposed to be built
upon some knowledge of the task of interest. In order to select a kernel function
kθ∗ that will give good performance, a natural and practical approach consists in
endowing the whole family with a measure of adequacy, and then optimizing this
measure with respect to the parameter. A typical example of measure of adequacy,
often used in practice, is the score given by a cross-validation procedure. However,
choosing it raises two difficulties. First, this can only be done when the set Θ is
finite (or was discretized). Second, it is computation-consuming, since the cross-
validation procedure is to be run for each value θi in Θ. The solution advocated in
Chapelle et al. (2002) has the same drawback, since it requires training a SVM at
each step of a gradient descent. Kernel target alignment is a score which does not
exhibit these shortcomings. In what follows, we first define it, and then describe its
use to tune a kernel with respect to some parameter.

Kernel alignment Let k and k′ be two measurable kernel functions defined on
X×X, where the space X is endowed with a probability measure P . The alignment
between k and k′ is defined as follows:Kernel alignment

A(k, k′) =
〈k, k′〉2
‖k‖2‖k′‖2 =

∫
k(x,x′)k′(x,x′)dP (x)dP (x′)√∫

k(x,x′)2dP (x)dP (x′)
√∫

k′(x,x′)2dP (x)dP (x′)
.

(9.2)

Empirical kernel alignment Let k and k′ be two kernel functions defined on
X×X and consider a data set X = (x1, . . . ,xm) ∈ Xm. The empirical alignment of
k with k′ with respect to X is the quantity

ÂX(K, K ′) =
〈K, K ′〉F
‖K‖F‖K ′‖F , (9.3)

where K and K ′ respectively denote the kernel Gram matrices associated with k

and k′, computed on the sample X , 〈., .〉F denotes the Frobenius inner product
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between matrices, so that 〈K, K ′〉F =
∑m

i=1

∑m
j=1 k(xi,xj)k′(xi,xj), and ‖.‖F is

the corresponding norm.
The alignment between two kernels k and k′ should be thought of as a measure

of their similarity. Roughly speaking, if k′ is a well-suited kernel to the problem at
hand and k is well aligned with k′, then k should also be a good kernel for the same
problem. In practice, as the alignment is not computable (since the underlying
distribution P is unknown), it is estimated empirically, with (9.3). Some concen-
tration properties of ÂX(K, K ′) around its expected value A(k, k′) were studied by
Cristianini et al. (2001).

Tuning Parameter θ Using Kernel Target Alignment Now, the strategy to
tune parameters based on this measure can be summarized as follows:

1. Select a theoretically ideal kernel kt, hereinafter called the target kernel, ideal in
the sense that it leads to perfect classification. Practically, the Gram matrix of kt

should be computable.

2. Given a training set of labeled examples Z = ((x1, y1), . . . , (xm, ym)), choose θ∗

satisfying

θ∗ = argmax
θ∈Θ

ÂZ(kθ, kt).

In doing so, the conjecture is that the kernel kθ∗ will behave well, provided the family
(kθ)θ∈Θ is relevant to the problem at hand. Cristianini et al. (2001) only considered
the case of dichotomies. Their ideal kernel is the obvious one, namely kt(x,x′) = yy′.
Our extension to the multiclass case, based on geometric considerations, developed
in Vert (2002c), is the following:

kt(x,x′) =

{
1 if y = y′

−1/(Q− 1) otherwise

This target kernel corresponds to a mapping Φt associating each description x to
one of the Q vertices of a (Q − 1)-dimensional centered simplex, according to the
category to which it belongs (see figure 9.2). This clusterization in the feature
space is obviously the one that makes the subsequent (multi-) linear separation
performed by the M-SVM easiest. Note that under some regularity assumptions on
kθ, ÂZ(kθ, kt) is differentiable with respect to θ, and can thus be optimized using
classic techniques, such as gradient descents.

9.3.3 Incorporating Biological Knowledge in a Convolution Kernel

In what follows, we adopt the terminology of Williamson et al. (2001), where a
convolution kernel is a kernel satisfying k(x,x′) = k(x − x′, 0). Our goal is to
take into account in such kernels two of the factors which have proved important
to predict the secondary structure: the nature of the substitutions between two
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Figure 9.2 The 3-class problem in 2D : the target kernel performs an optimal clustering
of the data in the feature space.

segments, and the relative influence of the amino acids involved as a function of
their position in the window.

Dot Products Between Amino Acids In subsection 9.2.2, we pointed out
the fact that the standard processing of protein sequences for secondary structure
prediction involves a canonical orthonormal coding of the amino acids. However, it
is common knowledge that this coding is unsatisfactory. Indeed, the biologists have
derived many similarity matrices for the amino acids which all differ significantly
from the identity. It is the case of the PAM (percent accepted mutations) (Dayhoff
et al., 1978) and BLOSUM (blocks substitution matrix) (Henikoff and Henikoff,
1992) matrices, sometimes called substitution matrices, which are especially wellSubstitution

matrix suited in their log-odds form. The problem raised by their use in a kernel springs
from the fact that they are not symmetric positive definite, and thus are not
associated with an underlying dot product. To overcome this difficulty, one can
think of several off-the-shelf solutions. Since the matrices are symmetric, one simple
way to approximate them with a Gram matrix consists in diagonalizing them
and replacing all the negative eigenvalues with 0. Another possibility consists in
looking for their projection on the space of symmetric positive definite matrices,
the operator being associated with a matrix norm, for instance, the Frobenius one.
Although the projection operator will usually not be available in analytical form
(the problem to be solved is nonconvex), satisfactory estimates can result from a
simple gradient descent. This descent is performed with respect to the components
of the vectors representing the amino acids.
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This change in the coding of the amino acids extends nicely to the case where
multiple alignments are used. In that case, the profile presented as input of a
connectionist classifier (see, e.g., Rost and Sander, 1993; Jones, 1999; Pollastri
et al., 2002) is simply obtained by computing, for each position in the window, a
weighted average of the vectors coding the amino acids present in the corresponding
position of the alignment. The weight associated with a particular amino acid is
its frequency of appearance in this position. In practice, let aj , (1 ≤ j ≤ 22), be
the coding of the jth amino acid (or an unknown residue, or the empty position),
and θij its frequency of appearance in the position of the alignment corresponding
to the ith position of the sliding window. Then the window can be represented by
x̃ = [x̃−n, . . . , x̃i, . . . , x̃n]T , with x̃i =

∑22
j=1 θijaj. Thus, in the computation of the

kernel, the dot product 〈xi, x
′
i〉 is simply replaced with

〈x̃i, x̃
′
i〉 = 〈

22∑
j=1

θijaj ,
22∑

k=1

θ′ikak〉 =
22∑

j=1

22∑
k=1

θijθ
′
ik〈aj , ak〉. (9.4)

Influence of the Position in the Window As stated in subsection 9.2.2, the
use of the sliding window is standard in protein secondary structure prediction.
Many studies have dealt with the choice of its size, or the exploitation of its con-
tent. Good illustrations are given in Qian and Sejnowski (1988), Zhang et al. (1992),
and Rost and Sander (1993). In short, a too small window will not include enough
information on the local conformation, whereas a too large window will incorporate
data that risk behavior like noise. A way to overcome this difficulty consists in
choosing a priori a large value for the size of the window, and associating each posi-
tion with a weight (irrespective of the nature of the amino acid), so as to modulatePosition-

dependent
weight

its influence on the subsequent computations. This has already been performed
with success by different teams (Gascuel and Golmard, 1988; Guermeur, 1997).
An interesting point is that these studies, although they involved very different
approaches, produced similar distributions of the weights as a function of the posi-
tion. This suggests that they were capable of highlighting some intrinsic property
of the problem of interest. We thus decided to incorporate such a weighting in our
kernel, with the values of the weights being derived through the multiclass kernel
alignment.

Both parameterizations, the change in the “dot products between amino acids”
and the weighting of the positions in the window, can be applied to any kind of
convolution kernel. For the sake of simplicity, their incorporation is illustrated below
in the case of a Gaussian kernel processing multiple alignments:

kθ,D(x̃, x̃′) = exp

(
−
∑n

i=−n θ2
i (‖x̃i‖2 + ‖x̃′

i‖2 − 2〈x̃i, x̃
′
i〉)

2σ2

)
, (9.5)

where θ is the vector of weights and D the matrix of dot products.
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9.4 Experimental Results

We have already pointed out the difficulty in developing a state-of-the-art secondary
structure prediction method. Nowadays, all the most accurate statistical methods
are based on huge hierarchical and modular architectures. The best illustration of
this phenomenon is given by the methods PSIPRED (Jones, 1999), SSpro2 (Pollastri
et al., 2002), as well as those described by Riis and Krogh (1996) and Petersen
et al. (2000). In these architectures, which can incorporate up to several hundred
components, the contribution of a single module (ordinarily a neural network) can
hardly be assessed. From a general point of view, our goal hereafter is not to
obtain recognition rates comparable with those of the above methods, but rather to
highlight the fact that in each of the various contexts where an MLP can be used to
perform protein secondary structure prediction (as part of a hierarchical classifier,
as an ensemble method, etc.), significant benefits result from replacing it with our
M-SVM. In that respect, this study can be seen as the natural continuation of those
reported in Guermeur (2002) and Guermeur et al. (2004).

9.4.1 Experimental Protocol

To assess our classifier, we used the set of 1096 protein sequences introduced in
Guermeur et al. (2004) under the reference P1096. This set was designed so as to
meet the toughest requirements in terms of percentage of identity (see Sander and
Schneider, 1991 for details). Secondary structure assignment was performed with
the DSSP program (Kabsch and Sander, 1983). This assignment is essentially based
on hydrogen-bonding patterns. The reduction from 8 to 3 conformational states
was derived according to the CASP method, given by: H+G → H (α helix), E+B
→ E (β strand), and all the other states in C (aperiodic or coil). This assignment is
known to be somewhat harder to predict than the ones used in the literature (see,
e.g., Cuff and Barton, 1999). The PSI-BLAST alignments were compiled according
to the protocol described in Pollastri et al. (2002).

As stated in the introduction, the prediction of the secondary structure is seldom
a goal in its own right. It is primarily a step toward the prediction of the tertiary
structure. As a consequence, the main concern of the biologist is the recognition
of all the structural elements in their order of appearance in the sequence. A small
shift in the relative locations of the true and predicted structures can be tolerated,
but the prediction must remain biologically plausible (no helix can be shorter than
4 residues, two periodic structures cannot be consecutive, etc.). As a consequence,
the sole per residue recognition rate, hereinafter denoted by Q3, is not sufficient
to characterize the quality of the prediction. To overcome this difficulty, many
alternative measures of quality have been proposed. The interested reader will find
in Baldi et al. (2000) a review of the subject. In what follows, we use the three most
common quality measures: the Q3, the Pearson’s/Matthews’ correlation coefficients
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C (Matthews, 1975), and the segment overlap measure Sov (Rost et al., 1994;
Zemla et al., 1999), which give complementary indications. Whereas each of the
Matthews’ coefficients characterizes the quality of the prediction for one particular
conformational state (α/β/coil), which makes it possible, for instance, to emphasize
a poor identification of the sheets, the values of the Sov coefficients give an idea of
the prediction accuracy at the segment level, meeting by way of consequence one
of the central requirements listed above.

9.4.2 Estimation of the Parameters

The matrix of dot products between amino acids was derived from the similarity
matrix introduced in Levin et al. (1986). This choice resulted from the fact that
this matrix had been specifically devised to perform secondary structure prediction
based on the similarity of small peptides, that is, on local sequence homology (see
also Levin and Garnier, 1988; Geourjon and Deléage, 1995). In this context, it
has reportedly proved superior to the Dayhoff substitution matrix. Among the two
possibilities considered in subsection 9.3.3 to generate the Gram matrix, we chose
the one based on diagonalization. However, this choice was primarily made for the
sake of reproducibility, since a simple gradient descent gave very similar results
(Didiot, 2003). With this set of dot products at hand, the vector of weights θ

could be obtained thanks to the implementation of the multiclass target alignment
principle, through a stochastic gradient descent procedure (see Vert (2002c) for
details). The training set was the set of 1180 sequences used to train SSpro1 and
SSpro2. This set, described in Baldi et al. (1999) and Pollastri et al. (2002), is
referred to below as P1180. This choice could be made since no sequence in this
base is the homolog of a sequence of the P1096 base (see also Guermeur et al.,
2003). Figure 9.3 illustrates the resulting values of the coefficients θi. This curve is
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Table 9.1 Relative prediction accuracy of an MLP and the M-SVM on the P1096 data
set.

sequences alignments

MLP M-SVM MLP M-SVM

Q3 61.6 62.0 72.0 72.3

Cα 0.46 0.47 0.63 0.64

Cβ 0.33 0.35 0.53 0.54

Cc 0.38 0.38 0.53 0.54

Sov 53.9 54.2 65.1 65.3

Sovα 57.8 57.9 66.5 66.7

Sovβ 44.7 46.1 61.5 62.3

Sovc 57.3 57.3 66.7 66.8

very similar to those mentioned in subsection 9.3.3. One of their common features
is a significant asymmetry in favor of the right-hand side context. This intriguing
phenomenon, the observation of which utterly rests on a statistical basis, and by
no means on the incorporation of a priori knowledge of the task, has found no
biological justification so far.

9.4.3 Prediction from the Primary Structure and Multiple Alignments

This subsection describes the implementation and results of two experiments in-
spired by the pioneering works reported by Qian and Sejnowski (1988), and Rost
and Sander (1993). In the former, the M-SVM is compared with an MLP in the case
where the input (vector x) is simply given by the content of a window of size 13 slid-
ing on the sequence. In the latter, single sequences are replaced with PSI-BLAST
multiple alignments. To perform these experiments, we used the same procedure
twice, a standard fivefold cross-validation (the P1096 base was divided into four sets
of 219 sequences, and one set of 220 sequences). In both cases, the MLP had one
hidden layer of eight units with sigmoid activation functions, and softmax output
units. The parameterization of the M-SVM also remained unchanged, with the soft
margin constant C being equal to 10.0, and the width of the Gaussian kernel being
set to σ2 = 10.0. Table 9.1 summarizes the results obtained.

In both configurations, the gain in recognition rate resulting from using the
M-SVM in place of the MLP is statistically significant, with confidence exceeding
0.95. The size of the base (255551) compensates for the small value of the increase.
However, what is more promising, all measures of accuracy benefit from the change.
This is particularly noticeable for the β strands, usually the hardest conformational
segments to predict. Hua and Sun (2001a) noticed that the superiority of combi-
nations of (biclass) SVMs over MLPs was highlighted with the Sov coefficients.
Although we were unable to duplicate their experiments and get similar results
(we observed far lower Sov coefficients than they did), the same conclusion can be
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inferred here.

The number of dual variables of an M-SVM is equal to the number of categories
minus one times the size of the training set [(Q−1)m]. An idea of the complexity of
the discriminant function it computes is given by the number of training examples
for which at least one of the dual variables is different both from 0 and from C

(examples which should lie on one of the margins). In all our experiments (ten
trainings of the M-SVM), the ratio of such points ranged between 25% and 30%.

9.5 Discussion

The results of the experiments reported above support the thesis of the superiority
of our M-SVM over the standard MLP for the task at hand. However, the real
touchstone to judge its usefulness is obviously the incorporation in a state-of-the-
art prediction method, as we already did with SSpro2. To pave the way for this
new step, one can think of implementing several straightforward improvements. A
simple one is the choice of a better matrix of dot products between amino acids
(matrix D). Instead of choosing a priori or by any model selection method one
specific similarity matrix, one can benefit from the fact that a convex combination
of symmetric positive definite matrices is still a symmetric positive definite matrix.
This makes it possible to select a whole set of similarity matrices, estimate them
with Gram matrices, and compute the optimal combination thanks to the procedure
described in subsection 9.3.2. Another useful development is the postprocessing of
the conformational scores generated, to produce class posterior probability esti-
mates. These estimates could then be used to compute the observation probability
density functions of a hidden Markov model (HMM), as was done, for instance, in
Guermeur (2002). Both possibilities are the subject of an ongoing work.

9.6 Conclusion and Future Work

We have described a first attempt to implement M-SVMs to perform protein
secondary structure prediction from the primary structure, or profiles of multiple
alignments. This study focused on the design of a kernel incorporating high-level
knowledge of the task. The process of evolution, which makes two homolog proteins
differ in their sequences, while keeping similar folds, is based in two phenomena:
substitution and insertion/deletion. If one can think of simple solutions to take
the first phenomenon into account with a kernel, as the one we used, the second
one raises more difficulties. Indeed, if substituting a multiple alignment for a single
sequence provides useful additional evolutionary information, this procedure alone
does not solve the problem of the comparison of two window contents by means of
a dot product. What if they only differ by an insertion? A priori, a natural way
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to overcome this difficulty would consist in making use of the results established
by Haussler (1999) or Watkins (2000), regarding dynamic alignment kernels and
select, for instance, an adequately designed pair HMM (Durbin et al., 1998) to
compute the kernel function. However, this solution currently remains infeasible for
such large problems as those we are interested in, due to its prohibitive CPU time
requirements coming from too high computational complexity. Cheaper alternatives
are thus badly needed. Well suited spectrum (Leslie and Kuang, 2003) and rational
(Cortes et al., 2003) string kernels, which can extract the similarity of pairs of
strings of unequal length, are potentially good candidates with their efficient linear
computational complexity. Their incorporation in our machine is currently under
investigation.
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The integration and comparison of heterogeneous data such as biochemical path-
ways, genomes, gene functions, and gene expression data is a major issue in postge-
nomics. While integration strategies often rely on heuristic approaches specifically
adapted to the nature of the data to be integrated — such as sequences, graphs,
and vectors — we present in this chapter a systematic approach to the integration
and comparison of virtually any types of data, as long as relevant kernel functions
can be defined on the data to be compared. Tools to measure the correlation be-
tween different heterogeneous data sets and to extract sets of genes which share
similarities with respect to multiple biological attributes are proposed. The origi-
nality of this approach is the extension of the concept of correlation for nonvectorial
data, which is made possible by the use of generalized kernel canonical correlation
analysis, and its application to the extraction of groups of genes responsible for the
detected correlations.

As an application, this approach is tested on its ability to recognize operons in
the Escherichia coli genome, from the comparison of three data sets corresponding
to functional relationships among genes in metabolic pathways, positional relation-
ships along the chromosome, and coexpression relationships as observed by gene
expression data.

10.1 Introduction

Developments in high-throughput technologies have filled biological databases with
many sorts of genomic data. Examples include genome sequences, signaling and
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metabolic pathways (Kanehisa et al., 2002), gene expression data (Eisen et al.,
1998), protein-protein interaction data (Ito et al., 2001), phylogenetic profiles
(Pellegrini et al., 1999), and several more. Investigating the relationships among
these data is an important step toward a better understanding of the functions
of the genes and the machinery of the cell. In particular, it is often the case that
different data provide different and complementary information about the same
underlying objects or processes. To fix the ideas, we focus in this chapter on gene
analysis, but the principled approach we follow can easily be applied to the analysis
of other biological objects or processes, such as the evolution of a disease, as soon
as several different measurements about the objects or processes of interest are
available.

Our approach is motivated by the classic idea that comparing different dataHeterogeneous
data comparison about the same objects is a way to detect hidden or underlying relationships or

phenomena. Let us suppose, for example, that an unusually strong correlation is
detected between the presence of a motif in the promoter region of some genes, on
the one hand, and the gene expression levels under particular conditions, on the
other hand. This correlation might stem from a biological phenomenon linking the
sequence and the function of the genes, such as the recognition of the motif by
a transcription factor. More generally, comparing different data sets involving the
same genes, such as their sequences, expression, promoter regions, or the structure
of the encoded proteins, is a way to recognize biological phenomena. Moreover, if
a correlation is detected among several data sets, genes mainly responsible for the
observed correlation can be detected. One can expect these genes to play a special
role in or be affected by the underlying biological phenomenon.

A well-known statistical method to investigate the correlation between different
real-valued attributes is canonical correlation analysis (CCA) (Hotelling, 1936).
However, classic CCA cannot be applied to nonvectorial genomic data, such as
pathways, protein-protein interactions, or gene positions in a chromosome. In this
chapter we overcome this issue by using a generalization of CCA, known as kernel
CCA (KCCA) proposed by Akaho (2001) and Bach and Jordan (2002), which
provides a way to perform a generalized form of CCA between any two types
of data as long as kernel functions can be defined on these data. KCCA finds
directions simultaneously in the two feature spaces defined by the kernel functions
with maximum correlation.

As a first contribution we derive two variants of KCCA in order to perform CCAVariants of kernel
CCA on more than two data sets. The first one, which we call multiple KCCA, is a natural

generalization of KCCA to more than two kernel functions. Already suggested
by Bach and Jordan (2002), it consists in searching for directions simultaneously
in all feature spaces by maximizing the sum of all pairwise correlations between
data sets. The second one, which we call integrated KCCA, is a normal KCCA
carried out between two kernels which are themselves sums of primary kernels.
Integrated KCCA can be useful to extract correlations between two sets of data
sets, represented by two sets of kernel functions.

As a second contribution, we propose a method to select genes of interest fromGene selection
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the results of CCA. The method consists in ranking the genes in terms of the
absolute value of their projection on a canonical direction, typically the first one.
Large absolute values correspond to the genes mainly responsible for the detected
correlation, hence selecting these genes is likely to provide groups of genes related
to the biological phenomenon behind the correlation.

As an application we consider the problem of detecting operons in prokaryotic
genomes. Operons are groups of adjacent genes on the genome which are transcribed
together on a single messenger RNA (mRNA) molecule. Genes in an operon often
code proteins involved in the same biochemical function, such as enzymes catalyzing
successive chemical reactions in a pathway. As a result, the presence of operons in
prokaryotes is responsible for a form of correlation among several data sets, because
genes which form operons tend to be close to each other along chromosomes, to
have similar expression profiles, and to catalyze successive reactions in a pathway.
Conversely, one can start from three data sets containing the localization of the
genes on the genome, their expression profiles, and the chemical reactions they
catalyze in known pathways, and look for correlations among these data sets, in
order to finally recover groups of genes, which may form operons. We provide
experimental results on the unsupervised detection of operons in the E.coli genome
by detecting correlations among the KEGG/pathways database of metabolic and
signaling pathways, the positions of the genes on the genome, and microarray
expression data.

The integration of heterogeneous data has been investigated with a variety of
approaches so far. Motivated by graph-theoretical arguments, clusters of genes have
been extracted from several biological networks using multiple graph comparison by
Ogata et al. (2000) and Nakaya et al. (2001). Using classic clustering algorithms with
a distance combining information from expression data and biochemical networks,
Hanisch et al. (2002) were able to extract coclusters of genes. An approach using
direct kernel operations was proposed by Pavlidis et al. (2001b) to improve the
performance of gene function prediction algorithms from expression data and
phylogenetic profiles. The use of KCCA was pioneered by Vert and Kanehisa
(2003b) and Vert and Kanehisa (2002) in the context of gene function prediction
from gene expression data using biochemical networks as side information, and
further investigated by Yamanishi et al. (2003) and Vert and Kanehisa (2003a) as
a data mining tool to extract information from heterogeneous data.

10.2 Methods

In this section we present the methodology of our work. We review canonical
correlation analysis, its generalization as a kernel algorithm, and propose two
variants to handle more than two data sets. We then present a method to select
genes from the result of CCA analysis, and finally recall the definition of the
diffusion kernel used in the experiment.
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10.2.1 Classic CCA

Canonical correlation analysis was introduced by Hotelling (1936) as a way toClassic CCA
measure linear relationships between random multivariate vectors x1 and x2, of
respective dimension N1 and N2. It finds two linear transforms, one for each
variable, such that one component within each transformed variable is maximally
correlated with a single component in the other. More precisely, the first canonical
variates are defined as the projections of x1 and x2 onto unit norm vectors α1 ∈ RN1

and α2 ∈ RN2 defined by

(α1, α2) := arg max
||a1||=||a2||=1

∣∣ corr
(
a�
1 x1, a

�
2 x2

)∣∣ , (10.1)

where a� denotes the transpose of a. The first canonical correlation is defined as the
maximum value attained in (10.1). Higher-order canonical variates and correlations
are defined as in (10.1) under the additional restriction that the kth canonical
variate, with 1 ≤ k ≤ min(N1, N2), should be uncorrelated with all canonical
variates of lower order. The problem (10.1) has a fairly simple solution (Johnson
and Wichern, 1998), where α1 and α2 are found by eigenvector decomposition.
CCA is a popular tool in exploratory data analysis to investigate the relationship
between two kinds of attributes, and has found many applications in economics and
medical studies, for example.

10.2.2 Kernel CCA

Kernel CCA is a generalization of CCA using the kernel trick. Proposed indepen-
dently by Akaho (2001) and Bach and Jordan (2002), it consists in performing a
regularized form of CCA in the feature spaces implicitly defined by two different
kernels on the same objects. As an example, if objects are genes, kernel CCA can
be used to investigate the relationships between gene sequences and gene expres-
sion by performing classic CCA between the genes in the features spaces defined
respectively by a string kernel and a kernel for expression profiles.

In order to transform CCA into a kernel algorithm, at least two important issues
must be addressed:

Technically, the algorithm to solve CCA must be expressed in a form that only
involves the data through their inner products, in order to use the kernel trick (see
chapter 2, subsection 2.3.1) and be able to replace each such inner product by the
evaluation of a kernel function.

Theoretically, classic CCA is not adapted to large-dimensional variables. In par-
ticular, when the dimension of each space exceeds the number of points available,
perfect canonical correlation can always be found between any sets of variables.
While this issue is well-known by practitioners of classic CCA, it becomes problem-
atic with kernels that correspond to high-dimensional feature spaces, such as the
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Gaussian kernel. To address this issue, some form of regularization must be added
to the CCA definition.

Both issues have been addressed in the KCCA algorithm which we now present.Kernel CCA
Further details and references can be found in Akaho (2001) and Bach and
Jordan (2002). The goal is to detect correlations between two data sets x1 =(
x(1)

1 , · · · ,x(n)
1

)
and x2 =

(
x(1)

2 , · · · ,x(n)
2

)
, where n is the number of objects,

and each data set x(i)
1 / x(i)

2 belongs to some set X1 / X2, for i = 1, · · · , n. In the
example treated in this chapter, the objects correspond to genes, and each data
set corresponds to one representation of the genes. For example, if X1 is the set of
finite-length nucleotide sequences, and X2 is a vector space of gene expression pro-
files, then x(i)

1 could be the sequence of the i-th gene studied and x(i)
2 its expression

profile.
In order to detect correlations between the two data sets, the objects x(i)

1 /x(i)
2

are mapped to a Hilbert space H1/ H2 by a mapping φ1 : X1 → H1/ φ2 : X2 → H2.
Classic CCA can then be performed between the images φ1(x1) and φ2(x2) as
follows. For any two directions f1 ∈ H1 and f2 ∈ H2, we can define the projections

u1 =
(
u

(1)
1 , · · · , u(n)

1

)�
∈ Rn and u2 =

(
u

(1)
2 , · · · , u(n)

2

)�
∈ Rn of x1 and x2 onto

f1 and f2 by

u
(i)
1 := 〈f1, φ1(x

(i)
1 )〉, u

(i)
2 := 〈f2, φ2(x

(i)
2 )〉, (10.2)

for i = 1, · · · , n, where 〈., .〉 denotes the dot products in the Hilbert spaces H1

and H2. The sample mean, variance, and covariance of u1 and u2 are respectively
defined by

ˆmean (uj) :=
1
n

n∑
i=1

u
(i)
j ,

ˆvar(uj) :=
1
n

n∑
i=1

(
u

(i)
j − ˆmean (uj)

)2

,

ˆcov(u1, u2) :=
1
n

n∑
i=1

(
u

(i)
1 − ˆmean (u1)

)(
u

(i)
2 − ˆmean (u2)

)
,

(10.3)

for j = 1, 2. The goal of CCA is to find f1 ∈ H1 and f2 ∈ H2 that maximize the
empirical correlation between u1 and u2, defined by:

ˆcorr (u1, u2) :=
ˆcov(u1, u2)

( ˆvar(u1) ˆvar(u2))
1
2
. (10.4)

The solution to this problem, however, is not unique when the dimension of H1

or H2 is larger than the number of samples n: indeed, adding to f1 or f2 any
vector orthogonal to the linear span of the respective points does not change the
projections u1 and u2. Moreover, the importance of regularization for CCA in high
dimension is a well-known fact discussed, for instance, by Hastie et al. (1995) and
Leurgans et al. (1993).
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A classic way to regularize CCA is to penalize the Hilbert norm of f1 and f2Regularization of
CCA through the maximization of the following functional instead of (10.4):

γ(f1, f2) :=
ˆcov(u1, u2)

( ˆvar(u1) + λ1||f1||2)
1
2 ( ˆvar(u2) + λ2||f2||2)

1
2
, (10.5)

where λ1 and λ2 are regularization parameters. When λ1 = λ2 = 0, γ(f1, f2)
reduces to the sample correlation (10.4), but when λ1 > 0 and λ2 > 0, the pair
(f1, f2) that maximizes (10.5) finds a tradeoff between maximizing the empirical
correlation (10.4) and having small norms ||fj ||/ ˆvar(uj) (for j = 1, 2).

By homogeneity, maximizing (10.5) is equivalent to maximizing ˆcov(u1, u2) under
the constraints

ˆvar(u1) + λ1||f1||2 ≤ 1, ˆvar(u2) + λ2||f2||2 ≤ 1.

The solution to this problem is obtained by solving the Lagrangian:Dual formulation

L(f1, f2, ρ1, ρ2) = ˆcov(u1, u2)

+
ρ1

2
(
1− ˆvar(u1)− λ1||f1||2

)
+

ρ2

2
(
1− ˆvar(u2)− λ2||f2||2

)
, (10.6)

where ρ1 and ρ2 are Lagrange multipliers. From the conditions that the derivatives
of L with respect to f1 and f2 be equal to 0, we get that f1 and f2 must respectively
be in the linear span of x1 and x2, that is:

f1 =
n∑

j=1

α
(j)
1 φ1(x

(j)
1 ), f2 =

n∑
j=1

α
(j)
2 φ2(x

(j)
2 ), (10.7)

for some α1 ∈ Rn and α2 ∈ Rn. Supposing now that the points are centered in
the feature space, that is,

∑n
i=1 φ1(x

(i)
1 ) =

∑n
i=1 φ2(x

(i)
2 ) = 0, the sample means

ˆmean(u1) and ˆmean(u2) are always null, by (10.2) and (10.3). Plugging (10.7) into
(10.3), we can then rewrite the sample variance and covariance of u1 and u2 in
terms of α1 and α2:

ˆvar(u1) =
1
n

α�
1 K2

1α1,

ˆvar(u2) =
1
n

α�
2 K2

2α2,

ˆcov(u1, u2) =
1
n

α�
1 K1K2α2,

(10.8)

where K1 and K2 are the n × n kernel Gram matrix defined by K1(i, j) =
k1(x

(i)
1 ,x(j)

1 ) = 〈φ1(x
(i)
1 ), φ1(x

(j)
1 )〉 and K2(i, j) = k2(x

(i)
2 ,x(j)

2 ) = 〈φ2(x
(i)
2 ), φ2(x

(j)
2 )〉

for 1 ≤ i, j ≤ n. Observing from (10.7) that the square Hilbert norms of f1 and f2

can also be expressed in terms of α1 and α2 as follows:

||f1||2 = α�
1 K1α1, ||f2||2 = α�

2 K2α2,
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we finally can rewrite the Lagrangian (10.6) as a function of α1 and α2 as follows:

L(α1, α2, ρ1, ρ2) =
1
n

α�
1 K1K2α2

+
ρ1

2n

(
n− α�

1 K2
1α1 − nλ1α

�
1 K1α1

)
+

ρ2

2n

(
n− α�

2 K2
2α2 − nλ2α

�
2 K2α2

)
.

Observing that K2+nλK =
(
K + nλ

2 I
)2

up to the second order in λ for any square
matrix K (I represents the identity matrix), and imposing that the derivatives with
respect to α1 and α2 of the first-order approximation of the Lagrangian be equal
to 0, we obtain that the values (α1, α2) and (ρ1, ρ2) that solve the Lagrangian are
solution of the following generalized eigenvalue problem;(

0 K1K2

K2K1 0

)(
α1

α2

)
= ρ

(
(K1 + nλ1

2 I)2 0

0 (K2 + nλ2
2 I)2

)(
α1

α2

)
. (10.9)

It can be shown (Bach and Jordan, 2002) that the canonical correlations are indeed
the min(N1, N2) largest generalized eigenvalues of this problem.

Let
(
α�

1 , α�
2

)� be a generalized eigenvector with generalized eigenvalue ρ. From
(10.2) and (10.7) we can recover the canonical variate u1 and u2 associated with
the canonical correlation ρ as follows:

u1 = K1α1, u2 = K2α2.

The above derivation is only valid if the points are centered in the feature space.
This is not a restriction, however, because for any Gram matrix K of noncentered
data points, the Gram matrix K̃ of the centered data points can be computed by
K̃ = N0KN0 where N0 = I − 1

n1, where 1 is the n × n matrix composed of ones
(Schölkopf et al., 1999).

10.2.3 Multiple KCCA

In this subsection we present an extension of KCCA when more than two kernel
matrices are available. This method was suggested by Bach and Jordan (2002) for
the purpose of independent component analysis. We refer to it as multiple kernel
canonical correlation analysis (MKCCA). It is a natural extension of the ordinary
KCCA model described in the previous subsection.Multiple KCCA

Suppose that we have P data sets
(
x(1)

p , · · · ,x(n)
p

)
for p = 1, 2, · · · , P , where x(i)

p

belongs to a set Xp for 1 ≤ p ≤ P and 1 ≤ i ≤ n. For each p = 1, · · · , P , suppose
that there is a mapping φp : Xp → Hp to a Hilbert space Hp, and let Kp be the
corresponding Gram matrix, that is:

Kp(i, j) = kp(x(i)
p ,x(j)

p ) = 〈φp(x(i)
p ), φp(x(j)

p )〉,

for 1 ≤ i, j ≤ n. Each set of points is supposed to be centered in the feature space.
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The goal of MKCCA is to detect directions fp ∈ Hp (p = 1, 2, · · · , P ) such that
the sum of all pairwise correlations between features

u(i)
p = 〈fp, φp(x(i)

p )〉, p = 1, · · · , P, i = 1, · · · , n, (10.10)

be the largest possible, that is, to solve the following problem:

max
(f1,··· ,fP )∈H1×···×HP

∑
1≤p<q≤P

ˆcorr(up, uq). (10.11)

Following the same approach as the one explained in subsection 10.2.2, the problem
(10.11) is regularized with regularization parameters λp ≥ 0 for 1 ≤ p ≤ P as
follows:

max
(f1,··· ,fP )∈H1×···×HP

∑
1≤p<q≤P

ˆcov(up, uq)

( ˆvar(up) + λp||fp||2)
1
2 ( ˆvar(uq) + λq||fq||2)

1
2
.

(10.12)
It is then easy to derive that the vectors (f1, · · · , fP ) solving (10.12) can be
expressed as

fp =
n∑

j=1

α(j)
p φp(x(j)

p ), (10.13)

for some vector αp ∈ Rn, for 1 ≤ p ≤ P , and that the αp solve the Lagrangian:

L =
1
n

∑
1≤p<q≤P

αT
p KpKqαq +

P∑
p=1

ρp

2n

(
n− α�

p K2
pαp − nλpα

�
p Kpαp

)
. (10.14)

The estimation of canonical correlation scores (CC scores) is now reduced to the
following generalized eigenvalue problem:⎛⎜⎜⎝

0 · · · K1KP

...
. . .

...

KP K1 · · · 0

⎞⎟⎟⎠
⎛⎜⎜⎝

α1

...

αP

⎞⎟⎟⎠

= ρ

⎛⎜⎜⎝
(K1 + nλ1

2 I)2 · · · 0
...

. . .
...

0 · · · (KP + nλP

2 I)2

⎞⎟⎟⎠
⎛⎜⎜⎝

α1

...

αP

⎞⎟⎟⎠ .

The correlated variates can then be obtained by up = Kpαp (for p = 1, 2, · · · , P ).

10.2.4 Integrated KCCA

While theoretically sound, the MKCCA approach presented in subsection 10.2.3
may suffer in practice from the fact that by maximizing (10.12), it detects correla-
tions among all pairs of data sets. As the number of data sets increases, it is often
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the case that no strong signal is present simultaneously in all data sets, except in
trivial cases.

In this subsection we propose a variant to perform KCCA on more than two
data sets to address this issue. We suppose that the data sets available (xk)k=1,··· ,P
are split into two groups, (xp)p∈P and (xq)q∈Q, where P and Q form a partition of
{1, · · · , P}. Intuitively, this split should be done in such a way that there is not
necessarily a big correlation between the data sets in each split, but that the data
sets of one split taken together contain a clear correlation with the data sets of the
other split taken together.

More formally, suppose first that the variables are real-valued vectors, that
is, xk ∈ R

Nk for k = 1, · · · , P . Then we propose to concatenate the vector
representations in each split to obtain two vector representations xP and xQ of
the data of dimensions

∑
p∈P Np and

∑
q∈Q Nq respectively, and to search for

canonical correlations between the resulting two vectors. This amounts to solving
the generalized eigenvalue problem (10.9) with K1 and K2 replaced by KP and
KQ, the kernel matrices of the concatenated vectors xP and xP. Now, because
kP(x(i)

P ,x(j)
P ) =

∑
p∈P kp(x

(i)
p ,x(j)

p ) and kQ(x(i)
Q ,x(j)

Q ) =
∑

q∈Q kq(x
(i)
q ,x(j)

q ) for
1 ≤ i, j ≤ n, it follows that

KP =
∑
p∈P

Kp, KQ =
∑
q∈Q

Kq. (10.15)

In the more general case where the data sets are not real vector-valued, but
rather belong to more general sets endowed with kernel functions, then the same
analysis holds for the vector representations in the features spaces associated with
the kernels. In particular (10.15) holds for general kernel functions. Observe that
summing up kernels is a convenient way to integrate heterogeneous information,
which was, for instance, investigated by Pavlidis et al. (2001b) in the context of
gene function prediction from gene expression and phylogenetic profiles.

Plugging (10.15) into (10.9), we see that integrated KCCA (IKCCA)can beIntegrated kernel
CCA performed by solving the following generalized eigenvalue problem:(

0
∑

p∈P Kp.
∑

q∈Q Kq∑
q∈Q Kq.

∑
p∈P Kp 0

)(
αP

αQ

)

= ρ

(
(
∑

p∈P Kp + nλP

2 I)2 0

0 (
∑

q∈Q Kq + nλQ

2 I)2

)(
αP

αQ

)
.

As for KCCA and MKCCA, the correlated variates can again be obtained by
uP = KPαP and uQ = KQαQ.

10.2.5 From CCA to Object Selection

Each generalization of CCA presented so far produces several canonical variates for
each canonical correlation (2 for KCCA and IKCCA, P for MKCCA). Let us define
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the canonical score s ∈ Rn associated with a given canonical correlation to be the
absolute value of the average of the corresponding canonical variates. That is, using
the notations of the previous subsection, we respectively define the canonical scoresCanonical scores
for KCCA, MKCCA, and IKCCA by

sKCCA(i) =

∣∣∣∣∣u(i)
1 + u

(i)
2

2

∣∣∣∣∣ , sMKCCA(i) =

∣∣∣∣∣∣ 1
P

P∑
j=1

u
(i)
j

∣∣∣∣∣∣ , sIKCCA(i) =

∣∣∣∣∣u
(i)
P + u

(i)
Q

2

∣∣∣∣∣ ,
for i = 1, · · · , n.

The canonical score can be thought of as a quantitative measure of how objects
contribute to the canonical correlation. To see this, let us observe, for example, that
when u1 and u2 are scaled to unit variance

N∑
i=1

sKCCA(i)2 =
N∑

i=1

∣∣∣∣∣u(i)
1 + u

(i)
2

2

∣∣∣∣∣
2

=
N

2
[1 + ˆcorr(u1, u2)] .

Similar results hold for sMKCCA and sIKCCA. This shows that the correlation
ˆcorr(u1, u2) between canonical variates is the sum of individual canonical scores.
In the case where the canonical correlation is due to some hidden phenomenon,

this suggests that objects with large canonical scores are more likely to be involved
in the phenomenon than others. If one is interested in the detection of such objects,
it therefore makes sense to select those objects that have a canonical score above a
given threshold.

It is worth observing that this method of selecting objects bears some similarityLink with
spectral
clustering

to recently studied spectral clustering methods (Weiss, 1999; Ng et al., 2002) which
perform data clustering after embedding the data in a feature space using the
first eigenvectors of the kernel Gram matrix. In our case, we use the canonical
directions instead of the principal directions to map the data, and need to average
over the canonical directions found in different feature spaces in order to obtain a
one-dimensional mapping. Selecting the objects with large scores then corresponds
to a simple clustering method that separates numbers with large absolute values
from the others. Of course, this does not make sense if the correlation is due
to the presence of two or more different classes of points that one wants to
separate as different clusters, in which case large positive canonical variates should
be separated from large negative variates, as most clustering methods would do.
However, it makes sense in the cases where the canonical correlation is due to the
presence of a number of small “interesting” clusters separated from a large bulk of
“noninteresting” objects, and where the goal is to detect the “interesting” objects.
We illustrate such a case below, in the problem of detecting operons in a genome.

The link with spectral clustering methods is particularly clear when a single
kernel matrix K is considered. Similarly to KCCA, kernel principal component
analysis (KPCA) searches a direction f of the Hilbert space H that defines a variate
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u(i) = 〈f, φ
(
x(i)

)〉 with maximum variance (where ||f || is fixed). As explained in
chapter 2, subsection 2.3.4, this is equivalent to the following problem:

min
ˆvar(u)=1

||f ||. (10.16)

Suppose now that we perform KCCA between the kernel K and itself. From (10.5)
it is obvious that the two variates found are equal (f1 = f2), and that the functional
to maximize becomes

γPCA(f) =
ˆvar(u)

ˆvar(u) + λ||f ||2 ,

where we suppose that λ1 = λ2 = λ in (10.5). By homogeneity the maximization
of γPCA is equivalent to the following problem:

max
ˆvar(u)=1

1
1 + ||f ||2 ,

which is equivalent to (10.16). This shows that KCCA (and any of its generalization
to more than two kernels) boils down to KPCA when the kernels are equal.

10.2.6 Diffusion Kernel

In the experiments we perform below, some of the data sets consist of graphs
whose nodes are the objects of interest. As an example, metabolic pathways or the
organization of the genes on a genome can be represented by graphs with genes
as nodes. In order to use such data sets in the KCCA framework, the information
contained in the graph must be encoded into a kernel function. We perform this
transformation of a graph into a kernel using the diffusion kernel, proposed by
Kondor and Lafferty (2002) and reviewed in chapter 8, which we now briefly recall.

Suppose that we have an undirected, unweighted graph Γ = (V, E). The opposite
Laplacian of this graph is the matrix

Hij =

⎧⎪⎪⎨⎪⎪⎩
1 for i ∼ j,

−di for i = j,

0 otherwise,

(10.17)

where i ∼ j means that the ith and jth genes are joined by an edge on the graph,
and di is the number of edges emanating from the ith vertex. The exponential of
the matrix βH is defined as

exp(βH) = lim
m→∞

(
I +

βH
m

)m

, (10.18)

where β is a positive constant. This is equivalent to the following expansion:

exp(βH) = I + βH +
β2

2
H2 +

β3

3!
H3 + · · · . (10.19)
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trp E          trp D          trp C          trp B          trp APromoter E.coli chromosome

mRNA molecule

Enzymes for tryptophan biosynthesis

Figure 10.1 The clustered genes in E.coli that code for enzymes responsible for the
synthesis of the amino acid tryptophan. The five genes are transcribed as a single mRNA
molecule, a feature that allows their expression to be controlled coordinately. Such a cluster
of genes is called an operon.

The resulting matrix is symmetric and positive definite. It is therefore a valid kernel
called the diffusion kernel (Kondor and Lafferty, 2002), which can be thought of as
a generalization of the Gaussian radial basis function (RBF) kernel to a discrete
setting.

10.3 Experimental Results

In order to test the various generalizations of KCCA (section 10.2.3 and sec-
tion 10.2.4) and the object selection method (section 10.2.5) presented so far on
real-world data, we performed a series of experiments with the goal of detecting
operons in the E.coli genome.

10.3.1 Operon Detection

In most bacterial genomes, functionally coupled gene clusters are often adjacent
to one another on the genome and regulated under the same upstream promoter,
therefore transcribed as one long polycistronic mRNA. Such clusters of genes are
called operons. As an example, figure 10.1 shows the well-studied tryptophan operonOperons
which contains five genes translated into five enzymes responsible for the synthesis of
tryptophan. Experimental detection or confirmation of operons is time-consuming
(Walters et al., 2001) and relatively difficult to implement in the laboratory as
a high-throughput process. Computational prediction of operons has therefore
gained increased attention in recent years, either by sequence analysis only (Yada
et al., 2001; Salgado et al., 2000; Ermolaeva et al., 2001) or by combining multiple
information (Ogata et al., 2000; Zheng et al., 2002).

10.3.2 Data

Because genes that code for enzymes in operons are closely located on the genome,
are coregulated, and often catalyze related reactions in metabolic pathways, they
should be responsible for a form of correlation between three sorts of data: the
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position of genes on the genome, their expression as measured by DNA microarray,
and the position of the chemical reactions they catalyze in metabolic pathways.
We therefore tried to automatically detect correlations between these three sorts of
data using CCA, and to detect genes likely to belong to operons by selecting the
genes mostly responsible for the detected correlations.

We therefore collected three sorts of data for the genes of the bacterium E.coli
and derived three kernel matrices for the 740 genes common to all three data sets
as follows.

Pathway data were extracted from the KEGG/LIGAND database of chemicalPathways
compounds and reactions in biological pathways (Goto et al., 2002), which can be
freely downloaded from the KEGG database (Kanehisa et al., 2002). This database
contains thousands of metabolic reactions known to take place in various organisms,
together with the substrates involved and the classification of the catalyzing enzyme
as an EC number. From this database we created an undirected graph with genes of
E.coli as vertices, where two vertices are linked when the genes encode enzymes that
can catalyze two successive reactions in a pathway. The resulting graph, called the
gene metabolic network, is described in more detail in chapter 8, subsection 8.4.1.
From this graph of genes we built a diffusion kernel as explained in subsection 10.2.6
with the parameter β set to 1.

The positions of the genes on genomes were obtained from the KEGG/GENESGene positions
database, which contains various genomic information such as gene names, positions
along chromosomes, and their amino acid sequences. From this we computed a
matrix of pairwise gene distance,where the distance dij between gene i and gene j

is defined by the number of nucleotides between the end of the ith gene and the
start of the jth gene along the chromosomes. We then derived a distance kernel by
the formula k (xi,xj) = exp (−dij/h), where h is a parameter set to 105.

Finally the gene expression data for 48 experiments1 on the genes E.coli K-Gene expression
12 were downloaded from the KEGG/EXPRESSION database, a repository of
expression data for Saccharomyces cerevisiae, E.coli, and Bacilla subtilis. Given
the (R,G) fluorescence intensity pairs for each gene on each array (where R=red
for Cy5 and G=green for Cy3), we evaluated the expression level by the log ratio
log(RS − RB)/(GS − GB), where GB is control-background, GS is control-signal,
RB is target-background, and RS is target-signal, respectively. We then used a
Gaussian RBF kernel with unit width to obtain the expression Gram matrix.

This results in three 740 × 740 kernel Gram matrices, which we denote by
Kpathway, Kgenome and Kexpression below.

1. With identification numbers ex0000287 to ex0000334 in the KEGG/EXPRESSION
database.
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Table 10.1 List of experiments performed to detect operons in the E.coli genome. For
OKCCA and IKCCA methods, an ordinary KCCA is performed between the two kernels
in the columns Kernel 1 and Kernel 2. For the MKCCA method, a multiple KCCA
is performed between the three kernels. For the KPCA method, an ordinary KPCA is
performed on Kernel 1. In each case, operons are then predicted by the gene selection
method described in subsection 10.2.5

Name Abbr. Method Kernel 1 Kernel 2 Kernel 3

OKCCA-a O-a KCCA Kpathway Kgenome -

OKCCA-b O-a KCCA Kgenome Kexpression -

OKCCA-c O-a KCCA Kexpression Kpathway -

MKCCA M MKCCA Kpathway Kgenome Kexpression

IKCCA-a I-a IKCCA Kgenome + Kexpression Kpathway -

IKCCA-b I-a IKCCA Kexpression + Kpathway Kgenome -

IKCCA-c I-a IKCCA Kpathway + Kgenome Kexpression -

KPCA-a S-a KPCA Kpathway - -

KPCA-b S-a KPCA Kgenome - -

KPCA-c S-a KPCA Kexpression - -

10.3.3 Experiments

We performed successively ordinary KCCA (OKCCA) between the three possible
pairs of kernels, MKCCA between the three kernels, and IKCCA between all splits
of the three kernels into two groups. To confirm the improvement due to the
comparison and integration of several attributes, we also performed ordinary kernel
PCA on each single data set (e.g., pathway alone, genome alone, and expression
alone). Table 10.1 summarizes these experiments.

We then applied the gene selection procedure described in subsection 10.2.5 with
a varying threshold, and compared the set of genes selected at a given threshold
with a database of known operons (Ito et al., 1999). By varying the threshold,
we computed the number of selected genes that really belong to a known operon
(true positives) as a function of the number of selected genes that do not belong
to a known operon (false positive). We therefore obtained a receiver operating
characteristic (ROC) curve (Gribskov and Robinson, 1996), that is a plot of true
positive as a function of false positives, for each CCA method.

10.3.4 Results

Figure 10.2 shows multiple cross-scatterplots of the first canonical variates obtained
with the MKCCA method between pathway, genome, and expression. Figures 10.3
shows scattersplots of the first canonical variates obtained with the IKCCA-a,-
b, and -c methods. In these scatterplots each point corresponds to one gene. The
diagonal shapes of the clouds of points indicate that correlations have been detected
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Figure 10.2 Multiple cross-scatterplots of the first canonical variates in MKCCA. In
each plot, a circle corresponds to a gene. MKCCA extracts one canonical variate for each
of the three data sets: pathway, genome, and expression. These plots highlight the pairwise
correlations between these canonical variates.

in all cases. The correlations detected are mostly due to the genes with high or low
scores, in particular in MKCCA, IKCCA-a, and IKCCA-b.

Operons are likely to form clusters simultaneously in all feature spaces defined
by the three kernels considered. As a result, they might be the cause behind the
first canonical correlation, in which case genes that form operons are more likely to
contribute strongly to the canonical correlation than are others. This motivates the
use of the object selection methods described in subsection 10.2.5 with the goal of
detecting genes that belong to operons. It should be noted here that we don’t tryOperon detection
to separate different operons, but rather to separate operon genes from the rest.

Figure 10.4 shows the ROC curves for the task of detecting operon genes with
the object selection method described in subsection 10.2.5 applied to each CCA
method in table 10.1. Compared with the performance of the approach applied to
a single data set, the detection rates have been improved by the comparison and
integration of several data sets. Table 10.2 shows the number of genes correctly
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(a)

(b)

(c)

Figure 10.3 Scatterplots of the first canonical variates in IKCCA-a (pathway vs. genome
+ expression), IKCCA-b (genome vs. expression + pathway), and IKCCA-c (expression
vs. pathway + genome). In each case, the plot highlights the canonical correlation between
the two variates extracted by IKCCA.
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Figure 10.4 ROC curves for the detection of operon genes. O-a, -b, -c indicate OKCCA-
a, -b, -c, respectively; M indicates MKCCA; I-a, -b, -c indicate IKCCA-a, -b, -c respec-
tively; S-a, -b, -c indicate KPCA-a, -b, -c respectively. For each method, the gene selection
method described in subsection 10.2.5 was performed with a varying threshold in order
to vary the number of genes selected. These curves show the number of selected genes
that belong to known operons (true positives on the y-axis) as a function of the number
of genes selected even though they don’t belong to known operons (false positives on the
x-axis).



226 Heterogeneous Data Comparison and Gene Selection with Kernel CCA

Table 10.2 Number of correctly detected genes based on the first canonical scores in
each KCCA. We set the threshold such that 10% of all genes with high scores (74 out of
740 genes) are selected.

Operon (# of genes) O-a O-b O-c M I-a I-b I-c

Biotin metabolism (3) 3 1 0 3 3 3 0

Fatty acid (short-chain) metabolism (3) 0 3 0 2 0 3 3

Fumarate reductase (4) 4 0 2 4 4 4 0

Galactose metabolism (4) 4 0 0 4 3 4 1

Glycerol-3-phosphate dehydrogenase (3) 0 3 3 3 3 3 3

Menaquinone (vitamin K2) biosynthesis (5) 0 3 0 0 4 0 0

NADH dehydrogenase (13) 0 0 0 0 0 13 0
...

...
...

...
...

...
...

...

Total number (280) 39 34 27 37 42 52 28

selected by each method for several known operons when we set the threshold such
that 10% of all genes (74 out of 740 genes) are selected, for instance.

The best operon detection performance is obtained by IKCCA-b, which cor-
responds to correlations between Kgenome and Kpathway + Kexpression. Next
are IKCCA-a, corresponding to correlations between Kpathway and Kgenome +
Kexpression, and OKCCA-a, corresponding to correlations between Kgenome and
Kpathway. The worst methods are OKCCA-c, IKCCA-c, and OKCCA-b, which cor-
respond to correlations between Kexpression and another kernel involving Kpathway

or Kgenome, or both.
These results suggest several remarks. First, a clear hierarchy appears between

the three kernels. Kgenome is the one that contains the most information aboutKernel hierarchy
operons, as seen from the good performance of the methods that detect correlations
between Kgenome alone and other kernels. It is closely followed by Kpathway.
Kexpression is clearly less related to operons, as shown by the poor performance
of the experiments where canonical correlations were driven by Kexpression. The
major contribution of Kgenome in the detection of operons makes sense, by the
definition itself of operons, which are clusters of genes on the genome. The relatively
poor performance of OKCCA-b (Kgenome vs. Kexpression), and more generally of
all experiments involving Kexpression alone, seems to indicate that the quality
of the expression data used is poor, since genes in an operon are supposed to
be coregulated. In contrast, the good performance of Kpathway suggests that the
pathway database is of reasonable quality.

Second, in spite of the poor quality of the expression data, it appears that the
best performance is obtained by using the three kernels in the form of canonical
correlations between Kgenome and Kpathway+Kexpression. This means that IKCCA-Advantage of

kernel
combination

b is able to somehow denoise the expression data and extract from a combination of
pathway information and expression data a meaningful correlation with the genome
data that outperforms the correlation detected by each data set alone with the
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Figure 10.5 An example of known operons in the operon data library. The genes in
known operons are represented by the corresponding EC numbers, and are outlined in
bold boxes.

genome data. This experiment is a typical example where IKCCA is more relevant
than MKCCA and OKCCA, because of the difference in the information about
operons contained in each data set.

For visualization the genes detected can be mapped to the KEGG/pathwayVisualization
visualization tool. As an example, figure 10.5 shows a very local picture of the large
metabolic network, namely biotin metabolism, together with 3 genes known to form
an operon (the genes respectively marked 2.3.1.47, 6.3.3.3, and 2.8.1.6). Figure 10.6,
on the other hand, shows the genes selected by the IKCCA-a method which belong
to the biotin metabolism, when the threshold of the gene selection procedure is
set in such a way that 10% (74) of all genes are selected. The three known operon
genes are selected, as well as a fourth gene (JW0757) annotated 2.6.1.62. Figure 10.7
shows the positions of the four selected genes on the genome, where genes JW0757,
JW0758, JW0759, and JW0761 on the genome correspond to their product enzymes
EC 2.6.1.62, EC 2.8.1.6, EC 2.3.1.47, and EC 6.3.3.3 respectively in the pathway.
One can observe that the four genes selected catalyze four successive reactions in
the biotin pathway, and they are adjacent on the genome. The reason why the gene
JW0757 does not belong to the operon formed by the three other genes is that its
translation direction is different from that of the other genes. This difference is an
important factor in the mechanism of transcription, because a transcription starts
from the promoter at the beginning of genes in the same direction. This suggests
that further improvements might result from taking into account the direction of
the genes in the genome kernel function, which currently only contains distance
information.
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Figure 10.6 An example of operons predicted by IKCCA. The genes selected are
represented by the corresponding EC numbers, and colored in gray.

JW0757 JW0758 JW0759 JW0760 JW0761

Figure 10.7 The three genes JW0758, JW0759, and JW0761 (corresponding to EC
2.8.1.6, EC 2.3.1.47, and EC 6.3.3.3 respectively in the biotin pathway) are part of an
operon. Our gene selection method included the gene JW0757 (corresponding to EC
2.6.1.62 in the pathway) in the operon because it is close to the other genes in the genome
and has a similar function. This is a mistake, however, because the orientation of this
gene, which corresponds to the direction of translation, is opposite that of the remaining
genes.

10.4 Discussion and Conclusion

In this chapter we proposed various approaches to investigate the correlation be-
tween heterogeneous genomic data. We proposed several generalized formulations
of ordinary KCCA and derived a gene selection procedure based on the newly in-
troduced canonical score. The integration of different types of genomic data (e.g.,
biochemical pathways, genomes, and expression data) is a key problem in compu-
tational biology nowadays. When data types are different (e.g., graphs, strings, and
vectors), integration strategies often rely on various heuristic approaches, which
depend on the types of data. The originality of our approach is the extension of
the concept of correlation for nonvectorial data and integration of genomic data in
a rigorous mathematical framework common to all types.
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The proposed methods enable us to automatically find correlated directions,
along which high/low scoring genes tend to share similarities with respect to
multiple biological attributes. These methods give encouraging results on the
problem of recognizing the genes that belong to operons in the E. coli genome,
by comparing three data sets corresponding to functional relationships between
genes in metabolic pathways, positional relationships along the chromosome, and
coexpression relationships as observed by gene expression data. We observed that
generalized KCCAs (MKCCA and IKCCA) outperform ordinary KCCAs in this
context. In our preliminary results the number of correct operon candidates selected
by MKCCA at a given rate of false predictions tends to be smaller than that selected
by the best choice of IKCCA, that is, when the genome data set is compared to
the combination of the pathway and the expression data sets. One explanation for
this difference in performance might be the fact that MKCCA looks for correlations
simultaneously among all pairs of data sets. It would work well if the genes in an
operon were systematically similar to each other with respect to all three sources of
information we used. To the contrary, in our IKCCA setting, we relax the constraint
of having a correlation between gene positions in the pathways and gene expression
(which alone gave the worst results), and rather focus on detection of correlations
between positions on the genome on the one hand, and positions on the pathways
or expression profile on the other. Due to noise and errors in the data, this less
constrained problem might detect biological phenomena (operons in our case) more
easily than the MKCCA approach. We conjecture that as the number of data
sets increases, the performance of MKCCA might decrease because it becomes too
difficult to impose correlation constraints between any two data sets. In that case
it might be more efficient to try to detect correlations between a smaller number of
data sets, obtained themselves by combining the initial data sets available, as we
did in IKCCA.

From the viewpoint of algorithms, much work remains to be done on testing the
influence of kernel parameters on the final performance of the methods. Any real-
world application of these methods might require a fine-tuning of each kernel, as
well as of the regularization parameters used in the KCCA algorithms.

Finally, it should be pointed out that the canonical variates extracted from
the comparison of several data sets can be used as new representations of the
genes themselves. This avenue was investigated by Vert and Kanehisa (2003b) with
promising results for gene function prediction from heterogeneous data.
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An important theme in bioinformatics is the leveraging of different descriptions of a
biological phenomenon, each capturing different aspects of the phenomenon. Many
sources of information concerning genes and proteins are now available, such as
sequence, expression, interaction, and regulation data. More data types are going
to be available in the near future, such as array-based fitness profiles and protein-
protein interaction data from mass spectrometry. A variety of inferential problems
in bioinformatics—such as gene function prediction, prediction of protein structure
and localization, and inference of regulatory and metabolic networks—could benefit
from a methodology that allows different sources of information to be treated in a
unified way, merging them into a single representation rather than using only the
description that is judged to be the most relevant at hand.

This chapter describes a computational framework for integrating and drawing
inferences from a collection of genome-wide measurements. Each data set is repre-
sented via a kernel function, which defines generalized similarity relationships be-
tween pairs of entities, such as genes or proteins. The kernel representation is both
flexible and efficient, and provides a principled framework in which many types of
data can be represented, including vectors, strings, trees, and graphs. Furthermore,
kernel functions derived from different types of data can be combined in a straight-
forward fashion—recent advances in the theory of kernel methods have provided
efficient algorithms to perform such combinations in an optimal way. These meth-
ods formulate the problem of optimal kernel combination as a convex optimization
problem that can be solved with semidefinite programming techniques.

After introducing the semidefinite programming techniques, we illustrate their
use in two domains: (1) the problem of identifying membrane proteins in yeast, and
(2) the prediction of functional classifications of proteins in yeast. We base these
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predictions on a variety of sources of information, including amino acid sequence,
hydropathy profiles, gene expression data, known protein-protein interactions, and
known protein complexes. We show that a support vector machine (SVM) trained
from all of these data, using the combined kernel, performs significantly better than
the same algorithm trained on any single type of data, and better than previously
described approaches.

11.1 Introduction

Much research in computational biology involves drawing statistically sound infer-
ences from collections of data. For example, the function of an unannotated protein
sequence can be predicted based on an observed similarity between that protein
sequence and the sequence of a protein of known function. Related methodologies
involve inferring related functions of two proteins if they occur in fused form in
some other organism, if they co-occur in multiple species, if their corresponding
messenger RNAs (mRNAs) share similar expression patterns, or if the proteins
interact with one another.

It seems natural that, while all such data sets contain important pieces of
information about each gene or protein, the comparison and fusion of these data
should produce a much more sophisticated picture of the relations among proteins,
and a more detailed representation of each protein. Especially the recent availability
of multiple types of genome-wide data that provide biologists with complementary
views of a single genome highlights the need for machine learning algorithms that
unify these views and exploit this fused representation. Combining information from
different sources contributes to forming a complete picture of the relations between
the different components of a genome, enhancing the total information about the
problem at hand.

In yeast, for example, for a given gene we typically know the protein it encodes,
that protein’s similarity to other proteins, its hydrophobicity profile, the mRNA
expression levels associated with the given gene under hundreds of experimental
conditions, the occurrences of known or inferred transcription factor binding sites
in the upstream region of that gene, and the identities of many of the proteins that
interact with the given gene’s protein product or form a complex with it. Each of
these distinct data types provides one view of the molecular machinery of the cell.
In the near future, research in bioinformatics will focus more and more heavily on
methods of data fusion.

One problem with this approach, however, is that genomic data come in a wide
variety of data formats: expression data are expressed as vectors or time series;
protein sequence data as strings from a 20-symbol alphabet; gene sequences are
strings from a different (4-symbol) alphabet; protein-protein interactions are best
expressed as graphs, and so on.

This chapter presents a computational and statistical framework for integrating
heterogeneous descriptions of the same set of genes, proteins, or other entities. The
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approach relies on the use of kernel-based statistical learning methods that have
already proved to be very useful tools in bioinformatics (Jaakkola et al., 1999;
Brown et al., 2000; Furey et al., 2000; Zien et al., 2000). These methods represent
the data by means of a kernel function, which defines similarities between pairs
of genes, proteins, and so on. Such similarities can be quite complex relations,
implicitly capturing aspects of the underlying biological machinery. One reason for
the success of kernel methods is that the kernel function takes relationships that
are implicit in the data and makes them explicit, so that it is easier to detect
patterns. Each kernel function thus extracts a specific type of information from a
given data set, thereby providing a partial description or view of the data. The
goal of this chapter is to find a kernel that best represents all of the information
available for a given statistical learning task. Given many partial descriptions of
the data, we solve the mathematical problem of combining them using a convex
optimization method known as semidefinite programming (SDP) (Boyd et al., 1994;
Nesterov and Nemirovsky, 1994; Vandenberghe and Boyd, 1996). This SDP-based
approach (Lanckriet et al., 2002) yields a general methodology for combining many
partial descriptions of data that are statistically sound, as well as computationally
efficient and robust.

In order to demonstrate the feasibility of these methods, we describe two prob-
lems: identifying membrane proteins in yeast and predicting the function of yeast
proteins. Both problems are statistical learning problems in which a single type
of feature derived from the protein sequence provides only partial information.
We demonstrate that incorporating knowledge derived from the amino acid se-
quences, protein complex data, hydropathy profiles, gene expression data, and
known protein-protein interactions significantly improves classification performance
relative to previously described methods and relative to our method trained on any
single type of data.

We begin by describing related work. Afterward, the main ideas of the kernel
approach to pattern analysis are explained and SDP techniques are introduced
as an advanced instance of convex optimization. After presenting the necessary
mathematical background, we describe how different kernels defined on different
data can be integrated using SDP techniques to provide a unified description.
Finally, we describe the two biological applications of membrane protein recognition
and protein function prediction in yeast.

11.2 Related Work

Considerable work has been devoted to the problem of automatically integrating
genomic data sets, leveraging the interactions and correlations between them to
obtain more refined and higher-level information. Previous research in this field
can be divided into three classes of methods.

The first class treats each data type independently. Inferences are made separately
from each data type, and an inference is deemed correct if the various data agree.
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This type of analysis has been used to validate, for example, gene expression and
protein-protein interaction data (Ge et al., 2001; Grigoriev, 2001; Mrowka et al.,
2003), to validate protein-protein interactions predicted using five different methods
(von Mering et al., 2002), and to infer protein function (Marcotte et al., 1999). A
slightly more complex approach combines multiple data sets using intersections and
unions of the overlapping sets of predictions (Jansen et al., 2002).

The second formalism to represent heterogeneous data is to extract binary
relations between genes from each data source, and represent them as graphs. As
an example, sequence similarity, protein-protein interaction, gene coexpression, or
closeness in a metabolic pathway can be used to define binary relations between
genes. Several groups have attempted to compare the resulting gene graphs using
graph algorithms (Nakaya et al., 2001; Tanay et al., 2002), in particular to extract
clusters of genes that share similarities with respect to different sorts of data.

The third class of techniques uses statistical methods to combine heterogeneous
data. For example, Holmes and Bruno use a joint likelihood model to combine gene
expression and upstream sequence data for finding significant gene clusters (Holmes
and Bruno, 2000). Similarly, Deng et al. (2003b) use a maximum likelihood method
to predict protein-protein interactions and protein function from three types of
data. Alternatively, protein localization can be predicted by converting each data
source into a conditional probabilistic model and integrating via Bayesian calculus
(Drawid and Gerstein, 2000). The general formalism of graphical models, which
includes Bayesian networks and Markov random fields as special cases, provides a
systematic methodology for building such integrated probabilistic models. As an
instance of this methodology, Deng et al. (2003a) developed a Markov random field
model to predict yeast protein function. They found that the use of different sources
of information indeed improved prediction accuracy when compared to using only
one type of data.

This chapter describes a fourth type of data fusion technique, also statistical,
but of a more nonparametric and discriminative flavor. The method, described in
detail below, consists of representing each type of data independently as a matrix
of kernel similarity values. These kernel matrices are then combined to make overall
predictions. An early example of this approach, based on fixed sums of kernel
matrices, showed that combinations of kernels can yield improved gene classification
performance in yeast, relative to learning from a single kernel matrix (Pavlidis et al.,
2001b). The current work takes this methodology further—we use a weighted linear
combination of kernels, and demonstrate how to estimate the kernel weights from
the data. This yields not only predictions that reflect contributions from multiple
data sources but also yields an indication of the relative importance of these sources.

The graphical model formalism, as exemplified by the Markov random field
model of Deng et al. (2003a), has several advantages in the biological setting.Markov random

field In particular, prior knowledge can be readily incorporated into such models, with
standard Bayesian inference algorithms available to combine such knowledge with
data. Moreover, the models are flexible, accommodating a variety of data types
and providing a modular approach to combining multiple data sources. Classic
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discriminative statistical approaches, on the other hand, can provide superior
performance in simple situations, by focusing explicitly on the boundary between
classes, but tend to be significantly less flexible and less able to incorporate
prior knowledge. As we discuss in this chapter, however, recent developments in
kernel methods have yielded a general class of discriminative methods that readily
accommodate nonstandard data types (such as strings, trees, and graphs), allow
prior knowledge to be brought to bear, and provide general machinery for combining
multiple data sources.

11.3 Kernel Methods

Kernel methods work by embedding data items (genes, proteins, etc.) into a vector
space F, called a feature space, and searching for linear relations in such a space.
This embedding is defined implicitly, by specifying an inner product for the feature
space via a positive semidefinite kernel function: k(x1,x2) = 〈Φ(x1), Φ(x2)〉, where
Φ(x1) and Φ(x2) are the embeddings of data items x1 and x2. Note that if all
we require in order to find those linear relations are inner products, then we do
not need to have an explicit representation of the mapping Φ, nor do we even
need to know the nature of the feature space. It suffices to be able to evaluate the
kernel function, which is often much easier than computing the coordinates of the
points explicitly. Evaluating the kernel on all pairs of data items yields a symmetric,
positive definite matrix K known as the kernel matrix, which can be regarded as a
matrix of generalized similarity measures among the data points.

The kernel-based binary classification algorithm that we describe in this chap-
ter, the 1-norm soft margin support vector machine (Boser et al., 1992; Schölkopf
and Smola, 2002), forms a linear discriminant boundary in feature space F,
f(x) = wT Φ(x) + b, where w ∈ F and b ∈ R. Given a labeled sample Sn =
{(x1, y1), . . . , (xn, yn)}, w and b are optimized to maximize the distance (“mar-
gin”) between the positive and negative class, allowing misclassifications (therefore
“soft margin”):

min
w,b,ξ

wT w + C

n∑
i=1

ξi (11.1)

subject to yi(wT Φ(xi) + b) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n,

where C is a regularization parameter, trading off error against margin. By consid-
ering the corresponding dual problem of (11.1), one can prove (see, e.g., Schölkopf
and Smola, 2002) that the weight vector can be expressed as w =

∑n
i=1 αiyiΦ(xi),

where the support values αi are solutions of the following dual quadratic program
(QP):

max
α

2αTe− αT diag(y)Kdiag(y)α : C ≥ α ≥ 0, αTy = 0. (11.2)
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The first stage of processing in a kernel method is thus to reduce the data by
computing the kernel matrix. Given this matrix, and given the labels yi, we can
throw away the original data; the problem of fitting the SVM to data reduces to an
optimization procedure that is based entirely on the kernel matrix and the labels.
Different kernels correspond to different embeddings of the data and thus can be
viewed as capturing different notions of similarity. For example, in a space derived
from amino acid sequences, two genes that are close to one another will have protein
products with very similar amino acid sequences. This amino acid space would be
quite different from a space derived from microarray gene expression measurements,
in which closeness would indicate similarity of the expression profiles of the genes.
Finally, an unlabeled data item xnew can be classified by computing the linear
function

f(xnew) = wT Φ(xnew) + b =
n∑

i=1

αiyik(xi,xnew) + b.

If f(xnew) is positive, then we classify xnew as belonging to class +1; otherwise, we
classify xnew as belonging to class −1.

11.4 Semidefinite Programming

In this section we review the basic definition of SDP as well as some important con-
cepts and key results. Details and proofs can be found in Boyd and Vandenberghe
(2001).

SDP (Nesterov and Nemirovsky, 1994; Vandenberghe and Boyd, 1996; Boyd
and Vandenberghe, 2001) deals with the optimization of convex functions over the
convex cone1 of symmetric, positive definite matrices

P =
{
X ∈ R

p×p | X = XT , X � 0
}

,

or affine subsets of this cone. As explained earlier, every positive definite and sym-
metric matrix is a kernel matrix, and conversely, every kernel matrix is symmetric
and positive definite. Therefore P can be viewed as a search space for possible kernel
matrices. This consideration leads to the key problem addressed in this chapter—
we wish to specify a convex cost function that will enable us to learn the optimal
kernel matrix within P using SDP.

1. S ⊆ d is a convex cone iff ∀x,y ∈ S,∀λ, μ ≥ 0 : λx + μy ∈ S.
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11.4.1 Definition

A linear matrix inequality (LMI) is a constraint of the form

F (u) := F0 + u1F1 + . . . + uqFq � 0.

Here, u is the vector of decision variables, and F0, . . . , Fq are given symmetric p×p

matrices. The notation F (u) � 0 means that the symmetric matrix F is negative
semidefinite. Note that such a constraint is in general a nonlinear constraint; the
term “linear” in the name LMI merely emphasizes that F is affine in u. Perhaps
the most important feature of an LMI constraint is its convexity: the set of u that
satisfy the LMI is a convex set.

An LMI constraint can be seen as an infinite set of scalar, affine constraints.
Indeed, for a given u, F (u) � 0 iff zT F (u)z ≤ 0 for every z; every constraint
indexed by z is an affine inequality in the ordinary sense, that is, the left-hand
side of the inequality is a scalar, composed of a linear term in u and a constant
term. Alternatively, using a standard result from linear algebra, we may state the
constraint F (u) � 0 as

∀Z ∈ P : trace(F (u)Z) ≤ 0. (11.3)

This can be seen by writing down the spectral decomposition of Z and using the
fact that zT F (u)z ≤ 0 for every z.

An SDP is an optimization problem with a linear objective, and linear matrix
inequality and affine equality constraints.

Definition 11.1 A semidefinite program is a problem of the form

min
u

cT u (11.4)

subject to F j(u) = F j
0 + u1F

j
1 + . . . + uqF

j
q � 0, j = 1, . . . , L

Au = b,

where u ∈ R
q is the vector of decision variables, c ∈ Rq is the objective vector, and

matrices F j
i = (F j

i )T ∈ Rp×p are given.

By convexity of their LMI constraints, SDPs are convex optimization problems.
The usefulness of the SDP formalism stems from two important facts. First, despite
the seemingly very specialized form of SDPs, they arise in a host of applications;
second, there exist “interior-point” algorithms to globally solve SDPs that have
extremely good theoretical and practical computational efficiency (Vandenberghe
and Boyd, 1996).

One very useful tool to reduce a problem to an SDP is the so-called Schur
complement lemma.
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Lemma 11.2 (Schur complement lemma) Consider the partitioned symmetric
matrix

X = XT =

(
A B

BT C

)
,

where A and C are square and symmetric. If det(A) �= 0, we define the Schur
complement of A in X by the matrix S = C − BT A−1B. The Schur complement
lemma states that if A � 0, then X � 0 iff S � 0.

To illustrate how this lemma can be used to cast a nonlinear convex optimization
problem as an SDP, consider the following result:

Lemma 11.3 The quadratically constrained quadratic program (QCQP)

min
u

f0(u) (11.5)

subject to fi(u) ≤ 0, i = 1, . . . , M,

with fi(u) � (Aiu + bi)T (Aiu + bi)− cT
i u− di, is equivalent to the SDP:

min
u,t

t (11.6)

subject to

(
I A0u + b0

(A0u + b0)T c0
T u + d0 + t

)
� 0,(

I Aiu + bi

(Aiu + bi)T cT
i u + di

)
� 0, i = 1, . . . , M.

This can be seen by rewriting the QCQP (11.5) as

min
u,t

t

subject to t− f0(u) ≥ 0,

−fi(u) ≥ 0, i = 1, . . . , M.

Note that for a fixed and feasible u, t = f0 (u) is the optimal solution. The convex
quadratic inequality t− f0(u) = (t + c0

T u + d0)− (A0u + b0)T I−1(A0u + b0) ≥ 0
is now equivalent to the following LMI, using the Schur complement lemma 11.2:(

I A0u + b0

(A0u + b0)T c0
T u + d0 + t

)
� 0.

Similar steps for the other quadratic inequality constraints finally yield (11.6), an
SDP in standard form (11.4), equivalent to (11.5). This shows that a QCQP can be
cast as an SDP. Of course, in practice a QCQP should not be solved using general-
purpose SDP solvers, since the particular structure of the problem at hand can be
efficiently exploited. The above does show that QCQPs, and in particular, linear
programming problems, belong to the SDP family.
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11.4.2 Duality

An important principle in optimization—perhaps the most important principle—is
that of duality. To illustrate duality in the case of an SDP, we first review basic
concepts in duality theory and then show how they can be extended to SDP. In
particular, duality will give insights into optimality conditions for the SDP.

Consider an optimization problem with n variables and m scalar constraints

min
u

f0(u) (11.7)

subject to fi(u) ≤ 0, i = 1, . . . , m,

where u ∈ R
n. In the context of duality, problem (11.7) is called the primal problem;

we denote its optimal value p∗. For now, we do not assume convexity.

Definition 11.4 (Lagrangian) The Lagrangian L : R
n+m → R corresponding

to the minimization problem (11.7) is defined as

L(u, λ) = f0(u) + λ1f1(u) + . . . + λmfm(u).

The λi ∈ R, i = 1, . . . , m are called Lagrange multipliers or dual variables.

One can now notice that

h(u) = max
λ≥0

L(u, λ) =

{
f0(u) if fi(u) ≤ 0, i = 1, . . . , m

+∞ otherwise.
(11.8)

So, the function h(u) coincides with the objective f0(u) in regions where the
constraints fi(u) ≤ 0, i = 1, . . . , m are satisfied and h(u) = +∞ in infeasible
regions. In other words, h acts as a “barrier” of the feasible set of the primal
problem. Thus we can as well use h(u) as objective function and rewrite the original
primal problem (11.7) as an unconstrained optimization problem:

p∗ = min
u

max
λ≥0

L(u, λ). (11.9)

The notion of weak duality amounts to exchanging the “min” and “max” operators
in the above formulation, resulting in a lower bound on the optimal value of the
primal problem. Strong duality refers to the case where this exchange can be done
without altering the value of the result: the lower bound is actually equal to the
optimal value p∗. While weak duality always holds, even if the primal problem
(11.9) is not convex, strong duality may not hold. However, for a large class of
generic convex problems, strong duality holds.

Lemma 11.5 (Weak duality) For all functions f0, f1, . . . , fm in (11.7), not nec-
essarily convex, we can exchange the max and the min and get a lower bound on
p∗:

d∗ = max
λ≥0

min
u

L(u, λ) ≤ min
u

max
λ≥0

L(u, λ) = p∗.
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The objective function of the maximization problem is now called the (Lagrange)
dual function.

Definition 11.6 (Lagrange dual function) The (Lagrange) dual function g :
Rm → R is defined as

g(λ) = min
u

L(u, λ)

= min
u

f0(u) + λ1f1(u) + . . . + λmfm(u). (11.10)

Furthermore g(λ) is concave, even if the fi(u) are not convex.

The concavity can easily be seen by considering first that for a given u, L(u, λ) is
an affine function of λ and hence is a concave function. Since g(λ) is the pointwise
minimum of such concave functions, it is concave.

Definition 11.7 (Lagrange dual problem) The Lagrange dual problem is de-
fined as

d∗ = max
λ≥0

g(λ).

Since g(λ) is concave, this will always be a convex optimization problem, even if
the primal is not. By weak duality, we always have d∗ ≤ p∗, even for nonconvex
problems. The value p∗ − d∗ is called the duality gap. For convex problems, we
usually (although not always) have strong duality at the optimum, i.e.,

d∗ = p∗,

which is also referred to as a zero duality gap. For convex problems, a sufficient
condition for zero duality gap is provided by Slater’s condition:

Lemma 11.8 (Slater’s condition) If the primal problem (11.7) is convex and is
strictly feasible, i.e., ∃ u0 : fi(u0) < 0, i = 1, . . . , m, then

p∗ = d∗.

11.4.3 SDP Duality and Optimality Conditions

Consider for simplicity the case of an SDP with a single LMI constraint, and no
affine equalities:

p∗ = min
u

cT u subject to F (u) = F0 + u1F1 + . . . uqFq � 0. (11.11)

The general case of multiple LMI constraints and affine equalities can be handled by
elimination of the latter and using block-diagonal matrices to represent the former
as a single LMI.

The classic Lagrange duality theory outlined in the previous section does not
directly apply here, since we are not dealing with finitely many constraints in
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scalar form; as noted earlier, the LMI constraint involves an infinite number of such
constraints, of the form (11.3). One way to handle such constraints is to introduce
a Lagrangian of the form

L(u, Z) = cTu + trace(ZF (u)),

where the dual variable Z is now a symmetric matrix, of same size as F (u). We can
check that such a Lagrange function fulfills the same role assigned to the function
defined in definition 11.4 for the case with scalar constraints. Indeed, if we define
h(u) = maxZ�0 L(u, Z), then

h(u) = max
Z�0

L(u, Z) =

{
cT u if F (u) � 0,

+∞ otherwise.
(11.12)

Thus, h(u) is a barrier for the primal SDP (11.11), that is, it coincides with the
objective of (11.11) on its feasible set, and is infinite otherwise. Notice that to the
LMI constraint we now associate a multiplier matrix, which will be constrained to
the positive semidefinite cone.

In the above, we made use of the fact that, for a given symmetric matrix F ,

Θ(F ) := sup
Z�0

trace(ZF )

is +∞ if F has a positive eigenvalue, and zero if F is negative semidefinite. This
property is obvious for diagonal matrices, since in that case the variable Z can
be constrained to be diagonal without loss of generality. The general case follows
from the fact that if F has the eigenvalue decomposition F = UΛUT , where Λ
is a diagonal matrix containing the eigenvalues of F , and U is orthogonal, then
trace(ZF ) = trace(Z ′Λ), where Z ′ = UT ZU spans the positive semidefinite cone
whenever Z does.

Using the above Lagrangian, one can cast the original problem (11.11) as an
unconstrained optimization problem:

p∗ = min
u

max
Z�0

L(u, Z).

By weak duality, we obtain a lower bound on p∗ by exchanging the min and max:

d∗ = max
Z�0

min
u

L(u, Z) ≤ min
u

max
Z�0

L(u, Z) = p∗.

The inner minimization problem is easily solved analytically, due to the special
structure of the SDP. We obtain a closed form for the (Lagrange) dual function:

g(Z) = min
u

L(u, Z) = min
u

cT u + trace(ZF0) +
q∑

i=1

ui trace(ZFi)

=

{
trace(ZF0) if ci = −trace(ZFi), i = 1, . . . , q

−∞ otherwise.
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The dual problem can be explicitly stated as follows:

d∗ = max
Z�0

min
u

L(u, Z)

= max
Z

trace(ZF0) subject to Z � 0, ci = −trace(ZFi), i = 1, . . . , q. (11.13)

We observe that the above problem is an SDP, with a single LMI constraint and q

affine equalities in the matrix dual variable Z.
While weak duality always holds, strong duality may not, even for SDPs. Not

surprisingly, a Slater-type condition ensures strong duality. Precisely, if the primal
SDP (11.11) is strictly feasible, that is, there exist a u0 such that F (u0) ≺ 0, then
p∗ = d∗. If, in addition, the dual problem is also strictly feasible, meaning that
there exist Z � 0 such that ci = trace(ZFi), i = 1, . . . , q, then both primal and
dual optimal values are attained by some optimal pair (u∗, Z∗). In that case, we
can characterize such optimal pairs as follows. In view of the equality constraints
of the dual problem, the duality gap can be expressed as

p∗ − d∗ = cT u∗ − trace(Z∗F0)

= −trace(Z∗F (u∗)).

A zero duality gap is equivalent to trace(Z∗F (u∗)) = 0, which in turn is equivalent
to Z∗F (u∗) = O, where O denotes the zero matrix, since the product of a positive
semidefinite and a negative semidefinite matrix has zero trace iff it is zero.

To summarize, consider the SDP (11.11) and its Lagrange dual (11.13). If either
problem is strictly feasible, then they share the same optimal value. If both problems
are strictly feasible, then the optimal values of both problems are attained and
coincide. In this case, a primal-dual pair (u∗, Z∗) is optimal iff

F (u∗) � 0,

Z∗ � 0,

ci = −trace(Z∗Fi), i = 1, . . . , q,

Z∗F (u∗) = O.

The above conditions represent the expression of the general Karush-Kuhn-Tucker
(KKT) conditions in the SDP setting. The first three sets of conditions express that
u∗ and Z∗ are feasible for their respective problems; the last condition expresses a
complementarity condition.

For a pair of strictly feasible primal-dual SDPs, solving the primal minimization
problem is equivalent to maximizing the dual problem and both can thus be
considered simultaneously. Algorithms indeed make use of this relationship and
use the duality gap as a stopping criterion. A general-purpose program such as
SeDuMi (Sturm, 1999) handles those problems efficiently. This code uses interior-
point methods for SDP (Nesterov and Nemirovsky, 1994); these methods have a
worst-case complexity of O(q2p2.5) for the general problem (11.11). In practice,
problem structure can be exploited for great computational savings: for example,
when F (u) ∈ R

p×p consists of L diagonal blocks of size pi, i = 1, . . . , L, these
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methods have a worst-case complexity of O(q2(
∑L

i=1 p2
i )p

0.5) (Vandenberghe and
Boyd, 1996).

11.5 Kernel Methods for Data Fusion

Given multiple related data sets (e.g., gene expression, protein sequence, and
protein-protein interaction data), each kernel function produces, for the yeast
genome, a square matrix in which each entry encodes a particular notion of
similarity of one yeast protein to another. Implicitly, each matrix also defines an
embedding of the proteins in a feature space. Thus, the kernel representation casts
heterogeneous data—variable-length amino acid strings, real-valued gene expression
data, a graph of protein-protein interactions—into the common format of kernel
matrices.

The kernel formalism also allows these various matrices to be combined. Basic
algebraic operations such as addition, multiplication, and exponentiation preserve
the key property of positive definiteness, and thus allow a simple but powerful
algebra of kernels (Berg et al., 1984). For example, given two kernels K1 and K2,
inducing the embeddings Φ1(x) and Φ2(x), respectively, it is possible to define the
kernel K = K1 + K2, inducing the embedding Φ(x) = [Φ1(x), Φ2(x)]. Of even
greater interest, we can consider parameterized combinations of kernels. In this
chapter, given a set of kernels K = {K1, K2, . . . , Km}, we will form the linear
combination

K =
m∑

i=1

μiKi. (11.14)

As we have discussed, fitting an SVM to a single data source involves solving the
quadratic program (11.2) based on the kernel matrix and the labels. It is possible to
extend this optimization problem not only to find optimal discriminant boundaries
but also to find optimal values of the coefficients μi in (11.14) for problems involving
multiple kernels (Lanckriet et al., 2002). In the case of the 1-norm soft margin SVM,
we want to minimize the same cost function (11.1), now with respect to both the
discriminant boundary and the μi. Since the primal problem (11.1) is convex and
strictly feasible, strong duality holds for (11.1) and (11.2) according to lemma 11.8:

ωS1(K) = wT
∗ w∗ + C

n∑
i=1

ξi,∗ (11.15)

= max
α

2αT e−αT diag(y)Kdiag(y)α : C ≥ α ≥ 0, αTy = 0.

where e is a vector containing ones and w∗ and ξi,∗ the optimal values of the primal
variables w and ξi. Training an SVM for a given kernel K � 0 yields the minimal
value (11.15) of (11.1) which is obviously a function of the particular choice of K,
as is expressed explicitly in (11.15) as a dual problem. Let us now optimize this
quantity with respect to the kernel matrix K =

∑m
i=1 μiKi, that is, let us try to
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Figure 11.1 Given two convex functions f(x) and g(x), their pointwise maximum
max{f(x), g(x)} will also be convex, as can easily be seen from the convexity of the
shaded area (called the epigraph).

find the weights μ ∈ Rm for which the corresponding embedding shows minimal
ωS1(K), keeping the trace of K constant:

min
μ∈Rm,K�0

ωS1(K) s.t. trace(K) = c, K =
m∑

i=1

μiKi, (11.16)

where c is a constant. Note that the constraint K � 0 emerges very naturally
because the optimal kernel matrix must indeed come from the cone of positive
definite matrices. We first notice a fundamental property of the quantity ωS1(K),
a property that is crucial for the remainder of this discussion.

Proposition 11.9 The quantity

ωS1(K) = max
α

2αT e−αT diag(y)Kdiag(y)α : C ≥ α ≥ 0, αTy = 0,

is convex in K.

This is easily seen by considering first that 2αTe−αT diag(y)Kdiag(y))α is an
affine function of (the entries of) K, and hence is a convex function as well. Secondly,
we notice that ωS1(K) is the pointwise maximum of such convex functions and is
thus convex. This last statement is illustrated in a discrete case in figure 11.1. It
shows how the pointwise maximum of two functions is convex. This can be extended
for an infinite set of functions, for example, indexed by α in this case.

Problem (11.16) is now a convex optimization problem. The following theorem
shows that, for K =

∑m
i=1 μiKi, this problem can be cast as an SDP:

Theorem 11.10 Given a labeled sample Sn = {(x1, y1), . . . , (xn, yn)} with corre-
sponding set of labels y ∈ Rn and a set of kernel matrices {Ki}mi=1, the kernel
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matrix K =
∑m

i=1 μiKi that optimizes (11.16) can be found by solving the following
convex optimization problem which is an SDP:

min
μ,t,λ,ν,δ

t (11.17)

subject to trace

(
m∑

i=1

μiKi

)
= c,

m∑
i=1

μiKi � 0,(
diag(y)(

∑m
i=1 μiKi)diag(y) e + ν − δ + λy

(e + ν − δ + λy)T t− 2CδTe

)
� 0,

ν, δ ≥ 0.

Proof After substitution of ωS1(K) as defined in (11.15), (11.16) becomes

min
μ∈Rm,K�0

max
α

2αTe−αT diag(y)Kdiag(y)α

subject to C ≥ α ≥ 0, αTy = 0, trace(K) = c, K =
m∑

i=1

μiKi, (11.18)

with c a constant. Assume that K � 0, hence diag(y)Kdiag(y) � 0 (the following
can be extended to the general semidefinite case). We note that ωS1(K) is convex
in K (because of proposition 11.9) and thus in μ, since K is a linear function of μ.
Given the convex constraints in (11.18), the optimization problem is thus certainly
convex in μ. We write this as

min
μ∈Rm,K�0,t

t : t ≥ max
α

2αTe−αT diag(y)Kdiag(y)α,

C ≥ α ≥ 0, αTy = 0, trace(K) = c, K =
m∑

i=1

μiKi. (11.19)

We will now express t ≥ maxα 2αT e−αT diag(y)Kdiag(y)α as an LMI using du-
ality. In particular, we express the constraint using the dual minimization problem.
This will allow us to drop the minimization and use the Schur complement lemma
to obtain an LMI. We explain this now in more detail.

Define the Lagrangian of the maximization problem (11.2) by

L(α, ν, λ, δ) = 2αT e−αT diag(y)Kdiag(y)α + 2νT α + 2λyT α + 2δT (Ce−α),

where λ ∈ R and ν, δ ∈ Rn. By duality, we have

ωS1(K) = max
α

min
ν≥0,δ≥0,λ

L(α, ν, λ, δ) = min
ν≥0,δ≥0,λ

max
α

L(α, ν, λ, δ),
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where ν ≥ 0⇔ νi ≥ 0 for i = 1, . . . , n, similarly for δ. Since diag(y)Kdiag(y) � 0,
at the optimum, we have

α = (diag(y)Kdiag(y))−1 (e + ν − δ + λy),

and can form the dual problem

ωS1(K) = min
ν≥0, δ≥0, λ

(e+ν−δ+λy)T (diag(y)Kdiag(y))−1 (e+ν−δ+λy)+2CδT e

We obtain that for any t > 0, the constraint ωS1(K) ≤ t is true iff there exist ν ≥ 0,
δ > 0 and λ such that

(e + ν − δ + λy)T (diag(y)Kdiag(y))−1 (e + ν − δ + λy) + 2CδTe ≤ t,

or, equivalently (using the Schur complement lemma), such that(
diag(y)Kdiag(y) e + ν − δ + λy

(e + ν − δ + λy)T t− 2CδT e

)
� 0

holds. Taking this into account, (11.19) can be expressed as

min
μ∈Rm,K,t,λ,ν,δ

t (11.20)

subject to trace(K) = c,

K =
m∑

i=1

μiKi � 0,(
diag(y)Kdiag(y) e + ν − δ + λy

(e + ν − δ + λy)T t− 2CδT e

)
� 0,

ν ≥ 0,

δ ≥ 0,

which yields (11.17) after substituting K =
∑m

i=1 μiKi to eliminate K. Notice that
ν ≥ 0⇔ diag(ν) � 0, and thus an LMI; similarly for δ ≥ 0.

Notice that the optimization problem (11.17) is an SDP in the standard form
(11.4). This leads to a general method for learning the optimal combination of
kernel matrices as an SDP problem, which can be solved via efficient interior-point
algorithms (Vandenberghe and Boyd, 1996). Although efficient, these algorithms
will still have a worst-case complexity O(n4.5) in this particular case, according to
the complexity results mentioned in subsection 11.4.3.

In this discussion, the Ki are positive definite by construction; thus K � 0 is
automatically satisfied if the weights μi are constrained to be non-negative. We
will now point out an additional advantage of the restriction μ ≥ 0: it will allow
us to cast the SDP (11.17) as a quadratically constrained quadratic program, which
has beneficial computational effects by lowering the efficiency of the computation
to O(n3) in terms of the number of data points. Also, the constraint can result in
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improved numerical stability—it prevents the algorithm from using large weights
with opposite sign that cancel. Finally, Lanckriet et al. (2002) show that the
constraint also yields better estimates of the generalization performance of these
algorithms.

Solving the original learning problem (11.16) subject to the extra constraint
μ ≥ 0 yields

min
μ∈Rm,K

max
α : C≥α≥0,αT y=0

2αTe−αT diag(y)Kdiag(y)α

subject to trace(K) = c,

K � 0,

K =
m∑

i=1

μiKi,

μ ≥ 0,

when ωS1(K) is expressed using (11.15). We can omit the second constraint, because
this is implied by the last two constraints, since Ki � 0. If we let trace(Ki) = ri,
where r ∈ R

m, the problem reduces to

min
μ

max
α : C≥α≥0,αT y=0

2αT e−αT diag(y)

(
m∑

i=1

μiKi

)
diag(y)α

subject to μT r = c,

μ ≥ 0.

We can write this as

min
μ : μ≥0,μT r=c

max
α : C≥α≥0,αT y=0

2αTe−αT diag(y)

(
m∑

i=1

μiKi

)
diag(y)α

= min
μ : μ≥0,μT r=c

max
α : C≥α≥0,αT y=0

2αT e−
m∑

i=1

μiα
T diag(y)Kidiag(y)α

= max
α : C≥α≥0,αT y=0

min
μ : μ≥0,μT r=c

2αT e−
m∑

i=1

μiα
T diag(y)Kidiag(y)α,

The interchange of the order of the minimization and the maximization is justified
by standard results in convex optimization (see, e.g., Boyd and Vandenberghe, 2001)
since the objective is convex in μ (it is linear in μ) and concave in α, and because
the minimization problem is strictly feasible in μ and the maximization problem
strictly feasible in α. We thus obtain

max
α : C≥α≥0,αT y=0

min
μ : μ≥0,μT r=c

2αTe−
m∑

i=1

μiα
T diag(y)Kidiag(y)α

= max
α : C≥α≥0,αT y=0

[
2αTe− max

μ : μ≥0,μT r=c

(
m∑

i=1

μiα
T diag(y)Kidiag(y)α

)]

= max
α : C≥α≥0,αT y=0

[
2αT e−max

i

(
c

ri
αT diag(y)Kidiag(y)α

)]
.
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Finally, this can be reformulated as follows:

max
α,t

2αTe− ct (11.21)

subject to t ≥ 1
ri

αT diag(y)Kidiag(y)α, i = 1, . . . , m

αT y = 0,

C ≥ α ≥ 0,

or, when the Ki are normalized ([Ki]jj = 1, j = 1, . . . , n, such that ri = n):

max
α,t

2αTe− ct (11.22)

subject to t ≥ 1
n

αT diag(y)Kidiag(y)α, i = 1, . . . , m

αT y = 0,

C ≥ α ≥ 0.

This problem is a convex optimization problem, more precisely a quadratically
constrained quadratic program (Boyd and Vandenberghe, 2001). Thus, the SDP
(11.17) can be cast as a QCQP, which improves the efficiency of the computation to
O(n3) in terms of the number of data points. The optimal weights μi, i = 1, . . . , m,
can be recovered from the primal-dual solution found by standard software such as
SeDuMi (Sturm, 1999).

Thus, by solving a QCQP, we are able to find an adaptive combination of
kernel matrices—and thus an adaptive combination of heterogeneous information
sources—that solves our classification problem. The output of our procedure is a
set of weights μi and a discriminant function based on these weights. We obtain
a classification decision that merges information encoded in the various kernel
matrices, and we obtain weights μi that reflect the relative importance of these
information sources.

11.6 Two Biological Applications

In this section, we illustrate the kernel-based approach for fusing heterogeneous
genomic data using SDP for two biologically important problems: membrane protein
prediction and protein function prediction in yeast. More details can be found in
Lanckriet et al. (2003) for membrane protein recognition, and in Lanckriet et al.
(2004) for the protein function classification.

11.6.1 Membrane Protein Classification
Membrane
protein Membrane proteins are proteins that anchor in one of various membranes in the cell.

Many membrane proteins serve important communicative functions. Generally, each
membrane protein passes through the membrane several times. The transmembrane
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Table 11.1 Kernel functions. The table lists the seven kernels used to compare proteins,
the data on which they are defined, and the method for computing similarities. The final
kernel, KRND , is included as a control. All kernels matrices, along with the data from
which they were generated, are available from noble.gs.washington.edu/sdp-svm.

Kernel Data Similarity measure

KSW protein sequences Smith-Waterman

KB protein sequences BLAST

KHMM protein sequences Pfam HMM

KF F T hydropathy profile FFT

KLI protein interactions linear kernel

KD protein interactions diffusion kernel

KE gene expression radial basis kernel

KRND random numbers radial basis kernel

regions of the amino acid sequence are typically hydrophobic, whereas the non-
membrane portions are hydrophilic. This specific hydrophobicity profile of the
protein allows it to anchor itself in the cell membrane.

Because the hydrophobicity profile of a membrane protein is critical to itsHydrophathy
profile function, this profile is better conserved in evolution than the specific amino acid

sequence. Therefore, classic methods for determining whether a protein spans a
membrane (Chen and Rost, 2002) depend upon a hydropathy profile, which plots the
hydrophobicity of the amino acids along the protein (Engleman et al., 1986; Black
and Mould, 1991; Hopp and Woods, 1981). In this subsection, we build on these
classic methods by developing a kernel function that is based on the low-frequency
alternation of hydrophobic and hydrophilic regions in membrane proteins. However,
we also demonstrate that the hydropathy profile provides only partial evidence for
transmembrane regions. Additional information is gleaned from sequence homology
and from protein-protein interactions.

Note that, in general, membrane protein prediction consists in predicting the lo-
cations of multiple transmembrane regions within a single protein. In this example,
however, for the purposes of demonstrating the SDP method, we focus on the binary
prediction task of differentiating between membrane and nonmembrane proteins.

Kernels for Membrane Protein Prediction For the task of membrane protein
classification we experiment with seven kernel matrices derived from three different
types of data: four from the primary protein sequence, two from protein-protein
interaction data, and one from mRNA expression data. These are summarized in
table 11.1.

Pairwise
comparison
kernel

Protein Sequence: Smith-Waterman, BLAST, and Pfam HMM Kernels
A homolog of a membrane protein is likely also to be located in the membrane.
Therefore, we define three kernel matrices based upon standard homology detection
methods. The first two sequence-based kernel matrices (KSW and KB) are gener-
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ated using the BLAST (Altschul et al., 1990) and Smith-Waterman (SW) (Smith
and Waterman, 1981) pairwise sequence comparison algorithms, as described pre-
viously (Liao and Noble, 2002). Because matrices of BLAST or SW scores are not
necessarily positive definite, we represent each protein as a vector of scores (BLAST
and SW log E-values, respectively) against all other proteins. Defining the similarity
between proteins as the inner product between the score vectors (the so-called em-
pirical kernel map, Tsuda, 1999) leads to a valid kernel matrix, one for the BLAST
score and one for the SW score. Note that including in the comparison set proteins
with unknown subcellular locations allows the kernel to exploit these unlabeled
data. The third kernel matrix (KHMM ) is a generalization of the previous pairwisePfam kernel
comparison-based matrices in which the pairwise comparison scores are replaced
by expectation values derived from hidden Markov models (HMMs) in the Pfam
database (Sonnhammer et al., 1997). These similarity measures are not specific to
the membrane protein classification task.

Protein Sequence: FFT Kernel In contrast, the fourth sequence-based kernelFFT kernel
matrix (KFFT ) directly incorporates information about hydrophobicity patterns,
which are known to be useful in identifying membrane proteins. The kernel uses
hydropathy profiles generated from the Kyte-Doolittle index (Kyte and Doolittle,
1982). This kernel compares the frequency content of the hydropathy profiles of the
two proteins. After prefiltering the hydropathy profiles, their Fourier transforms
(describing the frequency content) are computed using a fast Fourier transform
(FFT) algorithm. The frequency contents of different profiles are compared by
applying a Gaussian kernel function, k(x1,x2) = exp(−||x1−x2||2/2σ) with width
σ = 10, to the corresponding vectors of FFT values. This kernel detects periodicities
in the hydropathy profile, a feature that is relevant to the identification of membrane
proteins and complementary to the previous, homology-based kernels.

Protein Interactions: Linear and Diffusion Kernels We expect information
about protein-protein interactions to be informative in this context for two rea-
sons. First, hydrophobic molecules or regions of molecules tend to interact with
each other. Second, transmembrane proteins are often involved in signaling path-
ways, and therefore different membrane proteins are likely to interact with a similar
class of molecules upstream and downstream in these pathways (e.g., hormones up-
stream or kinases downstream). The two protein interaction kernels are generated
using medium- and high-confidence interactions from a database of known inter-
actions (von Mering et al., 2002). These interactions can be represented as an
interaction matrix, in which rows and columns correspond to proteins, and binary
entries indicate whether the two proteins interact.

The first interaction kernel matrix (KLI) is comprised of linear interactions, that
is, inner products of rows and columns from the centered, binary interaction matrix.
The more similar the interaction pattern (corresponding to a row or column from
the interaction matrix) is for a pair of proteins, the larger the inner product will
be.
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An alternative way to represent the same interaction data is to consider the
proteins as nodes in a large graph. In this graph, two proteins are linked when they
interact and otherwise not. Kondor and Lafferty (2002) propose a general methodDiffusion kernel
for establishing similarities between the nodes of a graph, based on a random walk
on the graph. This method efficiently accounts for all possible paths connecting
two nodes, and for the lengths of those paths. Nodes that are connected by shorter
paths or by many paths are considered more similar. The resulting diffusion kernel
generates the second interaction kernel matrix (KD).

An appealing characteristic of the diffusion kernel is its ability, like the empirical
kernel map, to exploit unlabeled data. In order to compute the diffusion kernel,
a graph is constructed using all known protein-protein interactions, including
interactions involving proteins whose subcellular locations are unknown. Therefore,
the diffusion process includes interactions involving unlabeled proteins, even though
the kernel matrix only contains entries for labeled proteins. This allows two labeled
proteins to be considered close to one another if they both interact with an unlabeled
protein.

Gene Expression: Radial Basis Kernel Finally, we also include a kernel
constructed entirely from microarray gene expression measurements. A collection of
441 distinct experiments was downloaded from the Stanford Microarray Database
(genome-www.stanford.edu/microarray). These data provide us with a 441-
element expression vector characterizing each gene. A Gaussian kernel matrix (KE)
is computed from these vectors by applying a Gaussian kernel function with width
σ = 100 to each pair of 441-element vectors, characterizing a pair of genes. Note that
we do not expect that gene expression will be particularly useful for the membrane
classification task. We do not need to make this decision a priori, however; as
explained in the following section, our method is able to provide an a posteriori
measure of how useful a data source is relative to the other sources of data. We
thus include the expression kernel in our experiments to test this aspect of the
method.

Experimental Design In order to test our kernel-based approach in the set-
ting of membrane protein classification, we use as a gold standard the annotations
provided by the Munich Information Center for Protein Sequences Comprehensive
Yeast Genome Database (CYGD) (Mewes et al., 2000). The CYGD assigns sub-
cellular locations to 2318 yeast proteins, of which 497 belong to various membrane
protein classes. The remaining approximately 4000 yeast proteins have uncertain
location and are therefore not used in these experiments.

The primary input to the classification algorithm is the collection of kernel
matrices from table 11.1. Using the SDP techniques described above, we find an
optimal combination of the seven kernel matrices, and the resulting matrix is used
to train an SVM classifier.

For comparison with the SDP/SVM learning algorithm, we consider several
classic biological methods that are commonly used to determine whether a Kyte-
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Doolittle plot corresponds to a membrane protein, as well as a state-of-the-art
technique using HMMs to predict transmembrane helices in proteins (Krogh et al.,
2001; Chen and Rost, 2002). The first method relies on the observation that the
average hydrophobicity of membrane proteins tends to be higher than that of
nonmembrane proteins, because the transmembrane regions are more hydrophobic.
We therefore define f1 as the average hydrophobicity, normalized by the length
of the protein. We will compare the classification performance of our statistical
learning algorithm with this metric.

Clearly, however, f1 is too simplistic. For example, protein regions that are not
transmembrane only induce noise in f1. Therefore, an alternative metric filters
the hydrophobicity plot with a low-pass filter and then computes the number, the
height, and the width of those peaks above a certain threshold (Chen and Rost,
2002). The filter is intended to smooth out periodic effects. We implement two such
filters, choosing values for the filter order and the threshold based on Chen and
Rost (2002). In particular, we define f2 as the area under the 7th-order low-pass
filtered Kyte-Doolittle plot and above a threshold value 2, normalized by the length
of the protein. Similarly, f3 is the corresponding area using a 20th-order filter and
a threshold of 1.6.

Finally, the transmembrane HMM (TMHMM) web server (www.cbs.dtu.dk/
services/TMHMM) is used to make predictions for each protein. In Krogh et al.
(2001), transmembrane proteins are identified by TMHMM using three different
metrics: the expected number of amino acids in transmembrane helices, the number
of transmembrane helices predicted by the N -best algorithm, and the expected
number of transmembrane helices. Only the first two of these metrics are provided
in the TMHMM output. Accordingly, we produce two lists of proteins, ranked by
the number of predicted transmembrane helices (TPH) and by the expected number
of residues in transmembrane helices (TENR).

Each algorithm’s performance is measured by splitting the data into a training
and test set in a ratio of 80:20. We report the receiver operating characteristic
(ROC) score, which is the area under a curve that plots the true positive rate as
a function of the false positive rate for differing classification thresholds (Hanley
and McNeil, 1982; Gribskov and Robinson, 1996). The ROC score measures the
overall quality of the ranking induced by the classifier, rather than the quality of a
single point in that ranking. An ROC score of 0.5 corresponds to random guessing,
and an ROC score of 1.0 implies that the algorithm succeeded in putting all of the
positive examples before all of the negatives. Each experiment is repeated 30 times
with different random splits in order to estimate the variance of the performance
values.

Results We performed computational experiments which study the performance
of the SDP/SVM approach as a function of the number of data sources, compare
the performance of the method to classic biological methods and state-of-the-art
techniques for membrane protein classification, and study the robustness of the
method to the presence of noise.
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Figure 11.2 Combining data sets yields better classification performance. The height
of each bar is proportional to the ROC score of the given membrane protein classification
method. The bars labeled B to E and all correspond to SDP/SVM methods, the bars
labeled f are hydropathy profile metrics, and the bars labeled PH and ENR refer to the
TMHMM methods as defined in the text. Error bars indicate standard error across 30
random train/test splits. The heights of the gray level bars below each plot indicate the
relative weight of the different kernel matrices in the optimal linear combination.

The results from the first three experiments are summarized in figure 11.2. The
plot illustrates that SDP/SVM learns significantly better from the heterogeneous
data than from any single data type. The mean ROC score using all seven kernel
matrices (0.9174 ± 0.0025) is significantly higher than the best ROC score using
only one matrix (0.8487 ± 0.0039 using the diffusion kernel). This improvement
corresponds to a change in test set accuracy of 7.3%, from 81.3% to 88.6%.

As expected, the sequence-based kernels yield good individual performance. This
is evident from the ROC scores. Furthermore, when all seven matrices are used at
once, the SDP assigns relatively large weights to the sequence-based kernels. These
weights are as follows: μB = 1.66, μSW = 1.83, μHMM = 0.93, μFFT = 0.39,
μLI = 0.01, μD = 1.37 and μE = 0.82 (note that for ease of interpretation, we scale
the weights such that their sum is equal to the number m of kernel matrices).
Thus, two of the three kernel matrices that receive weights larger than 1 are
derived from the amino acid sequence. The Smith-Waterman kernel yields better
results than the BLAST kernel, reflecting the fact that BLAST is a heuristic search
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procedure, whereas the Smith-Waterman algorithm guarantees finding the optimal
local alignment of two sequences.

The results also show that the interaction-based diffusion kernel is more informa-
tive than the expression kernel. Not only has the diffusion kernel an individual ROC
score which is significantly higher than the expression kernel, the SDP also assigns
a weight of 1.37 to the diffusion kernel, whereas the expression kernel receives a
weight of 0.82. Accordingly, removing the diffusion kernel reduces the ROC score
from 0.9174 to 0.8984, whereas removing the expression kernel has a smaller effect,
leading to a ROC score of 0.9033. Further description of the results obtained when
various subsets of kernels are used is provided in Lanckriet et al. (2003).

Figure 11.2 also compares the membrane protein classification performance of
the SDP/SVM method with that of previously described techniques. The results
confirm that using learning in this context dramatically improves the results relative
to the simple hydropathy profile approach. Also, the SDP/SVM improves upon the
performance of the TMHMM approach, even when the SVM algorithm uses only
the sequence data KSW or KHMM (ROC of 0.8096± 0.0033 or 0.8382± 0.0038 vs.
0.8018, respectively).

While the SDP/SVM algorithm is a discriminative method that attempts to find
a decision boundary that separates positive and negative instances of membrane
proteins, the TMHMM is a generative method that simply attempts to model
the membrane proteins. As an illustration of the difference, it is known that the
TMHMM tends to yield false positives for sequences containing signal peptides—
hydrophobic sequences in the N-terminal regions of proteins (Chen and Rost,
2002). The SDP/SVM approach tends to avoid these false positives, because signal
peptides appear among the negative instances in the training set. Indeed, as shown
in Lanckriet et al. (2003), signal peptides tend to be highly ranked by the TMHMM,
and are more uniformly spread within the SDP/SVM rankings.

Finally, in order to test the robustness of our approach, a second experiment
was performed in which a randomly generated kernel matrix KRND was included
among the kernel matrices used as input to our algorithm. This kernel matrix was
generated by sampling 100-element vectors for each protein, where each component
of each vector was sampled independently from a standard normal distribution,
and then computing inner products of the 100-element vectors to form KRND.
A control classifier trained using only the random kernel yields an ROC score of
0.5, indicating that KRND is indeed uninformative for the classification problem at
hand. More important, when a classifier is trained using all seven real kernels plus
KRND, SDP assigns the random kernel a weight that is close to zero. Thus, the
ROC score derived from seven matrices does not change when the random matrix
is added, indicating that the method is robust to the presence of noisy, irrelevant
data.
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Table 11.2 Functional categories. The table lists the 13 CYGD functional classifica-
tions used in these experiments. The class listed as “others” is a combination of four
smaller classes: (1) cellular communication/signal transduction mechanism, (2) protein
activity regulation, (3) protein with binding function or cofactor requirement (structural
or catalytic), and (4) transposable elements, viral and plasmid proteins.

Category Size

1 metabolism 1048

2 energy 242

3 cell cycle & DNA processing 600

4 transcription 753

5 protein synthesis 335

6 protein fate 578

7 cellular transport mechanisms & transport 479

8 cell rescue, defense, & virulence 264

9 interaction with cellular environment 193

10 cell fate 411

11 control of cellular organization 192

12 transport facilitation 306

13 others 81

11.6.2 Yeast Function Prediction

As a second test for our kernel-based approach, we follow the experimental paradigm
of Deng et al. (2003a). The task is predicting functional classifications associated
with yeast proteins, and we use as a gold standard the functional catalog provided by
the MIPS Comprehensive Yeast Genome Database (CYGD—mips.gsf.de/proj/
yeast). The top-level categories in the functional hierarchy produce 13 classes (see
table 11.2). These 13 classes contain 3588 proteins; the remaining yeast proteins
have uncertain function and are therefore not used in evaluating the classifier.
Because a given protein can belong to several functional classes, we cast the
prediction problem as 13 binary classification tasks, one for each functional class.

The primary input to the classification algorithm is a collection of kernel matrices
representing different types of data. In order to compare the SDP/SVM approach
to the Markov random field (MRF) method of Deng et al., we perform two variants
of the experiment: one in which the five kernels are restricted to contain precisely
the same binary information as used by the MRF method, and a second experiment
in which two of the kernels use richer representations and a sixth kernel is added.

Kernels for Protein Function Prediction For the first kernel, the domain
structure of each protein is summarized using the mapping provided by SwissProt
v7.5 (us.expasy.org/sprot) from protein sequences to Pfam domains (pfam.
wustl.edu). Each protein is characterized by a 4950-bit vector, in which each bit
represents the presence or absence of one Pfam domain. The kernel function KPfam
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is simply the inner product applied to these vectors. This bit vector representation
was used by the MRF method. In the second experiment, the domain representation
is enriched by adding additional domains (Pfam 9.0 contains 5724 domains) and
by replacing the binary scoring with log E-values derived by comparing the HMMs
with a given protein using the HMMER software toolkit (hmmer.wustl.edu).

Three kernels are derived from CYGD information regarding three differentDiffusion kernel
types of protein interactions: protein-protein interactions, genetic interactions, and
coparticipation in a protein complex, as determined by tandem affinity purification
(TAP). All three data sets can be represented as graphs, with proteins as nodes and
interactions as edges. As explained before, each interaction graph allows establishing
similarities among proteins through the construction of a corresponding diffusion
kernel. This generates three interaction kernel matrices, KGen, KPhys and KTAP .
Because direct physical interaction is not necessarily guaranteed when two proteins
participate in a complex, a smaller diffusion constant—this parameter is required to
construct a diffusion kernel (see Kondor and Lafferty, 2002)—is used to construct
KTAP , that is, τ = 1 instead of τ = 5 for the others.

The fifth kernel is generated using 77 cell cycle gene expression measurements
per gene (Spellman et al., 1998). Two genes with similar expression profiles are
likely to have similar functions; accordingly, Deng et al. convert the expression
matrix to a square binary matrix in which a 1 indicates that the corresponding
pair of expression profiles exhibits a Pearson’s correlation greater than 0.8. We use
this matrix to form a diffusion kernel KExp. In the second experiment, a Gaussian
kernel is defined directly on the expression profiles: for expression profiles x1 and
x2, the kernel is k(x1,x2) = exp(−||x1 − x2||2/2σ) with width σ = 0.5.

In the second experiment, we construct one additional kernel matrix by applyingPairwise
comparison
kernel

the Smith-Waterman pairwise sequence comparison algorithm (Smith and Water-
man, 1981) to the yeast protein sequences. Each protein is represented as a vector
of Smith-Waterman log E-values, computed with respect to all 6355 yeast genes.
The kernel matrix KSW is computed using an inner product applied to pairs of
these vectors. This matrix is complementary to the Pfam domain matrix, captur-
ing sequence similarities among yeast genes, rather than similarities with respect
to the Pfam database.

Results Each algorithm’s performance is measured by performing fivefold cross-
validation three times. For a given split, we again evaluate each classifier by
reporting the ROC score on the test set. For each classification, we measure 15
ROC scores (three fivefold splits), which allows us to estimate the variance of the
score.

The experimental results are summarized in figure 11.3. The figure shows that, for
each of the 13 classifications, the ROC score of the SDP/SVM method is better than
that of the MRF method. Overall, the mean ROC improves from 0.715 to 0.854.
The improvement is consistent and statistically significant across all 13 classes. An
additional improvement, though not as large, is gained by replacing the expression
and Pfam kernels with their enriched versions. The most improvement is offered
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Figure 11.3 Classification performance for the 13 functional classes. The height of each
bar is proportional to the ROC score. The standard deviation across the 15 experiments
is usually 0.01 or smaller, so most of the depicted differences are significant. Black bars
correspond to the MRF method of Deng et al.; gray bars correspond to the SDP/SVM
method using five kernels computed on binary data, and white bars correspond to the
SDP/SVM using the enriched Pfam kernel and replacing the expression kernel with the
SW kernel.

by using the enriched Pfam kernel and replacing the expression kernel with the
Smith-Waterman kernel. The resulting mean ROC is 0.870. Again, the improvement
occurs in every class, although some class-specific differences are not statistically
significant.

Table 11.3 provides detailed results for a single functional classification, the trans-
port facilitation class. The weight assigned to each kernel indicates the impor-
tance that the SDP/SVM procedure assigns to that kernel. The Pfam and Smith-
Waterman kernels yield the largest weights, as well as the largest individual ROC
scores. Note that the combination of kernels performs significantly better than any
single kernel. Results for the other 12 classifications are similar.
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Table 11.3 Kernel weights and ROC scores for the transport facilitation class. The table
shows, for both experiments, the mean weight associated with each kernel, as well as the
ROC score resulting from learning the classification using only that kernel. The final row
lists the ROC score using all kernels.

Kernel Binary data Enriched kernels

Weight ROC Weight ROC

KPfam 2.21 .9331 1.58 .9461

KGen 0.18 .6093 0.21 .6093

KPhys 0.94 .6655 1.01 .6655

KTAP 0.74 .6499 0.49 .6499

KExp 0.93 .5457 — .7126

KSW — — 1.72 .9180

all — .9674 — .9733

11.7 Discussion

We have described a general method for combining heterogeneous genome-wide
data sets in the setting of kernel-based statistical learning algorithms, and we
have demonstrated an application of this method to the problems of classifying
yeast membrane proteins and protein function prediction in yeast. The resulting
SDP/SVM algorithm yields significant improvement relative to an SVM trained
from any single data type, relative to both state-of-the-art and classical biologi-
cal methods for membrane protein prediction, as well as relative to a previously
proposed graphical model approach for fusing heterogeneous genomic data. More-
over, the performance of the algorithm improves consistently in our experiments
as additional genome-wide data sets are added to the kernel representation, if the
additional data contain complementary information.

Kernel-based statistical learning methods have a number of general virtues as
tools for biological data analysis. First, the kernel framework accommodates not
only the vectorial and matrix data that are familiar in classic statistical analysis but
also more exotic data types such as strings, trees, and graphs. The ability to handle
such data is clearly essential to the biological domain. Second, kernels provide
significant opportunities for the incorporation of more specific biological knowledge,
as we have seen with the FFT kernel and the Pfam kernel, and unlabeled data, as
in the diffusion and Smith-Waterman kernels. Third, the growing suite of kernel-
based data analysis algorithms require only that data be reduced to a kernel matrix;
this creates opportunities for standardization. Finally, as we have shown here, the
reduction of heterogeneous data types to the common format of kernel matrices
allows the development of general tools for combining multiple data types. Kernel
matrices are required only to respect the constraint of positive definiteness, and
thus the powerful technique of SDP can be exploited to derive general procedures
for combining data of heterogeneous format and origin.
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We thus envision the development of general libraries of kernel matrices for
biological data, such as those that we have provided at noble.gs.washington.

edu/sdp-svm, that summarize the statistically relevant features of primary data,
encapsulate biological knowledge, and serve as inputs to a wide variety of subsequent
data analyses. Indeed, given the appropriate kernel matrices, the methods that
we have described here are applicable to problems such as the prediction of
protein metabolic, regulatory, and other functional classes; the prediction of protein
subcellular locations; and the prediction of protein-protein interactions.
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The three-dimensional structure of a protein provides crucial information for pre-
dicting its function. However, as it is still a far more difficult and costly task to
measure 3D coordinates of atoms in a protein than to sequence its amino acid com-
position, often we do not know the 3D structures of all the proteins at hand. Let us
consider a kernel matrix that consists of kernel values representing protein similar-
ities in terms of their 3D structures where some of the entries are missing because
structural information about some proteins are not available whereas their amino
acid sequences are readily available. This chapter proposes to estimate the miss-
ing entries by means of another kernel matrix derived from amino acid sequences.
Basically, a parametric model is created from the sequence kernel matrix, and the
missing entries of the structure’s kernel matrix are estimated by fitting this model
to existing entries. For model fitting, we adopt two algorithms: single e-projection
and em algorithm based on the information geometry of positive definite matrices.
For evaluating and demonstrating the performance of our method, we performed
protein classification experiments by using support vector machines (SVMs). Our
results show that these algorithms can effectively estimate the missing entries.

12.1 Introduction

One of the major issues in bioinformatics is the functional annotation of proteins.
Proteins are molecules which play a variety of important roles (functions) in everyProtein structure

and sequence living organism. The function of a protein is determined by its shape, which is
usually called a 3D or tertiary structure, or more simply, structure. Therefore,
protein structure is one of the major factors for investigating the mechanisms of
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proteins. The constant growth of a protein structure database such as the protein
data bank (PDB) (Berman et al., 2000) might be proof of its importance. However,
the protein structures are not always available because measuring 3D coordinates
of every atom of a nano-scale molecule requires very expensive and intensive
experiments. On the other hand, protein amino acid sequences are abundantly
available, as shown by the rapid growth of databases such as Swiss-Prot (O’Donovan
et al., 2002). We can find this fact with a very simple comparison: there are 129,463
sequences in Swiss-Prot and 19,375 structures in PDB as of this writing. Thus,
ongoing research is endeavoring to achieve practical prediction of protein structures
from their amino acid sequences (see figure 12.1 for a brief description of the relation
between sequence and structure of a protein). Although varieties of prediction
methods have been proposed, the prediction of an exact tertiary structure remains
one of the most difficult problems because mechanisms behind the relation between
structure and sequence are not fully clarified yet. Nevertheless it is highly probable
that a sequence contains certain information to infer its structure.

In this chapter, we estimate the relation between two structures instead of
estimating the structure itself, following the ideas in Tsuda et al. (2003). As in other
chapters of this book, we represent n proteins by an n × n kernel matrix, which
is a positive definite similarity matrix where the (i, j)th entry is the similarity
between the ith protein and the jth protein. When we do not have structures
for all proteins, we have to leave the entries of the kernel matrix for unavailable
structures as missing. Obviously, due to missing entries, kernel learning algorithms
such as support vector machines cannot be applied. Our aim is to complete the
missing entries so that the learning algorithms can work on the completed kernel
matrix. Basically we create a parametric model from another kernel matrix derived
from sequences, and fit the model to the existing entries to complete the missing
ones. Our algorithm is derived from a mathematical theory known as information
geometry (Amari, 1995). Finally, we show promising results in protein classification
experiments.

This chapter is organized as follows: Section 12.2 describes some definitions used
in our algorithm. Section 12.3 introduces the information geometry to the space
of positive definite matrices. Based on the geometric concepts, two algorithms for
matrix approximation are presented in section 12.4. Then the protein structure
classification experiment is described in section 12.5. We present our conclusions in
section 12.6.

12.2 Kernel Matrix Completion

Let us consider a kernel function as the similarity measure between two proteins.
There are two types of such functions: kst for structure similarity and ksq forKernel matrices

for structure and
sequence

sequence similarity. We define the two matrices as follows:

Structure kernel matrix D: [D]ij = kst(xi, xj), i, j = 1, · · · , l
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A chain of amino acids

forms secondary structures 
e.g. α-helices (coils)

then folds into a 
particular shape
i.e. 3D structure

Figure 12.1 An overview of protein folding, which illustrates how an amino acid
sequence folds into a protein molecule. A chain of amino acids is a product of translation
of messenger RNA. The sequence forms secondary structures such as α helices (coils) or β
sheets during its folding process. The secondary structure is the fundamental element of
a protein structure. Finally, the sequence folds further into a specific shape which is the
key property in determining the function of the protein. The shape of a protein is called
its 3D structure.

Sequence kernel matrix M : [M ]ij = ksq(xi, xj), i, j = 1, · · · , l
where [M ]ij is the (i, j)th element of a matrix M and xi denotes the ith protein.
The two matrices are assumed to be positive definite such that they are compatible
with kernel methods.

Now the task is to estimate the missing entries of the structure matrix using
the sequence matrix. We create a parametric model of admissible matrices from
the sequence matrix, and estimate missing entries by fitting the model to existing
entries. According to our previous paper (Tsuda et al., 2003), we define the
parametric model as all spectral variants of the sequence matrix which have the
same eigenvectors but different eigenvalues (Cristianini et al., 2002b).

In order to fit a parametric model, the distance between two matrices has to be
determined. A common way is to define the Euclidean distance between matrices
(e.g., the Frobenius norm) and make use of the Euclidean geometry. Recently
Vert and Kanehisa (2003b) tackled the incomplete matrix approximation problem
by means of kernel canonical correlation analysis (CCA). Also Cristianini et al.
(2002b) proposed a similarity measure called “alignment,” which is basically the
cosine between two matrices. In contrast to these methods, which are based onKullback-Leibler

divergence Euclidean geometry, this chapter follows an alternative way: we define the Kullback-
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Leibler (KL) divergence between two kernel matrices and make use of Riemannian
information geometry (Ohara et al., 1996). The KL divergence is derived by
relating a kernel matrix to a covariance matrix of Gaussian distribution. The primal
advantage is that the KL divergence allows us to use the em algorithm (Amari, 1995)
to approximate an incomplete kernel matrix. The e and m steps are formulated as
convex programming problems; moreover, they can be solved analytically when
spectral variants are used as a parametric model.

12.3 Information Geometry of Positive Definite Matrices

In this section, we introduce the information geometry of the space of positive
definite matrices. Only necessary parts of the theory are presented here, so the
reader is referred to Ohara et al. (1996) and Amari and Nagaoka (2000) for details.

Let us define the set of all d× d positive definite matrices as P. The first step isGaussian
distribution to relate a d × d positive definite matrix P ∈ P to the Gaussian distribution with

mean 0 and covariance matrix P :

p(x|P ) =
1

(2π)d/2 detP 1/2
exp

(
−1

2
x�P−1x

)
. (12.1)

It is well known that the Gaussian distributions form an exponential family. AnExponential
family exponential family is a set of distributions that can be written in the following

canonical form:

p(x|θ) = exp(θ�r(x) − ψ(θ)),

where r(x) is the vector of sufficient statistics, θ ∈ �ρ is called the natural
parameter, and ψ(θ) is the normalization factor. When (12.1) is rewritten in the
canonical form, we have the sufficient statistics as

r(x) = −
(

1
2
x2

1,
1
2
x2

2, . . . ,
1
2
x2

d, x1x2, x2x3, . . . , xd−1xd

)�
,

and the natural parameter as

θ =
(
[P−1]11, [P−1]22, . . . , [P−1]dd, [P−1]12, [P−1]23, . . . , [P−1]d−1,d

)�
.

From the viewpoint of information geometry, the natural parameter θ provides aθ-coordinate
system coordinate system (Amari and Nagaoka, 2000) to specify a positive definite matrix

P , which is called the θ-coordinate system (or the e-coordinate system). On the
other hand, there is an alternative representation for the exponential family. Let us
define the mean of ri(x) as ηi: For example, when ri(x) = xsxt,

ηi =
∫

xsxtp(x|θ)dx = Pst.
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This new set of parameters ηi provides another coordinate system, called the η-
coordinate system (or the m-coordinate system):η-coordinate

system
η = (P11, P22, . . . , Pdd, P12, P23, . . . , Pd−1,d)

�
.

Let us consider the following curve θ(t) connecting two points θ1 and θ2 linearly in
θ coordinates:

θ(t) = t(θ2 − θ1) + θ1.

When written is the matrix form, this reads

P−1(t) = t(P−1
2 − P−1

1 ) + P−1
1 .

This curve is regarded as a straight line from the exponential viewpoint and is called
an exponential geodesic or e-geodesic. In particular, each coordinate curve θi = t,
θj = cj (j �= i) is an e-geodesic. When the e-geodesic between any two points in ae-flat
manifold S ⊆ P is included in S, the manifold S is said to be e-flat. On the other
hand, the mixture geodesic or m-geodesic is defined as

η(t) = t(η2 − η1) + η1.

In the matrix form, this reads

P (t) = t(P2 − P1) + P1.

When the m-geodesic between any two points in S is included in S, the manifoldm-flat
S is said to be m-flat.

In information geometry, the distance between probability distributions is defined
as the KL divergence (Amari and Nagaoka, 2000):

KL(p, q) =
∫

p(x) log
p(x)
q(x)

dx.

By relating a positive definite matrix to the covariance matrix of Gaussian (12.1),
we have KL divergence for two matrices P, Q:

KL(P, Q) = tr(Q−1P ) + log detQ− log det P − d. (12.2)

With respect to a manifold S ⊆ P and a point P ∈ P, the projection from P to S is
defined as the point in S closest to P. Since the KL divergence is asymmetric, there
are two kinds of projection:

e-projection: Q∗ = argmin Q∈S KL(Q, P ).

m-projection: Q∗ = argmin Q∈S KL(P, Q).

It is known that the m-projection to an e-flat submanifold is unique, and the e-
projection to an m-flat manifold is unique (Amari and Nagaoka, 2000).
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12.4 Approximating an Incomplete Kernel Matrix

In this section, we describe the em algorithm to approximate an incomplete kernel
matrix (Tsuda et al., 2003). Let x1, . . . , x� ∈ X be the set of samples of interest. In
supervised learning cases, this set includes both training and test sets; thus we are
considering the transductive setting (Vapnik, 1998). Let us assume that the data
are available for the first n samples, and unavailable for the remaining m := �− n

samples. Denote by KI an n×n kernel matrix, which is derived from the data for the
first n samples. In our experiments, KI is derived from the protein 3D structures.
The incomplete kernel matrix is described asIncomplete kernel

matrix

D =

(
KI Dvh

D�
vh Dhh

)
, (12.3)

where Dvh is an n ×m matrix and Dhh is an m ×m symmetric matrix. Since D

has missing entries, it cannot be presented as a point in P. Instead, all the possibleData manifold
kernel matrices form a manifold

D = {D | Dvh ∈ �n×m, Dhh ∈ �m×m, Dhh = D�
hh, D � 0},

where D � 0 means that D is strictly positive definite. We call it the data manifold
as in the conventional EM algorithm (Ikeda et al., 1999). It is easy to verify that
D is an m-flat manifold; hence, the e-projection to D is unique.

Next let us define the parametric model to approximate D. Here the model isSpectral variants
derived as the spectral variants of KB, which is an � × � auxiliary kernel matrix
derived from another information source. Let us decompose KB as

KB =
�∑

i=1

λiviv�
i ,

where λi and vi are the ith eigenvalue and eigenvector, respectively. Define

Mi = viv�
i , (12.4)

then all the spectral variants are represented as

M = {M |M =
�∑

j=1

βjMj , β ∈ ��, M � 0}

We call it the model manifold (Ikeda et al., 1999). For notational simplicity, weModel manifold
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Figure 12.2 Information geometric picture of em algorithm. The data manifold cor-
responds to the set of all completed matrices, whereas the model manifold corresponds
to the set of all spectral variants of a auxiliary matrix. The nearest points are found by
gradually minimizing the KL divergence by repeating e- and m- projections.

choose a different parametrization of M 1:

M = {M |M = (
�∑

j=1

bjMj)−1, b ∈ ��, M � 0}, (12.5)

where bj = 1/βj. It is easily seen that the manifold M is e-flat and m-flat at the
same time. Such a manifold is called dually flat.

Our approximation problem is formulated as finding the nearest points in two
manifolds: Find D ∈ D and M ∈ M that minimize KL divergence KL(D, M).
In geometric terms, this problem is to find the nearest points between e-flat and
m-flat manifolds. It is well known that such a problem can be solved by an alternat-
ing procedure called the em algorithm (Amari, 1995). The em algorithm gradually
minimizes the KL divergence by repeating the e-step and m-step alternately (fig-
ure 12.2).

In the e-step, the following optimization problem is solved with a fixed M : Find
D ∈ D that minimizes KL(D, M) using (12.2). This is rewritten as follows: Find
Dvh and Dhh that minimize

Le = tr(DM−1)− log detD, (12.6)

1. M�M−1 = ( βjMj)
�( 1/βjMj) = βj/βjM

�
j Mj = M�

j Mj = I .
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subject to the constraint that D � 0. Notice that this constraint is not needed,
because

log detD =
�∑

i=1

log μi,

where μi is the ith eigenvalue of D. Here log detD is defined when all eigenvalues
are positive. So, at the optimal solution, D is necessarily positive definite, because
the KL divergence is infinite otherwise. As indicated by information geometry, this
is a convex problem, which can readily be solved by any reasonable optimizer.
Moreover the solution is obtained in a closed form: let us partition M−1 as

M−1 =

(
Svv Svh

S�
vh Shh

)
. (12.7)

The solution to (12.6) is directly obtained by filling the missing entries in the matrix
D with following forms:

Dvh = −KISvhS−1
hh , (12.8)

Dhh = S−1
hh + S−1

hh S�
vhKISvhS−1

hh . (12.9)

In the m-step, the following optimization problem is solved with D being fixed:
Find M ∈M that minimizes KL(D, M). This is rewritten as follows: Find b ∈ ��

that minimizes

Lm =
�∑

j=1

bjtr(MjD)− log det(
�∑

j=1

bjMj) (12.10)

subject to the constraint that
∑�

j=1 bjMj � 0. Notice that this constraint can be
ignored as well. When {Mj}�j=1 are defined as (12.4), the closed-form solution of
(12.10) is obtained as

bi = 1/tr(MiD), i = 1, . . . , �. (12.11)

For detailed derivation of (12.8), (12.9), and (12.11), the reader is referred to Tsuda
et al. (2003).

12.5 Protein Structure Classification Experiment

We perform protein classification experiments by using our kernel completion
algorithms. Here we use a fully curated database of protein structures called
SCOP (Murzin et al., 1995), where proteins are classified into categories such
that both structural and evolutionary relatedness are reflected. The categories are
organized hierarchically as the following levels: class, fold, superfamily, and family.
At the finest level, a family contains proteins with clear evolutionary relationship.
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A set of proteins in a superfamily is considered to have the same evolutionary origin
but it is not detectable at the level of sequences. Those in the same fold have major
structural similarity, but evolutionary origins may be different. In this experiment,
we used the following three superfamilies: NAD(P)-binding Rossmann-fold domains
(6 families, 105 proteins) and (trans)glycosidases (4 families, 62 proteins). We
classified the proteins in a superfamily into families by using our algorithms. In the
case of (trans)glycosidases, 62 proteins are classified into 6 classes. Additionally, we
used TIM beta/alpha-barrel protein fold (4 superfamilies, 90 proteins), where each
protein is classified into one of superfamilies.

12.5.1 Kernels

We now describe how to obtain the n × n incomplete matrix KI and the l × l

auxiliary matrix KB in this experiment.

The Incomplete Matrix KI The incomplete matrix is obtained by structural
similarities of proteins. The structural similarities are computed using results of
MATRAS (Kawabata and Nishikawa, 2000) which is a software to measure a
structural similarity of proteins. MATRAS yields several values to measure the
similarity. We use values of Rdis which is the normalization (ranges from 0 to
100) of ScDIS, a similarity score for inter residual distances. We compute Rdis for
every pair of proteins, which gives an n × n similarity matrix SI . Since SI is not
positive definite, we modified SI to be positive definite by cutting off non-positive
eigenvectors (Roth et al., 2003). Let λi, νi denote the ith eigenvalue and eigenvector
of SI , respectively. Then, KI is obtained as

KI =
∑

i:λi>0

λiνiν
�
i .

The Base Matrix KB As the base matrix KB, we use the second-order marginal-
ized count kernel (MCK) (Tsuda et al., 2002b) in which the entry represents se-
quence similarities between two proteins. MCK is a general framework that in-
cludes Fisher kernel (Jaakkola and Haussler, 1999). Second-order MCK is shown
to be more efficient than Fisher kernel for the protein structure classification prob-
lem (Tsuda et al., 2002b). MCK exploits parameters of a latent variable model
for its kernel computation. The latent variable model is used to represent implicit
features of proteins such as secondary structures (i.e. α helices and β sheets). Here
we use a hidden Markov model (HMM) which has a tri state full-connection net-
work. Although such a network is not supported by any biological knowledge, it is
supposed to capture implicit features of proteins. In order to build a kernel matrix
derived from a homogeneous probability distribution, we train the HMM with all
the protein sequences. Therefore, no class-specific information is explicitly given to
the HMM.
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12.5.2 Kernel Completion Methods

Other than the em algorithm presented in the previous section, we applied two
simpler methods, namely single e-projection and k-linear interpolation. Let us
describe details of them.

Single e-Projection The method single e-projection performs only one e-
projection from KB to the data manifold D; it does not do m-projection. So
D can be obtained very fast since the method needs no iterations. However, we
found that this method does not work well when the diagonal elements of D and
M differ significantly. So we normalize KI as follows:

K ′
I := AKIA (12.12)

where A is the n× n diagonal matrix with entries

[A]ii =

√
[KB]ii
[KI ]ii

. (12.13)

The transformation in (12.12) adjusts the norms of feature vectors while the angles
between feature vectors are kept the same. Notice that the em algorithm does not
need normalization, because additional variables bi can automatically absorb the
difference of norms.

k-Linear Interpolation As an alternative method, we make use of the nearest
sequences for completing missing entries. Suppose the structure is missing for the
r-th protein (n + 1 ≤ r ≤ �), and let us estimate the entries of the structure kernel
dri for i = 1, . . . , n. First, we identify the k-neighbors of protein r in terms of the
sequence kernel M , that is, sort the entries mrj (j = 1, · · · , n) and take the k

largest ones. Let us denote the identified indices as j1, · · · , jk. Then, the structure
kernel dri is determined as

dri =

{
1
k

∑k
a=1 dja,i i = 1 · · ·n

1
k2

∑k
a=1

∑k
b=1 dja,idjb,i i = n + 1 · · · �

This amounts to estimating the feature vector of protein r as the center of gravity
of other feature vectors corresponding to j1, · · · , jk. We call this method k-linear
interpolation. In the following, we chose k = 3 as a result of preliminary cross-
validation experiments.

12.5.3 Experimental Design

For evaluating the performance of kernel completion methods, we observe the
accuracies of the SVM in the following experiments. Given a complete kernel
matrix of structures, we remove randomly chosen rows/columns. The fraction of
removed rows/columns is changed from 10% to 90% by a 10-point step. After
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completing the missing entries with one of the completion methods, the whole
set of samples is randomly shuffled and divided into 50% training and 50% test
sets. The accuracies of SVM are computed on these training and test sets. The
regularization parameter C is determined through five fold cross-validations on the
training set. When there are more than two classes, the classification problem is
interpreted as several two-class problems by means of the one-against-all scheme,
then several different classifiers are joined based on the largest-score-wins criteria.

Each experiment is iterated 100 times to average random effects. Classification
accuracies solely using the sequence kernel KB are computed to serve as references
for comparing the algorithms discussed here.

12.5.4 Results

Several kernel matrices are illustrated in figure 12.3 so that the reader can grasp a
visual intuition of how the kernel matrix is completed by the different algorithms.
The SVM accuracies of the three completion algorithms on each task are shown
in figure 12.4. The em algorithm performs the best when the fraction of missing
entries is relatively small (< 50%). In two data sets, namely the NAD(P) and TIM
barrels, it significantly outperforms single e-projection. However, as the fraction
of missing entries increases, the accuracy suddenly falls down. The reason is
deemed as overfitting, because the increase in missing entries also increases the
number of parameters. Single e-projection performs constantly well on all three
data sets. It shows its best performances when the missing fraction is very large.
However, when the missing fraction is small, it performs poorer than em algorithm.
This is considered as the effect of early stopping. As often observed in neural
network training, stopping the optimization before convergence sometimes avoids
overfitting (Haykin, 1998). Finally, the k-linear interpolation performed quite well in
two data sets [NAD(P) and glycosidases], although it is a simple heuristic. However,
its accuracy was always worse than one of the two other principled methods.

Dotted flat lines in the figures show the accuracies of the sequence kernels.
Thus the completion does not make sense if the accuracy is lower than this level.
In all three experiments, the accuracies of completed matrices are better than
that level until the 80% to 90% missing fraction. Obviously it is promising result
because it implies that only partial information of structure can enhance the whole
classification performance significantly.

12.6 Conclusion

In this chapter, we presented an algorithm for compensating an incomplete kernel
matrix by utilizing a base kernel matrix of another information source. The algo-
rithm is based on information geometry which provides metrics for the space of
kernel matrices. Our algorithm can be a powerful tool in many situations where
one information source is precise but expensive and the other source is noisy but
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cheap. Thanks to our algorithm, we can get a better kernel matrix by combining a
cheaper complete matrix with a more precise incomplete matrix. One such situation
is proteins, from which we can extract the sequences easily but the structures are
costly. The experimental results on the protein data set reveal a remarkable per-
formance of our method. Nevertheless, it is worth noting other parametric models
for the model manifold M. For example, since all eigenvalues are fixed in single
e-projection while all eigenvalues are adaptive in em algorithm, the other model
might be one that permits a part of eigenvalues to be adaptive.

Although we only discussed the case in which two information sources were
available, it is interesting to consider a method which utilizes more information
sources than two. For example, we may be able to make use of other information
sources like class labels. In future works, we look forward to developing information
geometric methods to combine multiple kernel matrices.



(a) (b)

(c) (d)

(e) (f)

Figure 12.3 Raster of 62 × 62 kernel matrices for (trans)glycosidases. (a) Complete
matrix of structure similarity (Dc). (b) Complete matrix of sequence similarity (M). (c)
D with 50% missing elements. (d) D where missing elements are filled by using single e-
projection. (e) Another D filled by using em algorithm. (f) The ideal kernel matrix showing
three classes of this protein superfamily.
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Figure 12.4 Classification accuracies for NAD(P)-binding Rossmann fold domains
(top), (trans) glycosidases (middle), and TIM beta/alpha-barrels (bottom). The horizontal
axis represents fraction of missing values. Three curves are shown in each figure: square,
em algorithm; star, single e-projection; and triangle, 3-linear interpolation. The solid
horizontal line indicates the accuracy without missing values. The dashed line indicates
the accuracy using sequences only.
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We propose a new system for predicting the splice form of Caenorhabditis elegans
genes. As a first step we generate a clean set of genes from available exressed
sequence tags (EST) and complete complementary (cDNA) sequences. From all
such genes we then generate potential acceptor and donor sites as they would be
required by any gene finder. This leads to a clean set of true and decoy splice
sites. In a second step we use support vector machines (SVMs) with appropriately
designed kernels to learn to distinguish between true and decoy sites. Using the
newly generated data and the novel kernels we could considerably improve our
previous results on the same task.

In the last step we design and test a new splice finder system that combines the
SVM predictions with additional statistical information about splicing. Using this
system we are able to predict the exon-intron structure of a given gene with known
translation initiation and stop codon site. The system has been tested successfully
on a newly generated set of genes and compared with GenScan. We found that our
system predicts the correct splice form for more than 92% of these genes, whereas
GenScan only achieves 77.5% accuracy.

13.1 Introduction

Splice sites are locations on DNA at the boundaries of exons (which code for proteinSplice sites
parts) and introns (which do not). The more accurately a splice site can be located,
the easier and more reliable it becomes to locate the genes on DNA. For this
reason, accurate splice site detectors are valuable components of state-of-the-art
gene finders (Burge and Karlin, 1997; Reese et al., 1997; Salzberg et al., 1998;
Delcher et al., 1999; Pertea et al., 2001). Furthermore, since ever-larger chunks
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of DNA are to be analyzed by gene finders, the problem of accurate splice site
recognition has never been more important.

SVMs (see, e.g., Vapnik, 1995; Müller et al., 2001; Schölkopf and Smola,Support vector
machines 2002), with their strong theoretical roots, are known to be excellent algorithms

for solving classification problems. They have been successfully applied to several
bioinformatics problems (see, e.g., Jaakkola and Haussler, 1999; Zien et al., 2000;
Brown et al., 2000; Tsuda et al., 2002a, and other chapters in this book). In this
chapter we apply SVMs to two binary classification problems: the discrimination of
donor sites (those at the exon-intron boundary) from decoys for these sites, and the
discrimination of acceptor sites (those at the intron-exon boundary) from decoys
for these sites. For this study we consider different kernels, in particular the so-
called locality improved kernel that we proposed in Zien et al. (2000) for translation
initiation site (TIS) recognition, the standard polynomial kernel, the SVM-pairwise
kernel using alignment scores (Liao and Noble, 2002), the TOP kernel (related to
the Fisher kernel; cf. Jaakkola and Haussler, 1999; Tsuda et al., 2002a), and, in
addition, a polynomial-like kernel – the weighted degree kernel.

Although present-day splice site detectors, e.g., based on neural networks or
hidden Markov models (HMMs) are reported to perform at a fairly good level
(Reese et al., 1997; Rampone, 1998; Cai et al., 2000), several of the reported
performance numbers should be interpreted with caution, for a number of reasons.
First of all, these results are based on small data sets of a limited number (one
or two) of organisms. Now that many genomes have been fully sequenced, these
results will need to be re-evaluated. Second, often only the single site prediction of
acceptor and donor sites is considered, whereas the higher goal is to use it within a
gene finder and it is uncertain how good the predictors perform in this setting.
Third, issues in generating negative examples (decoys) were, if recognized, not
adequately documented. In some cases (e.g., IP-data in Rampone, 1998), the decoyDecoys
examples were chosen to be so weak that almost any reasonable method would
achieve a high accuracy. In some other cases it was neither described how the
decoys were chosen nor were the data sets made publicly available. Their reported
performance is therefore incomparable with external studies, since the choice of data
sets, in particular the decoys, can make a tremendous difference in the measured
performance. Moreover, note that the choice of decoys is actually connected with
the intended purpose of the system (i.e., use in a gene finding system).

In this study we put particular care into designing an appropriate splice data
set for C. elegans. First, we derive a clean set of true splice sites from matching
complete cDNA and ESTs to the genomic sequence. From them we generate a set
of genes. Our decoy examples are chosen to be the sites that a splice finder asks
predictions for but are actually not true sites (see details in the appendix). The
generation of the data in this way ensures that the resulting classifier performs well
in a setting in which a splice finder would actually use it. Previously mentioned
approaches do not take this issue into account, since the training set decoys and
test set decoys (when used in a splice finder) are generated from completely different
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probability densities. Moreover, it poses theoretical problems and often leads to a
great performance loss in practice.

We train and evaluate the SVM on the newly generated data set. We find great
performance improvements in predicting single splice sites compared to our previous
study on a related C. elegans splice data set (Sonnenburg et al., 2002). However,Splice forms
the single site predictions alone do not suffice to determine the splice form (i.e.,
the exon-intron structure) of a gene. We therefore design a splice finder that uses
our donor and acceptor predictions and finds a consistent segmentation of a given
pre-messenger RNA (pre-mRNA) sequence into exons and introns. We assume here
that the start (translation initiation) and end (stop codon) positions on the RNA
sequence are known.1 Our splice finder system uses additional knowledge such as
intron and exon length statistics to produce biologically plausible splice forms.

A complete understanding of splice sites not only helps to correctly predict the
spliced mRNA and thus proteins from DNA but can also be of great help in
localizing genes. Actually several other sites, like translation initiation start sites
and stop codons, branch sites, promoters and terminators of transcription, and
various transcription factor binding sites belonging to the class of local sites can
help to detect genes (Haussler, 1998). Compared to a gene finder that finds genes
and locates their exons, our system only solves the subtask of predicting the coding
parts (i.e., locating the exons within a gene) of the sequence when the start and
end positions are given. Therefore we do not consider the detection of other local
sites. However, the proposed system can quite easily be combined with commonly
used techniques for gene finding leading to a full gene finder system.

In this chapter the main focus is on improving the signal sensor for the detection
of splice sites. As a second step we use the improved sensor to accurately predict the
splice form of a gene, when the start and end position of the coding region is given.
In a carefully designed and fair experiment we compare the results of our splice
finder with a state-of-the-art gene finder – GenScan (Burge and Karlin, 1997) –
and find dramatic performance improvements.

The chapter is organized as follows: In section 13.2 we review some biological
background on splicing. In section 13.3 we describe the different kernels and
methods we used in this study. In section 13.4 we present our experimental results:
(a) We compare the methods on the basic classification task, showing the power
of kernel methods. (b) We show interesting relations of the predicted activity of a
splice site to the position in the gene. (c) Finally, we compare our best methods
with the state-of-the-art method GenScan and find greatly superior performance
of our methods in the task of predicting the splice form of a gene. In the appendix
to this chapter we describe in detail the data generation process.

1. We do not consider splicing in the 5′ and 3′ untranslated regions (UTRs).
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Figure 13.1 The major steps in protein synthesis. See text for details. The idea is from
Chuang and Roth (2001) and Lewin (2000)

13.2 Biological Background

Each chromosome consists of coding and intergenic regions. The latter makes up
most of the chromosome. But where on the chromosome are the genes located and
what is a gene? A gene can be defined as a region of DNA that controls a certain
characteristic. It corresponds to a sequence used in the production of a specific
protein. While the question about the location of genes has not been sufficiently
answered yet, a number of stages that are involved in the expression of genes (i.e.,
the process of synthesizing proteins from genes) have been identified (Lewin, 2000).
These steps are carried out sequentially (see figure 13.1):

1. Activation of gene structure

2. Initiation of transcription

3. Elongation of the transcript

4. Post-processing

5. Transport of mRNA to cytoplasm

6. Translation of mRNA

It was discovered that genes are “activated” in a celltype-specific fashion. A gene
may be active in cells composing one kind of tissue, but “inactive” in other kinds
of tissue. When the precondition – that the gene be active – is fulfilled, it can
be transcribed, that is, the process by which a copy of the gene is synthesized and
which is encoded on only one strand of the double-stranded DNA (the coding strand
for that gene). The copy is not DNA, but single-stranded precursor messenger
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Figure 13.2 Illustration of the splicing process. First a cut is made at the 5′ site right
before the GT. Then splicing proceeds through a lariat, in which the 5′ terminus generated
at the end of the intron becomes linked by a 5′-2′ bond to a nucleotide within the intron.
The target nucleotide is an A in a sequence that is called the branch site (Lewin, 2000). In
the second stage, a cut is made at the 3′ site. The free intron is released and both exons
are joined at their ends.

ribonucleic acid (pre-mRNA). The chemistry of RNA requires that the role of
thymine is taken over by the nucleotide uracil (U). For convenience, we will use
uracil and thymine synonymously. The transcription starts when the enzyme RNA
polymerase binds to the promoter, which is a special region located upstream2 of the
first nucleotide that is transcribed into pre-mRNA. From this starting point, RNA
polymerase moves downstream in the 5′ → 3′ direction, continuously synthesizing
pre-mRNA until a terminator sequence is reached. In the post-processing step,
the pre-mRNA is transformed into mRNA. One necessary step in the process of
obtaining mature mRNA is called splicing. The coding sequence of a eukaryotic
gene is “interrupted” by noncoding regions called introns. A gene starts with an
exon and may then be interrupted by an intron, followed by another exon, intron
and so on until it ends in an exon. In the splicing process, introns are removed (cf.
figure 13.2.)

As a result, there are two different splice sites: the exon-intron boundary, referred
to as the donor site or 5′ site (of the intron) and the intron-exon boundary, that is
the acceptor or 3′ site. Splice sites have quite strong consensus sequences, i.e. almost
each position in a small window around the splice site is representative of the most
frequently occurring nucleotide when many existing sequences are compared in an
alignment. For example, the 5′ site’s consensus is A64G73G100T100A62A68G84T63, while
the 3′ site’s consensus is C65A100G100, where the subscripts denote the frequency
of the symbol in percent (Lewin, 2000). The dimers GT and AG can therefore
be used to identify potential donor and acceptor sites. Unfortunately the pairs
GT...AG occur very frequently; for example, in human DNA (which is ≈ 3 · 109

nucleotides in size), GT occurs about 1 billion times. For some crude estimate
of, say, 105 genes with ten exons each, only 0.1% of the possible splice sites are
real splice sites. One can analogously estimate the number of occurrences of AG

which leads to a similar result. Therefore it is not enough to look at pairs of
GT...AG, evidently there is some intrinsic property around the splice site telling
the spliceosome, i.e. the large biological splicing apparatus consisting of an array

2. Upstream means closer to the 5′ end, while downstream means closer to the 3′ end.
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Figure 13.3 The two strands of DNA in an ASCII-character chain. As a result of a
sequencing project, only one of these sequences is given, since adenine is always connected
to thymine, and guanine to cytosine.

of proteins and ribonucleoproteins, to start the splicing mechanism. Neither is it
known what exactly this property is, nor what the details of the reaction involving
RNA and the spliceosome are. While the canonical splice sites GT...AG make up the
vast majority of splice sites, other possible combinations, as, for example, GT...TG,
have been discovered (Burset et al., 2000). We will not take these noncanonical
sites into account, which would make splice site detection even more difficult.

What is known about splicing?

The splicing process takes place in the nucleus.

Exons are relatively short, 100 to 200 nucleotides (nt) while introns are often
longer than 1 knt.

An average mammalian gene has 7 to 8 exons spread over ≈ 16 knt.

There are no reading frames in introns.

Splice sites are generic: They do not have a specificity for individual RNA
precursors, and individual precursors do not convey specific information (such as
secondary structure) that is needed for splicing.

The apparatus for splicing is not tissue-specific: RNA can usually be spliced
properly by any cell, whether or not it is usually synthesized in that cell.

Experiments show that any 5′ splice site can in principle be connected to any 3′

splice site, that is, only local information is relevant in the splicing process.

In higher eukaryotes, 18 to 40 nt upstream of the 3′ site, lies the branch site. To
this site the GU from the 5′ site connects to an A of the branch site.

Thus, the sequences needed for splicing are the short consensus sequences at the
5′ and 3′ splice sites and at the branch site. In higher eukaryotes mutations or
deletions of the branch site result in a proximate 3′ site to be taken. The branch
site therefore identifies the 3′ site to be used as the target for connection to the 5′

site (Lewin, 2000), but its removal does not prevent splicing.

After pre-mRNA has been spliced to form mRNA, the splicing product is trans-
ported from the nucleus to the cytoplasm. There, in the step of translation, mRNA
is read as codons, i.e. as triplets of nucleotides. Hence, there are three different
reading frames, that is, ways of reading triplets of RNA (one for each of the pos-
sible start positions: 0, 1, or 2). Sixty-one of the 43 = 64 possible codons code for
20 amino acids, while the remaining three (UAG,UAA,UGA) are termination codons,
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AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTCAACCATTTTGAG

AAGATTAAAAAAAAACAAATTTTTAGCATTACAGATATAATAATCTAATT

CACTCCCCAAATCAACGATATTTTAGTTCACTAACACATCCGTCTGTGCC

TTAATTTCACTTCCACATACTTCCAGATCATCAATCTCCAAAACCAACAC

TTGTTTTAATATTCAATTTTTTACAGTAAGTTGCCAATTCAATGTTCCAC

CTGTATTCAATCAATATAATTTTCAGAAACCACACATCACAATCATTGAA

TACCTAATTATGAAATTAAAATTCAGTGTGCTGATGGAAACGGAGAAGTC

Figure 13.4 Illustration of how acceptor site examples are constructed. Windows of
fixed length are taken around the splice site, while AG is aligned to be at the same position
in all examples. The left part, including the AG, is intronic, while the rest is exonic.

which mark the end of a gene. The translation begins almost always at the start
codon AUG, called the translation initiation site (TIS). However, only the minority
of the codon AUG, which represents the amino acid methionine, really signals the
translation initiation. SVMs have been successfully used to model this site (Zien
et al., 2000). When a stop codon is reached, the translation is terminated and
the sequence of amino acids – the result of the translation process – forms a long
polypeptide, the protein.

13.2.1 Data

To gain some understanding about what the data look like, we give some examples:
A fully sequenced genome consists of all the chromosomes found in a cell of the

respective organism. Each sequenced chromosome is a sequence of the characters
A,C,G,T, like that in figure 13.3.

When dealing with splice sites, the examples are aligned such that AG appears at
the same position in all examples, while each example consists of a fixed number of
nucleotides around the site (figure 13.4).

In this chapter we consider the problem of distinguishing true splice sites from
decoys. Most learning algorithms need positive as well as negative examples for
learning. While it is relatively simple to extract positive examples from, for example,
cDNA matches (cf. subsection 1.1.1), it is less obvious how to determine negative
examples. We do this as follows: from matching cDNA to the genomic sequence
we generate a set of “virtual genes” and simulate a run of a splice finder for
the whole gene. Our negative examples are chosen to be the sites that any splice
finder would ask predictions for, but are not true sites. A detailed explanation
of how the splice data set was generated is given in the appendix. All data sets
used in this study together with more information are publicly available from
http://ida.first.fhg.de/splice.
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13.3 Methods

In the following we describe three methods for different subtasks of splice site
recognition. The first task is to classify a given sequence whether it be a donor or
not and whether it be an acceptor site or not (two two-class problems). This is done
by training Markov models (MMs) or SVMs on the training data and tuning their
hyperparameters on the validation data. The second task is to predict the splice
form for a given sequence. In this step we use the scores provided by the single
site detectors (first task) for every appearing AG and GT dimer. The challenge is to
find a splice form that consistently combines all predictions. It turns out that it
is beneficial to combine the single site scores with available statistical information
about the sequences and certain rules about the structure of the resulting splice
product (e.g., open reading frames). In the second step it is assumed that the
number of exons to be found is given in advance. The third task is to determine
the numbers of exons – using the results of the first two stages for different number
of exons. For a complete prediction of a splice form from a given sequence, one
first computes the single site scores for each potential splice site, then builds the
probabilistic model and computes the optimal splice form for various numbers of
exons, and finally selects one of the splice forms (i.e., exon number) which is the
result of the prediction.

13.3.1 Identifying a Single Splice Site

Machine learning classification methods aim at estimating a classification function
g : X→ {±1} using labeled training data from X× {±1} such that g will correctly
classify unseen examples (test data). In our case, input space X will contain simple
representations of sequences {A, C, G, T }N , while ±1 corresponds to true splice and
decoy sites, respectively. We will use the posterior log-odds of a simple probabilistic
model and SVMs using different kernels as classifiers.

13.3.1.1 Posterior Log-Odds

The posterior log-odds of a probabilistic model with parameters θ are defined by

f(x) := log (P (y = +1|x, θ))− log (P (y = −1|x, θ)) (13.1)

= log
(
P (x|θ+)

)− log
(
P (x|θ−)

)
+ b, (13.2)

where b is the bias. We use Markov chainsMarkov model

P (x|θ±) = P (x1, . . . , xN |θ±) = P (x1, . . . , xω|θ±)
N∏

i=ω+1

P (xi|xi−1, . . . , xi−ω , θ±)

(13.3)
as, for instance, described in Durbin et al. (1998). Each factor in this product has to
be estimated in model training, that is, one counts how often each symbol appears
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at each position in the training data conditioned on every possible xi−1, . . . , xi−ω.

Then, for given model parameters θ we have

P (x|θ±) = θ±0 (x1, . . . , xω)
N∏

i=ω+1

θ±i (xi, . . . , xi−ω) (13.4)

where θ±0 is an estimate for P (x1, . . . , xω) and θi(xi, . . . , xi−ω) an estimate for
P (xi|xi−1, . . . , xi−ω). As the alphabet has four letters, each model has (N − ω +
1) · 4ω+1 parameters and the maximum likelihood estimate is given by

θ0(s1, . . . , sω) =
1

m + τ

(
m∑

k=1

I(s1 = xk
1 ∧ · · · ∧ sω = xk

ω) + τ

)

θi(si, . . . , si−ω) =
∑m

k=1 I(si = xk
i ∧ · · · ∧ si−ω = xk

i−ω) + τ∑m
k=1 I(si = xk

i−1 ∧ · · · ∧ si−ω = xk
i−ω) + 4τ

,

where I(·) is the indicator function, k enumerates over the number of observed se-
quences m, and τ the commonly used pseudo-count (a model parameter; cf. Durbin
et al., 1998). The bias b is tuned by minimizing the number of misclassifications on
the validation set. Finally, g(x) = sign(f(x)) defines the classifier we obtain from
the posterior log-odds.

13.3.1.2 SVM and Kernels for Splice Site Detection

As the second method we use SVMs as described in chapter 2. The generated
classification function can be written as

g(x) = sign

(
m∑

i=1

yiαik(xi,x) + b

)
, (13.5)

where yi ∈ {−1, +1} (i = 1, . . . , m) is the label of example xi. The αi’s are Lagrange
multipliers and b is the usual bias which are the results of SVM training. The kernel
k is the key ingredient for learning with SVMs. It implicitly defines the feature space
and the mapping Φ via

k(x,x′) = 〈Φ(x), Φ(x′)〉. (13.6)

In the following paragraphs we describe the kernels which are used in this study.
As the well-known (homogeneous) Polynomial kernel of degree dPolynomial

kernel
k(x,x′) = 〈x,x′〉d.
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is originally defined on real-valued inputs, it cannot directly be applied to discrete
data, like DNA. However, a commonly used trick is to map the alphabet A,C,G,T
into a binary representation: x ∈ {A, C, G, T }N is represented as

x̃ = (I(x1 = A), I(x1 = C), I(x1 = G), I(x1 = T ),

I(x2 = A), I(x2 = C), I(x2 = G), I(x2 = T ),

. . . ,

I(xN = A), I(xN = C), I(xN = G), I(xN = T ))� .

Now we can apply the standard polynomial kernel k(x̃, x̃′) = 〈x̃, x̃′〉d. This kernel
takes all correlations of matches I(x̃i = x̃′

i) up to order d into account. The features
used for learning are position-dependent. They carry local and global information
about the sequence, as, for instance, any position is combined with any other
position to form a feature in the kernel feature space (generated by raising the
scalar product to the power of d; cf. Müller et al., 2001). Note that this kernel can
be computed in an efficient manner directly on the input space by

k(x,x′) =

(
N∑

i=1

I(xi = x′
i)

)d

. (13.7)

The so-called locality improved (LI) kernel has been proved useful in the context ofLocality
improved kernel TIS recognition (Zien et al., 2000). It essentially works like the polynomial kernel

but only considers local correlations within a small window. It is obtained by
comparing the two sequences locally within a window of length 2l + 1 around a
sequence position, where one counts matching nucleotides. The resulting fraction
of hits is taken to the dth power, where d reflects the order of local correlations
(within the window) that we expect to be of importance:

winp(x,x′) =

⎛⎝ 1
2l + 1

+l∑
j=−l

I(xp+j = x′
p+j)

⎞⎠d

, (13.8)

where p = l+1, . . . , N−l. These window scores are then summed up over the length
of the sequence using a weighting wp which linearly decreases to both ends of the
sequence, that is, wp =

{
p−l p≤N/2

N−p−l+1 p>N/2 . Then we have the following kernel:

k(x,x′) =
N−l∑

p=l+1

wpwinp(x,x′). (13.9)

The weighting allows one to emphasize regions of the sequence which are believed
to be of higher importance (in our case the center, which is the location of the
site). Note that the definition of the LI kernel by Zien et al. (2000) is slightly
different from ours. Previously the weighting was inside the window which was not
very effective. Moreover, the proposed version of the kernel can be computed 2l +1
times faster than the original one.
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In a similar approach one counts the matches between two sequences x and x′Weighted degree
kernel between the words uω,i(x) and uω,i(x′) where uω,i(x) = xixi+1 . . . xi+ω−1 for all

i and 1 ≤ ω ≤ d. The parameter ω denotes the order (length of the word) to be
compared. The weighted degree kernel is defined as

k(x,x′) =
d∑

ω=1

wω

N−d∑
i=1

I(uω,i(x) = uω,i(x′)) (13.10)

where we chose the weighting to be wk = d−ω+1, that is, higher-order matches get
lower weights. This kernel emphasizes position-dependent information and decreases
the influence of higher-order matches. It can be computed very efficiently without
even extracting and enumerating all words from the sequences.3 Note that this
kernel is similar to the spectrum kernel as proposed by Leslie et al. (2002), with the
main difference that the weighted degree kernel uses position-specific information.

Similarly to the well-known Fisher Kernel (Jaakkola and Haussler, 1999), theTOP kernel from
Markov models main idea of the TOP kernel (cf. Tsuda et al., 2002a) is to incorporate prior

knowledge via a given probabilistic model. It is derived from the tangent vectors of
posterior log-odds (TOP) and especially designed for classification. It was shown
to outperform the Fisher kernel on protein family classification tasks (Tsuda et al.,
2002a). It is defined as k(x,x′) = 〈fθ(x), fθ(x′)〉, where

fθ(x) := (v(x, θ), ∂θ1v(x, θ), . . . , ∂θpv(x, θ))� (13.11)

and

v(x, θ) = log(P (y = +1|x, θ))− log(P (y = −1|x, θ)). (13.12)

For the MM described in subsection 13.3 this kernel is particularly simple to
compute. Then we have ∂θi,j v(x, θ) = I(xi = j)/θi,j and hence the kernel is
computed as

k(x,x′) = v(x, θ)v(x′, θ)

+ I(x1 = x′
1 ∧ . . . ,∧xω = x′

ω)/(θ+
0 (x1, . . . , xω))2

+ I(x1 = x′
1 ∧ . . . ,∧xω = x′

ω)/(θ−0 (x1, . . . , xω))2

+
N∑

i=ω+1

I(xi = x′
i ∧ . . . ,∧xi−ω = x′

i−ω)/(θ+
i (xi, . . . , xi−ω))2

+
N∑

i=ω+1

I(xi = x′
i ∧ . . . ∧ xi−ω = x′

i−ω)/(θ−i (xi, . . . , xi−ω))2. (13.13)

Moreover, we use the approach of Liao and Noble (2002) in which Smith-SVM-pairwise
Waterman alignment scores (Smith and Waterman, 1981) make up the SVM’s

3. An implementation can be downloaded from the mentioned website.
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feature space.4 Here, we use a randomly chosen subset of 250 positive and 250
negative examples and compute the alignment scores of a sequence to all 500
reference sequences. Computing the alignment to all training points, as done in
Liao and Noble (2002), was not feasible for our problem. This procedure generates
a 500-dimensional vector describing each sequence which we used as the input to a
linear kernel, that is, k(x,x′) = 〈x,x′〉.

Additionally, we considered the spectrum kernel (Leslie et al., 2002). However,Spectrum kernel
since it does not contain the information where the subsequences are located, it did
not seem appropriate to use it for our problem. Moreover, it performed very poorly
in some preliminary tests on our data sets (not shown).

Finally, a remark regarding the normalization of the kernels is in order. In theNormalization
case of the TOP kernel and SVM-pairwise, we first normalized each feature to have
zero mean and standard deviation 1. Moreover, we normalized all kernels except
the LI kernel such that the vectors in feature space Φ(x) have length 1. This can
be done efficiently by redefining the kernel as follows:

k̃(x,x′) =
k(x,x′)√

k(x,x)k(x′,x′)
. (13.14)

In particular, the latter normalization solved many convergence problems of the
SVM optimizer. In the case of the LI kernel the normalization was not necessary,
since it never led to any convergence problems without normalization.

13.3.2 Predicting the Splice Form

Using the techniques of the previous section we can identify single splice sites. In
some cases, however, the classifier will predict false positives or miss a site. In these
cases it is beneficial to incorporate more knowledge about the splice product. In
particular, that after every donor has to follow an acceptor site and that an exon
has to have an open reading frame. The input to the second stage of the system as
described in this section will be a list of single sites together with the SVM or MM
scores. From this list we generate a consistent splice form for a particular gene.

At this stage we assume that the number E of exons of a gene is known and we
have already generated a list of potential exons (containing an open reading frame)
from a virtual gene as described in the appendix. Then the task is to predict the E

exons that constitute the coding region of a (virtual) gene.
We first define a probabilistic model (HMM) of a gene and then – by using the

Viterbi algorithm – find the most likely path to predict which of the potential exons
are used. The model uses the following components:

1. Probability density estimates over the lengths of introns and exons.
On the training and validation data we counted how often which length of exons

4. Thanks to A. Zien for providing the code.
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and introns appear. We used a log-scaled histogram with 100 bins and with pseudo-
count 1 to estimate the probabilities pl

e(s) and pl
i(s) that a sequence s of a certain

length is an exon or an intron, respectively.

2. Probabilities for frame shifts in splicing.
Here, we counted how often a frame shift of zero, one, or two nucleotides appears
on the basis of the length of exons in training and validation data (pseudo-count
one). We denote this probability by pfs(s) for a sequence s.

3. Probability density estimates for the GC content of introns and exons.
We estimated the average GC content of exons (μe = 40.31%) and introns (μi =
35.9%). We assume a simple Gaussian model for the GC content and use the
following probabilities for a sequence s: pgc(s) ∼ exp(|gc(s)− μ|2/σ2), where gc(s)
denotes the GC content of s, μ can either be μe or μi, and σ is the standard
deviation which we used for both models (σ = 5.56%, as estimated from the exon
sequences).

4. Scores derived from the SVM predictions.
SVMs do not output posterior probabilities. The usual way to deal with this problem
(Platt, 2001) is to transform the output of the SVM with the sigmoid function θ(·) to
obtain a probability-like score. In our model we used p̂svm(s) = 1

2 +θ(af(s)+b))/2,
where f(·) is the SVM prediction and the constants a = 3

4 and b ≈ − 3
4 were found

to be optimal on the validation set (depending on the kernel).

5. Rule about the length of the translated region.
We designed the HMM in a way such that only such exons are predicted whose
lengths add up to a number that is a multiple of 3.

For a given splicing S of a gene into exons e1, . . . , eE and introns i1, . . . , iE−1 we
can compute the score of S, p̂(S), as follows:

pgc(e1)pfs(e1)pl
e(e1)

E∏
j=2

p̂svm
don (eij) pgc

i (ij)pl
i(ij) p̂svm

acc (iej) pgc
e (ej)pfs(ej)pl

e(ej),

(13.15)
where eij is the donor site sequence at the boundary of the (j − 1)th exon and
(j − 1)th intron and iej is the sequence on the border of the (j − 1)th intron and
the jth exon. Using standard techniques (Viterbi algorithm; cf. Durbin et al., 1998)
we can now find the most likely sequence of exons and introns which forms our
prediction. Note that the model above is not normalized in a probabilistic sense, as
the sum over all paths do not sum to 1. Moreover, since the score tends to decrease
exponentially with the number of exons it cannot directly be used for predicting
the number of exons.

All parameters and probabilities have been estimated using the training and
validation set, but not the test set.
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13.3.3 Predicting the Number of Exons

One of the most important things to know about the gene is the number of exons.
If this prediction is wrong, all subsequent steps have to fail. There are several ways
to estimate the number of exons. The common approach is to choose the most
likely number of exons for a probabilistic model like the above, this may require
some additional normalization terms in (13.15). In this chapter we follow a different
approach, using the SVM predictions only.

Our prediction works as follows: We start by assuming that the gene has E

exons (starting with two) and compute the optimal splicing as described in sub-
section 13.3.2. Then we sum up the SVM scores for all donor and acceptor sites,
that is, sE =

∑E
j=2 (fdon(eij) + facc(iej)) . This score is compared with the score

sE+1 for E + 1 exons. If sE ≥ sE+1 + α, then one predicts E exons. Otherwise,
one increases E and repeats the loop. Here α is a parameter of the algorithm and
controls whether one tends to predict too few or too many exons.

The rule is indeed very simple, but it works surprisingly well – as we will see
later. It might have a biochemical interpretation, in that the splicing process stops
in the first local minimum of some energy – assuming the SVM outputs are related
to the energy.

13.4 Results and Discussion

In this section we discuss the experimental results obtained with our methods on
the left-out set of genes (cf. appendix). First we only consider the accuracy of
identifying a single donor and acceptor site. For the best methods we then compare
our splice predictions with the ones of GenScan (Burge and Karlin, 1997).

13.4.1 Accuracy of Single Donor and Acceptor Predictions

Setup and Model Selection We start with generating true splice and decoy
examples for training, validation, and test genes as described in the appendix.
Here, we choose a window of ±30 nt around the site with the consensus AG or GT

dimer centered. A similar window length has been used in previous studies (cf.
Sonnenburg, 2002; Sonnenburg et al., 2002). To be able to apply the SVM, we
have to find the complexity parameter C, controlling the tradeoff between training
error and complexity, and the kernel parameters. For instance, in the case of the LI
kernel this is the degree d and window size l. To select these hyper parameters, we
train the SVM on the training set and evaluate it on the validation set for different
settings of C, d, and l. We tried C = [0.25, 0.5, 0.75, 1, 2, 5, 10, 20], d = 1, . . . , 5 and
l = 1, . . . , 6. For acceptor predictions we found C = 0.75, d = 4, and l = 3 as
optimal parameters. For donor predictions C = 1, d = 3, and l = 2 are optimal.
We omit the details on the model selection for the other methods, but they are
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Table 13.1 Classification error and ROC score for Markov models, TOP kernel, SVM-
pairwise, polynomial kernel, locality improved kernel, and weighted degree kernel. Note
that the data sets are quite unbalanced: the constant classifier g(x) = −1 would achieve
an error of about 2.89%. Hence, the classification errors shown should be taken with care.
Also, they depend heavily on the choice of the bias.

Test Error ROC Score

Donor Acceptor Donor Acceptor

Markov 1.85% 1.54% 98.23% 98.88%

TOP 1.82% 1.66% 98.32% 98.70%

Pairwise 2.17% 1.94% 97.60% 98.00%

Polynomial 1.91% 1.53% 98.31% 98.95%

Locality 1.81% 1.44% 98.48% 99.08%

Weighted degree 1.79% 1.45% 98.47% 99.05%

available from the website http://ida.first.fhg.de/splice together with the
data.

Generalization Performance For the selected hyper parameters we measure
the performance on the test set. For acceptor predictions the test set contained
75,905 examples (2132 true sites). For donor predictions we have 73,784 test se-
quences (2132 true sites). In table 13.1 we summarize the results of our compari-
son. We show the classification error on the test set and also the receiver operating
characteristic (ROC) score (the area under the ROC curve). We have a few obser-
vations:

The TOP kernel slightly improves the simple probabilistic model for donor sites,
but is (according to the ROC scores) not as good as, for instance, the SVM with
LI or weighted degree kernel.

The simple polynomial kernel performs surprisingly well, given that the feature
space contains the correlation of all positions up to order 4 (in our case). It is only
slightly worse than the specialized kernels such as the LI or weighted degree kernel.

While the test errors for the MM are considerably greater than the ones for the
polynomial-like kernels, the ROC score is very similar. For this reason we chose to
include the Markov model in the GenScan comparison.

The SVM-pairwise method did not perform well. This might be due to the small
set of reference sequences. We tried to double the number but could not measure
significant differences in performance.

We can conclude that the LI and the weighted degree kernel are best suited for
the task of identifying single splice sites. The latter and the MM are chosen for the
comparison with GenScan in section 13.4.3.
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Figure 13.5 ROC curves for donor (left) and acceptor (right) predictions on the test
set. The false-positive rate is plotted in log-scale.

In figure 13.5 we show ROC curves for acceptor and donor predictions of the
SVM using the LI kernel. In Sonnenburg et al. (2002) and Sonnenburg (2002), we
obtained considerably worse results for prediction on C. elegans using SVMs with
the same kernel (e.g., only 97.3% accuracy for acceptor sites). In this case, the data
were generated differently and the observed improvement suggests that the current
data set is much cleaner and thus allows more accurate predictions. Also, in our
previous study we have shown that our method is superior to a state-of-the-art
method such as NN-BRAIN (Rampone, 1998). In future work we will compare
our method with other prediction methods such as NetGene (Hebsgaard et al.,
1996) and GeneSplicer (Pertea et al., 2001).

13.4.2 Splice Site Activity Variations for Different Intron Ranks

There seems to be evidence that the removal of introns occurs more or less
sequentially in a certain order. In Lewin (2000) we found an example with seven
introns where the fifth and sixth introns are removed first, then the fourth and
seventh introns, followed by the first and second, and at last, by the third intron.
It is conjectured that the third intron is often removed last, while the fifth or sixth
intron is usually removed first. This was explained by the fact that after removing
an intron the conformation of the mRNA is changed, other sites become available
for splicing, and the conformation changes determine the order of intron removal.

Here we show that the order in which the introns are removed might rather be
explained by the “activity” of the splice sites, in particular of the donor sites. In
order to show this, we use the previously described SVMs for donor and acceptor
sites and compute the median of all donor and acceptor scores of introns that
appear at a certain position within the gene (figure 13.6). The rank of an intron
is determined before assembling the virtual genes and hence is based on the true
location within a gene. Since some introns might be missing, the rank might be
estimated as too low (in particular for larger ranks). We chose the median to obtain
a robust estimate.
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Figure 13.6 Median of the SVM predictions for donor (left) and acceptor (right) sites
of introns with different ranks within a gene. The error bar indicates a confidence interval
for the estimate.

We observe that the third donor site has indeed the lowest “activity” and one
may need the most energy5 to remove the third intron and hence the removal is
slowest. Furthermore, we can quite accurately reproduce the previously described
order of intron removal, when considering only the first seven intron positions:
first, the seventh and second, then the fifth, fourth, and sixth, and at last the third
intron. The removal of the second intron seems to be out of order. Additionally, the
first intron’s donor sites seem to have a particularly high score. However, according
to Lewin (2000), it is not removed first. We conjecture that there are interactions
with other processes, such as adding the cap structure, that delay the removal of
the first intron (cf. Proudfoot et al., 2002). The same argument might apply to
a lesser extent to the second intron. The order of the remaining introns matches
reasonably well the order described in Lewin (2000). This suggests that also the
biochemical activity of a site seems to determine the splicing order and not only
the tertiary structure of the mRNA.

The activities of the acceptor sites stay reasonably constant for different ranks,
except for two very weak positions: the sixth and the ninth introns’ acceptors. The
deviation is quite significant, but we have not yet found a biochemical explanation
for it. Although one could conclude from these results that the acceptor sites only
play a minor role in determining the splicing order, additional results on a new data
set (not shown) suggest that the acceptor can also be important in determining the
splicing order (cf. Rätsch and Sonnenburg, 2004).

5. Again, we assume that the SVM output is related to the biochemical activity of a site
related to the needed energy of the biochemical reaction.
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Table 13.2 Accuracies of GenScan and our methods: first using our exon predictions
(Ê) and second, for completeness, assuming knowledge of the correct number of exons
(E). The line “all correct” states the fraction of genes for which all splice sites have been
correctly predicted. The line “splice correct” denotes the fraction of correctly spliced genes
given that the number of exons was predicted correctly. The line “exon—no. correct” states
the fraction of genes for which the number of exons was correctly determined. Note that
the top line is the product of the following two lines.

GenScan Markov model LI Kernel WD Kernel

Ê E Ê E Ê E

all correct 77.5% 90.0% n/a 92.4% n/a 92.7% n/a

splice correct 87.7% 97.4% 96.1% 98.2% 97.9% 98.7% 98.3%

exon—no. correct 88.3% 92.4% n/a 94.0% n/a 93.9% n/a

13.4.3 Comparison with GenScan

In a last experiment we compared our splice form prediction method as described
in subsection 13.3.2 with a state-of-the-art method – GenScan. Since GenScan

is designed to solve the harder task of finding complete genes, including promoters,
initial and terminal exons, and so on, we needed to take special care that the
experimental setup allowed a fair comparison. The idea is to run GenScan on all
virtual genes in the test set and determine for which genes it found the correct
start of the initial exon and the end of the terminal exon. All other genes were not
used in this comparison. This procedure is necessary, since the start/end position
is assumed to be available to our algorithm.

We used GenScan with the Arabidopsis genome setting, which seems a rea-
sonable choice for C. elegans.6 The original test set contains 1686 virtual genes of
which GenScan finds the correct start and end position for 889 sequences. We say
splice form is correctly predicted, if all exons and introns are predicted correctly.
The prediction accuracy (i.e. the fraction of correctly predicted splice forms) of
GenScan on this restricted set of genes is given in table 13.2.

To use our splice site prediction we first have to determine the number of exons
as described in subsection 13.3.3. This method has the hyperparameter α, which we
find by maximizing the prediction accuracy on the validation set. We find α = 1.7
to be optimal for the LI and weighted degree-kernel. Given the number of exons,
we employ the method described in subsection 13.3.2 using the tuned SVMs as in
subsection 13.4.1. The results are given in table 13.2 (on the same reduced set of
genes).

We found that our simple method for predicting the number of exons is quite
accurate (93.9%) – given its simplicity, which corresponds to an error rate of less

6. All other available choices perform much worse and an optimized C. elegans setting is
not available.
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than half of that of GenScan. The achieved accuracy suggests that mainly the
biochemical activity of the splice sites (estimated with the SVM score) determine
whether an intron is removed. Only to a lesser extend does it depend on the tertiary
structure (which would be very hard to predict from the short sequences given to
the SVM) or other properties of the sequence.

The overall prediction accuracy of the best method is 92.7%, while GenScan

performs much worse (77.5%). The improvement is mainly due to better splice
prediction when given the correct number of exons (cf. table 13.2). For this part
the improved predictions using SVMs enriched with some statistical information is
crucial. Our statistical modeling is still quite basic and covers only a few of many
statistical aspects. We conjecture that our predictions will be improved when using
a more refined statistical model.

13.5 Conclusion

In this work we designed a new splice finder system that accurately predicts the
splice form for C. elegans genes. A main achievement is a newly generated set of
EST and complete cDNA confirmed virtual genes. Only by using this set of genes
were we able to train and tune a support vector classifier which very accurately
predicts whether a site is a true splice site or a decoy. We tested several kernels
for SVMs and found that the LI kernel and the weighted degree kernel are best
suited for the single site prediction. Enriched with statistical information such as
intron and exon length statistics and a simple heuristic for predicting the number of
exons, our splice finder system was able to translate the high accuracy on the single
site prediction into a considerably improved accuracy on the splice form prediction:
Our system makes only a third of the number of mistakes of GenScan (92.7% vs.
77.5% accuracy).

Note, however, that in this work we only considered virtual genes generated from
ESTs and complete cDNA, i.e., they tend to be too short (some exons and introns
at both ends may be missing). Moreover, we considered only the subset of genes
for which GenScan detected the correct position of TIS and stop codon. This
introduces an additional bias toward genes that are easy to predict.7

It is our goal to further improve our results. A better statistical modeling
(e.g., normalization of the model) may lead to a better exon number prediction.
Additionally, a cleaner data set will likely lead to accuracy improvements in the
single site prediction. Moreover, we have not considered the prediction of the TIS
and stop codon positions, for which a particularly designed support vector classifier
might be beneficial when used within a gene finder. Other directions to consider
are alternative splicing and noncanonical splice sites.

7. Recently we performed experiments on a newly generated set of complete genes on
which GenScan and our method performes less accurately (our method performed much
better thann GenScan though).



296 Accurate Splice Site Detection for Caenorhabditis elegans

Acknowledgments

We particularly thank A. Pannek for great discussions and for proofreading the
manuscript. Moreover, we thank S. Heymann, K. Tsuda, A. Zien, A. Zahler,
C. Sugnet, K.-R. Müller, A. Smola, M. Warmuth, C. Leslie, and E. Eskin for
stimulating discussions. This work was partially funded by DFG under contract
JA 379/9-2, JA 379/7-2, MU 987/1-1, and NSF grant CCR-9821087 and supported
by an award under the Merit Allocation Scheme of the National Facility of the
Australian Partnership for Advanced Computing. Part of this work was done while
G. R. was at the Australian National University in Canberra.

Appendix: Data Generation

Data generation proceeds in two steps: First, we generate a list of virtual genes
from complete cDNA matches to the genomic sequence, and second, we derive true
and decoy donor and acceptor splice examples from the virtual genes with known
splice sites.

Generating Virtual Genes from EST and Complete cDNA Sequences

To generate a clean splice data set we started with the genomic sequence (C. elegans
Sequencing Consortium, 1998) and the set of known EST and complete cDNA
sequences (Benson et al., 1999) of C. elegans, which we downloaded from the
Intronerator website (Kent and Zahler, 2000). We employed NCBI Blast

(Altschul et al., 1990) to match all cDNA sequences to the genomic DNA (with
default parameters) and obtained a list of matches, of which we only used the
matches without gaps on the cDNA and with at least 80% identity. Using these
matches we generated lists of introns, internal exons, and potential initial and
terminal exons for each cDNA sequence as follows:

Introns An intron is defined by a large gap on the DNA in the match of cDNA
to DNA. We only considered gaps of length at most 500knt. If cDNA matches to
different positions on DNA, then we use the one leading to the largest fraction of
used cDNA and the smallest gap on the DNA (preferring smaller introns). The
nonmatching DNA sequence is assumed to be an intron and added to the intron
list for the current cDNA sequence, if the consensus sequence GT...AG was found.
(We only consider so-called canonical splice sites, i.e., sites with the consensus GT

or AG at the splice site.)

Internal Exons A match between cDNA and DNA is considered to be an internal
exon if there are two adjacent introns in the intron list of the cDNA sequence.

Initial/terminal exons If only one intron at the boundary of a cDNA match
was found, then it is assumed to be an initial/terminal exon. The length of the exon
is given by the cDNA match, but not all of it is part of the coding region. Hence,
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we check for open reading frames and fix the length of the exon by cutting it at
the position of the appearing stop codon (TAA, TAG, or TGA). However, the exact
start/end position cannot be derived from the cDNA matches. We included this
exon in the list of initial/terminal exons if it did not overlap with any internal exon
on the same strand.

In the next step we removed redundancies by removing exact duplicates within the
intron and internal exon lists. Furthermore we removed initial exons with identical
ends and terminal exons with equal start positions. This left 24,191 introns and
41,245 exons (35% initial, 30% internal, 35% terminal). The number of introns
derived by (Kent and Zahler, 2000) using different techniques is slightly larger.

For this study we were interested in generating a clean splice data set and
therefore wanted to exclude the effects of alternative splicing. Thus, we removed
introns and exons of all genes for which we could find an intron overlapping with
an exon or an exon within an intron. We found evidence for alternative splicing for
2560 introns on 1228 genes (out of 9247 total). Finally, we ended up with 19,544
introns and 35,464 exons in 8019 remaining genes.

By considering all exons and introns of one gene, we can determine the positions of
the introns relative to each other and compute ranks for each intron within the gene.
Furthermore, we can check whether introns or exons are missing. Each contiguous
sequence of maximal length and at least two exons (with matching introns) we call
a virtual gene, of which we found 4413.

Unfortunately, it happens rather often that different cDNA sequences of one
gene are labeled with different gene identifiers, matched to the same location on
the DNA. Hence one will generate introns labeled with different gene identifiers in
the first step, which are then omitted. Therefore, we may end up with contiguous
introns/exons with different gene identifiers. This poses a problem for the above-
described method and we miss a considerable amount of (virtual) genes. It will be
possible, in the future, to find all matching sequences, independent of the labeling.

Each virtual gene may or may not start with an initial exon and end with a
terminal exon. To properly define the start and end of the virtual gene, which will
be needed later for comparison with GenScan, we remove the first half of the first
and the last half of the last exon and append fixed sequences, which have been
derived from gene Y48G1C 55.c on chromosome 1 of C. elegans as follows. We
generated two sequences: (1) 571nt upstream of the TIS (including the promoter)
to 51 nt downstream and (2) 51 nt of the last exon to 783nt downstream from the
stop codon. This gene and these positions have been chosen such that GenScan

finds the correct TIS and stop codon as often as possible for our set of genes.
Finally, we have a set of 4413 virtual genes with defined start and end positions,

and with all splice sites known. We randomly chose 2153 for training, 574 for
validation (tuning), and 1686 for testing.
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Generating Donor and Acceptor Sites

From the sets of virtual genes with known splice sites we can straightforwardly
derive positive training sequences for donor and acceptor sites. It is more difficult
to come up with an appropriate set of negative sequences (decoys), which is needed
for training a supervised learning algorithm. In Pertea et al. (2001) decoy sites were
chosen randomly. In Reese et al. (1997) a window of ±40 nt around true sites was
used, from which a list of sequences containing the consensus dimer at the correct
position was generated. However, the chosen window size is quite arbitrary and
also has a great effect on the performance (cf. Sonnenburg, 2002). There are two
additional problems: (1) One may generate decoy examples that can logically not
be a boundary of an exon (since there is, e.g., no open reading frame) and (2)
for long exons or introns one misses the majority of potential splice sites in the
interior of the sequence and will therefore not be very successful in applying the
splice detector in a gene finder.

Arguably, the best way to generate the decoy sequences for use in a gene finder
would be to run the first pass of a gene finder. The result is a list of potential
exons, which all have the property to start after the AG dimer (followed by an open
reading frame; in our case at least 12 nt in length ) and to end before the GT dimer.
From this list one then generates the list of potential donor and acceptor sites,
excluding the true sites and using the remaining sites as decoy examples. This way
we obtain about 180,000 donor and 195,000 acceptor decoy examples and 8150 true
donor/acceptor examples. Note that the above-described method does not require
another gene finder, but only a list of potential exons with acceptor and donor sites
that any other gene finder would also consider to find the splice form.
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Recently developed high-throughput technologies—including oligonucleotide ar-
rays (Lockhart et al., 1996), DNA microarrays (Schena et al., 1995), and serial
analysis of gene expression (SAGE, Velculescu et al., 1995)—enable us to simulta-
neously quantify the expression levels of thousands of genes in a population of cells.
As one application of these technologies, gene expression profiles can be generated
from a collection of cancerous and noncancerous tumor tissue samples and then
stored in a database. Kernel methods like the support vector machine (SVM) and
the relevance vector machine (RVM) have been shown to accurately predict the
disease status of an undiagnosed patient by statistically comparing his or her pro-
file of gene expression levels against a database of profiles from diagnosed patients
(Golub et al., 1999; Furey et al., 2000; Alon et al., 1999; Ramaswamy et al., 2001;
Li et al., 2002). Despite this early success, the presence of a significant number of
irrelevant features—here genes in the profile that are unrelated to the disease status
of the tissue—makes such analysis somewhat prone to the curse of dimensionality.

Intuitively, overcoming the curse of dimensionality requires that we build clas-
sifiers relying on information exclusively from the genes in the profile that are
truly relevant to the disease status of the tissue. This problem of identifying the
features most relevant to the classification task is known as feature selection. In
this chapter, we review current methods of feature selection, focusing especially on
the many recent results that have been reported in the context of gene expression
analysis. Then we present a new Bayesian EM algorithm that jointly accomplishes
the classifier design and feature selection tasks. By combining these two problems
and solving them together, we identify only those features that are most useful in
performing the classification itself. Experimental results are presented on several
gene expression data sets. The biological significance of the genes identified by the
method is also briefly assessed.
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14.1 Common Issues in Classifying Gene Expression Profiles

For simplicity, we consider in this chapter the problem of diagnosing whether or
not a patient has a specific disease, which can be viewed as a binary supervised
classification or pattern recognition task. In situations where several diseases are
possible, standard strategies for extending binary classifiers to multiclass problems
may be used to generalize the analysis presented here.

Let us assume that we are presented with a database of m profiles each measuringNotation
the expression level of N genes, X = {xi ∈ RN}mi=1. Additionally, we are also
provided with the corresponding set of class labels indicating the disease status, Y =
{yi ∈ {−1, +1}}mi=1. Assuming a parametric form for the functional relationship
between x and the posterior probability of class membership as P (y = 1|x) = fβ(x),
during the training phase we seek to find the optimal parameters β based on the
evidence of the training data, D = {X, Y }.

Because of the significant cost and effort required to perform these experiments,Data
characteristics currently available databases typically contain fewer than one hundred profiles,

though each profile quantifies the expression levels of several thousand genes. Due
to the high dimensionality and the small sample size of the experimental data, it
is often possible to find a large number of classifiers that can separate the training
data perfectly, but their diagnostic accuracy on unseen test samples is quite poor.
In terms of risk, even when we design a classifier to minimize the empirical risk,
β̂ = argminβ Remp(fβ), the true risk, R(fβ̂), of the resulting classifier remains
large. However, as demonstrated later in this chapter, when presented with the
expression levels of only a small subset of diagnostically relevant genes, several
methods of classifier design achieve equally good generalization. Thus, we may
conclude that the choice of feature selection methods is often more important than
the choice of classifier for gene expression analysis.

14.2 A Review of Feature Selection Methods for Kernel Machines

Let us assume that the genes are indexed by the variable j ∈ {1, 2, . . . , N}. WeDefinition
can denote any subset of the genes by S where S ⊂ {1, 2, . . . , N}. We define X(S)

to be the database of expression profiles restricted to the genes contained in the
subset S. Thus, X(S) = {x(S)

i ∈ R|S|}mi=1, where |S| denotes the cardinality of S.
In feature selection, we are interested in identifying the subset of genes Ŝ whose
expression levels are most relevant to classification or diagnosis. There are three
principal reasons for our interest in feature selection:

1. We can improve the generalization performance—or out-of-sample accuracy—ofReasons for
feature selection our classifier by identifying only the genes that are relevant to the prediction of

the disease diagnosis. This effect is attributable to the overcoming of the curse of
dimensionality mentioned earlier.
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2. If it is possible to identify a small set of genes that is indeed capable of providing
complete discriminatory information, inexpensive diagnostic assays for only a few
genes might be developed and be widely deployed in clinical settings.

3. Knowledge of a small set of diagnostically relevant genes may provide important
insights into the mechanisms responsible for the disease itself.

In considering this last point, it is necessary to clearly distinguish between theCaveats
relevance of a gene to the biological mechanism underlying the disease and its
relevance to building good diagnostic prediction algorithms. On the one hand,
not all biologically relevant genes may need to be used when building accurate
diagnostic classifiers; on the other hand, a high correlation between disease status
and gene expression level does not necessarily imply that the expression of that
particular gene has somehow caused the disease. So diagnostic relevance is neither
a necessary nor a sufficient condition for biological relevance. Consequently, genes
selected for their diagnostic relevance should be validated for biological relevance by
follow-up studies of the literature or experimental analysis. Nevertheless, the fact
remains that good feature selection methods can often serve as excellent guides to
identifying small subsets of genes for further investigation.

In the current literature three basic approaches to feature selection predominateThree approaches
to feature
selection

(Blum and Langley, 1997; Kohavi and John, 1997): filter, wrapper, and embedded.
Filter methods consider the problem of feature selection in isolation from the
problem of classifier design; typically a subset of features is first selected in a
preprocessing step, and then only the selected features are subsequently used to
design a classifier. Thus, filter methods are independent of the technique for classifier
design and they may be used in conjunction with any such algorithm. In contrast,
wrapper methods search through the space of possible feature subsets and measure
the quality of a particular subset S by estimating the accuracy of a classifier
designed using only the features in S, either directly or indirectly (using theoretical
bounds as approximations). Hence, wrapper methods search for optimal feature
subsets for use with a specific classifier design algorithm. Finally, in embedded
methods, feature selection and classifier design are accomplished jointly. We study
several examples of all three methods below.

14.2.1 Filter Methods of Feature Selection

Perhaps the simplest filtering scheme is to evaluate each feature individually basedFDR
on its ability to distinguish between the disease categories (i.e., ability to predict
class labels). We may compute the Fisher discriminant ratio (FDR) of each gene
j, as

FDR(j) =
(μ(j)

+ − μ
(j)
− )2

(σ(j)
+ )2 + (σ(j)

− )2
, (14.1)
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Figure 14.1 Plot of Fisher discriminant ratio of genes with FDR values at least 10%
of the value of the gene with the highest FDR value. The genes have been sorted by
decreasing FDR value.
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Figure 14.2 Normalized expression levels of genes ranked 3 and 11 according to FDR
value. For perceptual clarity, only the expression level on the tumor samples is shown.
Again for perceptual clarity, only two genes are depicted here, but the same effect is
obtained for large clusters of genes.

where μ
(j)
+ , μ

(j)
− , σ

(j)
+ , and σ

(j)
− represent the class-conditional means and standard

deviations, respectively, for the expression level of gene j. Under the assumption
that the class-conditional density functions are Gaussian, larger values of FDR(j)
suggest that gene j is better able to distinguish between classes when used as the
single independent predictor of disease status. Consequently, selecting genes with
the highest FDR values is often employed as a simple technique for feature selection.

To study the limitations of this method, let us consider the gene expression data
provided by Alon et al. (1999) where the aim is to distinguish colon tumors from
normal cells. Figure 14.1 shows the FDR values of genes from this data set, sorted
by decreasing FDR value. Note that the expression levels of over 400 genes are well
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correlated with the diagnostic class labels, as determined by FDR. This presents
far too large a set to reasonably consider if the importance of each of these genes to
the disease mechanism must be experimentally validated, or if interactions between
the genes are to be explored using automated computational network inference
methods.

In looking more closely at these 400 genes, we uncover a great deal of redundancy.Redundant
features For example, consider figure 14.2, which shows the expression profiles of the 3rd and

11th ranked genes. These two genes are highly correlated and thus their expression
profiles provide similar information. In fact, large subsets of the genes with high
FDR values exist that encode essentially the same information from the point of
view of classifier design, implying a heavy redundancy of information among the
most prominent features. As a result, considering all the genes with high FDR
values provides little more information than that obtained using the single highest
gene. Certainly, from the perspective of understanding the disease mechanism, it is
important to distinguish between genes whose expression level is not correlated with
the diagnosis (i.e., irrelevant features) and sets of genes which are highly correlated
with each other (i.e., redundant features). However, from the perspective of classifier
design, both of these provide potential problems. Hence, we may conclude that
while FDR may identify a large number of relevant genes, the identified set likely
has heavy redundancy. This suggests that more insightful feature selection methods
may be able to identify much smaller sets of relevant genes that are nevertheless
equally effective in diagnosing the disease status of a patient.

One commonly suggested mechanism for addressing this redundancy problem isPCA and other
projection
techniques

to first identify a low-dimensional space such that the projections of the samples
onto that space are linear combinations of the original features. This is accomplished
using principal component analysis (PCA) or linear discriminant analysis, and has
been used with some success in gene expression analysis, for example, by Khan
et al. (2001). Unfortunately, since the new predictors are now linear combinations
of all of the genes at once, we no longer have the advantage of requiring few
experimental measurements for inexpensive clinical deployment and we lose most of
the mechanistic insights as well. Similar problems are also associated with several
nonlinear extensions of these projection methods.

14.2.2 Wrapper Methods of Feature Selection

The main limitation of methods that select features independently of one another—
like FDR—is that they are typically designed under the assumption of independent
and thus nonredundant features. This limitation can be largely overcome by con-
sidering feature selection as a search over the space of all possible feature subsets.
Exploiting the natural partial ordering properties of the space of subsets, we can
either start with an empty set and successively add features, or start with the set
of all features and successively remove them. The former approach is referred to as
forward selection while the latter is referred to as backward elimination; note that
a combination of the two approaches is also possible.
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As an example of forward feature selection, using any classifier design algorithm,Forward selection
we might first look for the single most discriminative feature. We could then look for
the single additional feature that gives the best class discrimination when considered
along with the first feature (note the difference between this approach and that of
FDR). We could keep augmenting the feature set iteratively in this greedy fashion
until cross-validation error estimates are minimized; if adding additional features
leads to lower estimates of generalization performance, we stop. As an example,
Xiong et al. (2001) used this kind of greedy forward feature selection approach
along with a Fisher linear discriminant classifier to analyze gene expression data for
tumor classification. Note that this approach requires a large number of classifiers
to be built, but the cost of building each such classifier is quite small since the
number of features considered is not very large at any point.

In backward elimination, we start by building a classifier using all the features.Backward
elimination Assessing the relative importance of the features in the resulting classifier, we

iteratively eliminate the least important features and again build a classifier based
on the remaining feature subset. Since the final subset may be only a small fraction
of the size of the original feature set, we can accelerate the elimination process
by removing large sets of irrelevant features in each iteration. This reduces the
number of intermediate classifiers that need to be built during the process. Even
with such an optimization, however, each of these iterations may still require a large
amount of effort since the feature set remains large for several iterations. Therefore
kernel classifiers are a natural choice in this framework since their computational
requirements scale well to high feature dimensionality.

By varying the algorithm used for classifier design and the criterion used to
measure feature relevance, a family of related backward elimination methods have
been developed for gene expression analysis; we use the remainder of this subsection
to examine a number of them.

The leave-one-out error L is an unbiased estimator of the generalization perfor-Wrapper
methods based
on minimization
of error bounds

mance of classifiers. Hyperplane classifiers like the SVM are often of the form

f (x;w, b) = (w · x) + b. (14.2)

For classifiers of this form, the following radius/margin bound for L is well
known (Vapnik, 1995):

L ≤ 4R2 ‖w‖22 . (14.3)

where R is the radius of the smallest sphere in the kernel-induced feature space
that contains all the data, and w specifies the hyperplane classifier identified by
the SVM in that space. Assuming that R changes little with the choice of features,
minimizing the margin ‖w‖2 should result in a tighter bound for L. Guyon et al.
(2002) use this intuition as the basis for assessing the importance of the features
at each iteration of their wrapper method. The result is an algorithm they term
recursive feature elimination (RFE) that performs feature selection by iteratively
training an SVM classifier with the current set of genes and removing the genes with
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the smallest weight in the resulting hyperplane. In related work, Weston et al. (2000)
attempt feature selection by minimizing (14.3), using a gradient descent algorithm
on the feature scaling factors rather than eliminating them. Retaining the backward
elimination approach of Guyon et al. (2002), Rakotomamonjy (2003) discusses two
generalizations of these algorithms. First, use of a tighter span bound on L as
compared to (14.3) is considered. Second, for both (14.3) and the span bound, the
magnitude of the gradient of the error bounds with respect to the feature scale is
used as a measure of feature relevance. Intuitively, removing the features with the
smallest gradient has the least effect on the generalization error bound. Hence in
each iteration an SVM classifier is computed, the features are ranked according to
the gradients of the error bounds, and the least significant features are removed.

Among these bound minimization algorithms for feature selection with the SVM,Comparison of
wrapper methods the RFE has empirically been observed to achieve the best results on classification

tasks using gene expression data (Rakotomamonjy, 2003). Zhu and Hastie (2003)
have shown that RFE with a penalized kernel logistic regression (PKLR) classifier in
place of an SVM classifier achieves classification accuracy equal to that of RFE with
the SVM, but with two additional benefits: RFE with the PKLR tends to find an
even more parsimonious feature subset than RFE with the SVM, and this approach
also provides posterior probabilities of class membership. In other related work,
Ambroise and McLachlan (2002) have found that the RFE achieves a maximum
of about 3% improvement in classification error rates as compared to equivalent
forward selection methods using the SVM classifier.

14.2.3 Embedded Methods of Feature Selection

For constructing hyperplane classifiers of the form (14.2), Weston et al. (2003b)Zero-norm
minimization provide an algorithm to approximately solve the following problem:

ŵ = argmin
w∈RN

λ ‖w‖0 + ‖ξ‖0 , (14.4)

subject to

yi ((w · xi) + b) ≥ 1− ξi.

Recall that the l0 norm of a vector—denoted as ‖·‖0 above—is equal to the
number of non-zero elements in it. Thus, the algorithm of Weston et al. (2003b)
tries to jointly minimize a weighted sum of the number of features used in the
hyperplane classifier and the number of misclassifications on the training data. As a
consequence, feature selection is incorporated fundamentally into the algorithm for
classifier design. Though the choice of the l0 norm constitutes an extreme example
of feature selection enforced as part of classifier design, several recently developed
algorithms for classifier design have incorporated regularizers based instead on the
l1 norm: ‖w‖1 =

∑ |wi|, which is also often referred to as the lasso penalty.
The family of l1 regularized algorithms share interesting theoretical properties

and relationships. A theorem from Mangasarian (1999) establishes the equivalence



306 Gene Expression Analysis: Joint Feature Selection and Classifier Design

between lp margin maximization and lq distance maximization where 1
p + 1

q = 1.
Using this result, Rosset et al. (2003) have shown that one-norm SVM, exponential
boosting, and l1-regularized logistic regression all converge to the same nonregular-
ized classifier in the limit as λ→ 0. This classifier is shown to be a hyperplane that
maximizes the l∞ distance from the closest points on either side. Friedman et al.
(2004) consider situations that are not uncommon in gene expression analysis: for
example, m = 100 and N = 10, 000. They argue that in a sparse scenario where
only a small number of true coefficients wi are non-zero, the l1 margin regularizer
works better than the normal l2 margin used in penalized logistic regression, SVM,
and so on; in the nonsparse scenario, neither regularizer fits coefficients well due
to the curse of dimensionality. Based on these observations, they propose the bet
on sparsity principle for high-dimensional problems which encourages using the l1
penalty.

One example of an l1 regularized method is the one-norm SVM of Fung andOne-norm SVM
Mangasarian (2002):

ŵ = argmin
w∈RN

λ ‖w‖1 + ‖ξ‖1 , (14.5)

subject to

yi ((w · xi) + b) ≥ 1− ξi.

Replacing the hinge loss function of the SVM in (14.5) with the logistic lossSparse logistic
regression function leads to an objective function that is the maximum a posteriori (MAP)

solution of logistic regression with a Laplacian prior (Roth, 2003):

ŵ = argmin
w∈RN

λ ‖w‖1 +
m∑

i=1

log (1 + exp (−yif (xi;w)))

= argmax
w∈RN

1
λ

exp (−λ ‖w‖1)
m∏

i=1

1
(1 + exp (−yif (xi;w)))

.

(14.6)

Other closely related algorithms for sparse hyperplane classifier design may beSparse probit
regression, RVM,
JCFO

obtained by changing the logistic regression to the probit regression (Figueiredo,
2003), or by changing the Laplacian prior to a Student’s t prior (Tipping, 2001).
The latter is the basis of the RVM. All these variations provide comparable feature
selection and classification accuracy. While all the embedded methods described in
this section can be used to perform joint feature selection and classifier design in the
context of simple hyperplane classifiers, they are not able to accomplish joint feature
selection and classifier design in the context of nonlinear kernel classifiers. In the
next section we derive a new algorithm for joint classifier and feature optimization
(JCFO) that extends these methods to accomplish joint feature selection and
classifier design in the context of nonlinear kernel classifiers.
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14.3 The Joint Classifier and Feature Optimization Algorithm

The basic intuition behind our approach to solving the feature selection andBasic intuition
behind JCFO classifier design problems jointly is to extend the set of parameters to be learned:

we will estimate not only the weight parameters α associated with basis functions
but also a vector of (non-negative) scaling factors θ = [θ1, θ2, . . . , θN ]T associated
with the N features. Consequently, we consider functions of the form

f(x) = Φ
(
αT hθ(x)

)
= Φ

(
α0 +

∑
αi ψi(x, θ)

)
, (14.7)

where Φ(z) is the probit link function; α is a vector of weights [α0, α1, α2, . . . , αk]T ;
and hθ(x) = [1, ψ1(x, θ), . . . , ψk(x, θ)]T ; and ψi(x, θ) : RN × RN → R are
(possibly nonlinear) basis functions. Please note that Φ(z) is not used in this
chapter as the map into feature space induced by some kernel; rather Φ(z) =
(2π)−1/2

∫ z

−∞ exp
(−x2/2

)
dx.

Although our formulation allows arbitrary basis functions, we shall focus onKernel basis
functions the important case where ψi(x, θ) = kθ(x,xi) is some symmetric Mercer kernel

function (Cristianini and Shawe-Taylor, 2000), parameterized by θ. Accordingly,
the dimension of both α and hθ(x) is m + 1. The only condition we place on the
kernel kθ is that its dependence on θ is such that smaller values of θj correspond to
smaller influence of x(j) and x

(j)
i in kθ(x,xi); in particular, if θj = 0, then kθ(x,xi)

must not depend on x(j) or x
(j)
i . Examples of such functions are scaled Gaussian

kernels, kθ(x,xi) = exp{−(x − xi)T diag (θ) (x − xi)}, and nth order polynomial
kernels, kθ(x,xi) = (1 + xT diag (θ)xi)n.

Our algorithm may be characterized as a Bayesian approach to learning theBayesian learning
of parameters weight parameters α and the scaling θ. Accordingly, in the next section we define

priors over both α and θ that reflect our a priori belief that most of the elements of
these vectors are identically zero. Subsequently, we jointly estimate the maximum
MAP values of α and θ using an expectation maximization algorithm.

It should be noted that Seeger (2000) and Williams and Barber (1998) alsoRelated work
attempt similar aims of joint feature scale identification and classifier design in a
Bayesian setting; however, those methods have not been applied to problems in gene
expression analysis. Despite similar objectives, the three methods differ significantly
in their algorithmic details; we only derive the JCFO hereafter. Though we do not
have experimental evidence to prove it, we expect all three methods to perform
comparably and enjoy similar benefits.

14.3.1 Sparsity-Promoting Priors and Their Hierarchical Decomposition

We seek to find classifiers (i.e., to estimate α and θ) that not only predict classLaplacian priors
promote sparsity probabilities accurately but also do so with few non-zero elements in either α or

θ. When using a kernel basis function formulation, sparsity in α corresponds to
finding a small subset of training samples that are representative of the classes (as
in Tipping, 2001; Figueiredo and Jain, 2001), while sparsity in θ corresponds to
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implicit feature selection. As already pointed out in subsection 14.2.3, it is well-
known that sparsity can be encouraged by a Laplacian prior (see, e.g., Tibshirani,
1996).

For the prior on α, we have p(α|η) ∝ exp(−η ‖α‖1) =
∏

j exp(−η |αj |), where η

is a hyperparameter whose choice will be addressed below. In the case of θ, since the
parameters are all non-negative, we have p(θ|ν) ∝ exp(−ν ‖θ‖1) =

∏
l exp(−νθl),

for all θl ≥ 0, zero otherwise.
MAP estimates of α and θ cannot be found in closed form. To circumventHierarchical

priors this difficulty, we consider the following two-level hierarchical model. Each αi is
given a zero-mean Gaussian prior with its own variance τi: p(αi|τi) = N(αi|0, τi).
Further, the variances τi have independent exponential hyperpriors, p(τi|γ1) ∝
exp (−γ1τi/2), for τi ≥ 0. The effective prior can be obtained by integrating out τi:

p(αi|γ1) =
∫ ∞

0

p(αi|τi)p(τi|γ1)dτi ∝ exp(−√γ1 |αi|) (14.8)

showing that a Laplacian prior is equivalent to a two-level hierarchical model char-
acterized by zero-mean Gaussian priors with independent exponentially distributed
variances. For each parameter θi, since it is non-negative, we adopt non-negative
Gaussian priors:

p(θi|ρi) =

{
2N(θi|0, ρi) if θi � 0

0 if θi < 0
(14.9)

and again the ρi have independent exponential hyperpriors: p(ρi|γ2) ∝ exp(−γ2ρi/2),
for ρi � 0. The effective prior on θi is thus exponential, as desired:

p(θi|γ2) ∝
{

exp(−√γ2 θi) if θi � 0

0 if θi < 0
(14.10)

14.3.2 The JCFO algorithm

The hierarchical decomposition of the Laplacian priors just described opens theMissing data
interpretation of
probit link

door to the use of an EM algorithm for computing the estimates of α and θ by
treating the τi and ρi as missing data. Furthermore, the probit link allows an
interpretation in terms of hidden variables that facilitates the derivation of such an
EM algorithm (Figueiredo and Jain, 2001; Albert and Chib, 1993). Specifically, let
z(x, α, θ) = αT hθ(x) + ε, where ε is a zero-mean unit-variance Gaussian random
variable. If the classifier is defined as y = sign(z(x, α, θ)), then we recover the
probit model, since

P (y = 1|x) = P
(
αT hθ(x) + ε > 0

)
= Φ

(
αT hθ(x)

)
. (14.11)

Given the data D = {(x1, y1), . . . , (xm, ym)}, consider the corresponding vector
of missing variables z = [z1, . . . , zm]T , as well as the vectors of missing variables
τ = [τ1, . . . , τm+1]T and ρ = [ρ1, . . . , ρN ]T . If z, τ , and ρ were known, we would
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have an easier estimation problem for α and θ: We would effectively have the
observation model z = Hθα+ ε, with Gaussian priors on α and θ (variances given
by τ and ρ), where Hθ = [hθ(x1), hθ(x2), . . . ,hθ(xm)]T is the design matrix, and
ε is a vector of independent and identically distributed zero-mean unit-variance
Gaussian random variables. This suggests using an EM algorithm to find a local
maximum of the posterior p(α, θ|D).

The EM algorithm will produce a sequence of estimates α̂(t) and θ̂
(t)

byEM algorithm
alternating between two steps:

E-step. Conditioned on D and on the current estimates α̂(t), θ̂
(t)

, compute
the expected value of the complete log-posterior, p(α, θ|D, z, τ , ρ), denoted as

Q

(
α, θ

∣∣∣ α̂(t), θ̂
(t)
)

:

Q

(
α, θ

∣∣∣ α̂(t), θ̂
(t)
)

=
∫

p

(
z, τ , ρ

∣∣∣ D, α̂(t), θ̂
(t)
)

log p(α, θ|D, z, τ , ρ) dz dτ dρ

M-step. Update the estimates to
(

α̂(t+1), θ̂
(t+1)

)
= argmax

α,θ
Q

(
α, θ

∣∣∣ α̂(t), θ̂
(t)
)

.

As shown in the appendix, the E-step reduces to the following three analyticalE-step
expressions:

vi ≡ E
[
zi

∣∣∣ D, α̂(t), θ̂
(t)
]

= hT
θ (xi)α̂

(t)+
yi N

(
hT

θ (xi)α̂
(t)
∣∣ 0, 1

)
(1+yi)

2 − yi Φ
(
−hT

θ (xi)α̂
(t)
) (14.12)

ωi ≡ E
[
τ−1
i

∣∣∣ D, α̂
(t)
i , γ1

]
= γ1

∣∣∣α̂(t)
i

∣∣∣−1

(14.13)

δi ≡ E
[
ρ−1

i

∣∣∣ D, θ̂
(t)

i , γ2

]
= γ2

(
θ̂

(t)

i

)−1

(14.14)

Defining vector v = [v1, . . . , vm]T and matrices Ω = diag (ω1, . . . , ωm+1), and
Δ = diag (δ1, . . . , δN ), the Q function can be written as

Q

(
α, θ

∣∣∣ α̂(t), θ̂
(t)
)

= −αT HT
θ Hθα + 2 αT HT

θ v −αTΩα− θTΔθ. (14.15)

As for the M-step, since Hθ is generally neither linear nor quadratic in θ, QM-step
cannot be maximized analytically w.r.t. θ. Moreover, the optimizations w.r.t. α

and θ cannot be pursued independently. However, we observe that given any θ, the
optimal α is simply

α̂
(t+1)
θ = (Ω + HT

θ Hθ)−1HT
θ v = κ(I + κHT

θ Hθκ)−1κHT
θ v, (14.16)

where κ = γ
−1/2
1 diag

(√∣∣∣α̂(t)
1

∣∣∣, . . . ,√∣∣∣α̂(t)
m+1

∣∣∣ ) is a matrix introduced to enable

a stable numerical implementation, since the sparsity-promoting properties of the
hierarchical priors will drive several of the αi to zero. Since we can maximize analyt-
ically w.r.t. α, we are left with the maximization w.r.t. θ of Q(α̂(t+1)

θ , θ|α̂(t), θ̂
(t)

).
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Here, we are forced to employ numerical optimization to obtain θ̂
(t+1)

; in the re-
sults presented below, we use conjugate gradient. Note that our model assumes that
each θi ≥ 0; this can be accomplished by the reparameterization θi = exp(ζi), and
solving for each ζi instead.

The computational complexity of the algorithm just outlined remains moderateComputational
complexity for problems with m on the order of a few hundred and N on the order of a

few thousand, due to the use of some simple approximations (Krishnapuram et al.,
2003). For all of the gene expression data sets analyzed in the next section, we could
complete the training of a classifier in under half an hour on a 800 MHz Pentium III
machine with unoptimized MATLAB code. The computational bottleneck is clearly
the matrix inversion in (14.16), which becomes impractical for large m; this problem
is endemic among kernel methods.

14.4 Experimental Studies Comparing the Methods

In order to assess the success of the JCFO and to compare its performanceTwo types of
experiments against other popular classifiers we performed two types of experiments. In the

first experiment, we synthetically generated data with a large number of irrelevant
features, in order to study the effect of overfitting on several algorithms. In the
second series of experiments, we used measured gene expression data and compared
the methods based on their cross-validation estimate of error rates. The genes
identified by the JCFO were also evaluated against the known literature for their
biological significance. These experiments are outlined below in more detail.

In keeping with standard practice on kernel classifiers, in all experiments the data
sets were mean-centered and normalized to unit variance. The hyperparameters γ1

and γ2 were adjusted by using a hold-out test set of 10% of the data. The chosen
values were then used with the entire data set to obtain the classifiers.

14.4.1 Effect of Irrelevant Predictor Variables on Kernel Classifiers

To assess the extent to which different state-of-the-art kernel classifiers are affected
by the presence of irrelevant predictor variables, we generated N -dimensional
Gaussian data from two classes with means μ1 = −μ2 = [1/

√
2, 1/
√

2, 0, 0, . . . , 0]T

with both covariances identity matrices. Independent of N , the Bayes error rate is
Φ(−1|0, 1) % 0.1587 and the optimal classifier uses only the first two variables.
All algorithms were trained with 100 samples per class, and the accuracy of
the learned classifier was tested on an independent test set of 1000 samples.
Results were averaged over 20 random draws of the training set, and the procedure
repeated for several feature dimensions N . The average error rates plotted in
figure 14.3 show that the JCFO algorithm is far more resistant to the presence
of irrelevant variables than the other methods considered: SVM, RVM, and sparse
probit (Figueiredo and Jain, 2001). Among the kernel methods compared in this
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experiment, only the JCFO has the ability to identify the scale of the input features,
so it is quite understandable that the JCFO is largely immune to the presence of
irrelevant features. Furthermore, for almost all random draws of the training set, the
JCFO reported non-zero scaling factors θi for only the two relevant features. The
performance degradation of the other methods in the presence of irrelevant features
shows explicitly that feature selection is crucial, even for large margin techniques
like the SVM.

14.4.2 Cancer Diagnosis Using Gene Expression Data

Next, we considered two publicly available gene expression data sets that haveBenchmarks
been analyzed by several authors, though each has adopted a slightly different
experimental setup. These data sets are characterized by small training sets (a
few tens) but very high feature dimensionality (several thousands). The first one,
originally studied by Golub et al. (1999), contains expression values of N = 7129
genes from m = 72 samples of two classes of leukemia: 47 of acute myeloid
leukemia (AML) and 25 of acute lymphoblastic leukemia (ALL). The second data
set, originally analyzed by Alon et al. (1999), contains expression levels of N = 2000
genes from 40 tumor and 22 normal colon tissues. Both data sets contain a large
number of redundant and irrelevant features (genes). Strong feature selection is
thus both possible and desirable.

Diagnostic accuracies of diagnostic classification schemes are commonly assessed
using a cross-validation scheme. In an leave-one-out cross-validation (LOOCV), the
accuracy of diagnostic prediction on each sample is assessed based on classifiers built
using the remaining m−1 samples as a training set. Table 14.1 reports the LOOCV
results for the JCFO and several other learning methods, including Adaboosting,
the SVM, the RVM, logistic regression, and sparse probit regression.

 JCFO
 SVM
 Sparse probit
 RVM

 Dimensions d
5 10 15 20 25 30 35

0.16

0.19

0.18

0.17

0.21

0.20

0.22

Bayes error rate

Figure 14.3 Effect of irrelevant features: error rates of most kernel classifiers increase
as irrelevant features are introduced, but the JCFO is largely immune.
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Table 14.1 LOOCV accuracy of cancer diagnosis based on gene expression data for
several classifiers (percent correct; a higher number is better).

Classifier AML/ALL Colon tumor

Adaboost (decision stumps) (Ben-Dor et al., 2000) 95.8 72.6

SVM (quadratic kernel) (Ben-Dor et al., 2000) 95.8 74.2

SVM (linear kernel) (Ben-Dor et al., 2000) 94.4 77.4

RVM (linear kernel) 94.4 80.6

RVM (no kernel: on feature space) 97.2 88.7

Logistic regression (no kernel: on feature space) 97.2 71.0

Sparse probit regression (quadratic kernel) 95.8 84.6

Sparse probit regression (linear kernel) 97.2 91.9

Sparse probit regression (no kernel: on feature space) 97.2 85.5

JCFO (quadratic kernel) 98.6 88.7

JCFO (linear kernel) 100.0 96.8

Table 14.2 Cross-validation estimates of accuracy of cancer diagnosis on colon tumor
gene expression data for several classifiers, reproduced from results reported in the
literature (percent corect; a higher number is better; see text for details of specific
experimental setup in each case).

Classifier Colon tumor

RVM (no kernel: on feature space) (Li et al., 2002) 85.4

SVM (RFE) (Weston et al., 2003b) 87.5

Zero-norm minimization (Weston et al., 2003b) 88.9

SVM (radius/margin gradient) (Rakotomamonjy, 2003) 88.9

For further perspective, the mean cross-validation error rates reported in aResults from the
literature number of papers in the literature on the colon data are reproduced in table 14.2.

Slightly different preprocessing has been adopted in certain cases by different
authors, leading to small differences in quoted results of those methods; most
important, the number of training and testing samples used has a significant impact
on the estimate of variance associated with the reported accuracy. Li et al. (2002)
split the available 62 samples into 50 used in training their method and 12 test
samples used to obtain unbiased estimates of their accuracy. They repeat this
process for 100 random draws of the training set. Weston et al. (2003b) use the
same split but repeat their experiments for 500 random draws of the training set;
hence their mean error rates should be comparable, even though their estimate of
variance of error rates may not be directly comparable.

The JCFO typically identified around 25 features (genes) as important for the
classification task. In contrast, using the RVM or the sparse probit algorithm with
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Table 14.3 Most important genes for distinguishing between AML and ALL, as selected
by the JCFO (Krishnapuram et al., 2004)

θi Gene Name Gene Description

1.14 MPO myeloperoxidase

0.83 HOXA9 homeo box A9

0.81 APOC1 apolipoprotein C-I

0.77 PPGB protective protein for β-galactosidase (galactosialidosis)

0.70 NME4 nonmetastatic cells 4, protein expressed in

0.67 PTGS2 prostaglandin-endoperoxide synthase 2

0.56 CD171 human CD171 protein

0.51 NEK3 NIMA (never in mitosis gene a)-related kinase 3

0.46 CST3 cystatin C (amyloid angiopathy and cerebral hemorrhage)

0.42 EPB72 erythrocyte membrane protein band 7.2(stomatin)

0.42 DF D component of complement (adipsin)

0.41 PTMA prothymosin α (gene sequence 28)

0.41 HSPA8 heat shock 70-kDa protein 8

0.40 CY P2C18 cytochrome P-450, subfamily IIC, polypeptide 18

0.35 CD33 CD33 antigen (gp67)

0.34 PRG1 proteoglycan 1, secretory granule

0.33 SERPING1 serine (or cysteine) proteinase inhibitor, clade G, member 1

0.32 FTH1 ferritin, heavy polypeptide 1

0.30 ALDH1A1 aldehyde dehydrogenase 1 family, member A1

0.29 LTC4S leukotriene C4 synthase

0.27 MY BL1 v − myb myeloblastosis viral oncogene homolog (avian)-like 1

0.26 ITGA2B α2b integrin, alpha 2b (platelet glycoprotein IIb, antigen CD41B)

0.23 MACMARCKS macrophage myristoylated alanine-rich C kinase substrate

no kernel to perform feature selection (as discussed in subsection 14.2.3) resulted
in classifiers based on around 100 genes. More critically, for the RVM, each time
the training set was changed in the LOOCV procedure, the genes identified as
relevant to the discrimination changed significantly. In other words, this method
was not stable to slight changes in the data set, rendering its results less biologically
trustworthy.

Table 14.3 lists the genes identified by the JCFO as being most importantBiological
relevance of
identified genes

for making a diagnostic decision in distinguishing between AML and ALL. The
reported values of θ in these tables were obtained by taking the mean of the
θ obtained for each of the classifiers designed in the LOOCV. Almost all genes
selected by the JCFO are of known relevance to the AML/ALL distinction. In
particular, CST3, CD33, DF, HOXA9, LTC4S, PRG1, CTSD, and EPB72 were
all determined both by the JCFO and in Golub et al. (1999) to be predictive of
AML. In addition, the JCFO revealed myeloperoxydase (MPO) to be of paramount
importance (though it was not uncovered in Golub et al., 1999)). MPO is known to
occur in virtually all cells of the myeloid lineage and none of the lymphoid lineage;
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Table 14.4 LOOCV accuracy of breast cancer diagnosis based on gene expression data
for several classifiers (percent correct; a higher number is better; see text for descriptions
of the data sets).

Classifier Duke ER Duke LN Lund

SVM (linear kernel) 97.4 78.9 87.9

RVM (linear kernel) 94.7 92.1 88.5

RVM (no kernel) 89.5 81.6 96.5

Sparse probit regression (linear kernel) 97.4 89.5 86.2

Sparse probit regression (no kernel) 84.2 89.5 96.5

JCFO (linear kernel) 97.4 94.7 98.3

antibodies to MPO are used as clinical determinants of AML. Many others genes
selected by the JCFO are known to play a role in myeloid/lymphoid differentiation,
and a few novel genes have been identified as well. Similar results hold for the case
of the colon data as well.

We also examined three different breast cancer data sets. The first was a DukeBreast cancer
data University study in which m = 38 breast tumors were classified based on estrogen

receptor (ER) status. The second was a Duke University study in which the same
m = 38 breast tumors were classified based on lymph node (LN) involvement
status. The third was a set of m = 58 breast tissues collected by researchers at
Lund University in Sweden. To accelerate the time required to complete the full
LOOCV for all of the methods, and to give as much performance benefit as possible
to the other classification methods that suffer more from the curse of dimensionality,
the three breast cancer data sets were pared in advance to include only the 2000
most relevant genes as determined by FDR. Restricting the set of available genes
in this way does not improve the accuracy of the JCFO because it is designed to
perform feature selection as part of its optimization, but the smaller set of relevant
initial features does improve the accuracy of the other methods.

In table 14.4, we present a full leave-one-out cross-validation study for each of
the three data sets to compare the accuracy of the diagnostic classification reported
by the JCFO against that of the SVM, the RVM, and sparse probit regression. We
consider only kernels that seemed to perform reasonably well in the previous tests
(as shown in table 14.1).

14.5 Discussion

An analysis of tables 14.1 and 14.4 suggests that for disease diagnosis tasks based
on gene expression data, the JCFO provides classification accuracy superior to that
of other popular methods like the SVM, RVM, and sparse probit regression. The
statistical significance of this difference is unclear, though the fact that the JCFO
performs well on a wide range of different tasks may be suggestive. Indeed, while
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we have not presented results on other low-dimensional data sets widely used as
benchmarks for classification, similar results have been obtained there as well. This
may be understandable since the JCFO has two different and complementary kinds
of regularization, one based on sparse choice of kernel basis functions and the other
on feature selection.

Also, table 14.2 seems to indicate that a variety of modern embedded feature
selection methods such as the RVM, RFE, radius/margin bound minimization, and
zero-norm minimization methods seem to perform comparably in terms of error
rates of the learned classifier, and the differences between all of them are statistically
small. However, the latter conclusion is somewhat tenuous due to the limited
number of experimental results available for analysis; we are currently attempting
to run those methods on more data sets to gather more statistical evidence. The
relatively high classification accuracy obtained by all of these methods, including
the JCFO, is indicative of the fact that gene expression data provide an excellent
basis for distinguishing between disease classes.

Besides improved predictive accuracy in cross-validation experiments, the JCFO
also provides the posterior probability of class membership as opposed to a hard
classification decision as provided by the SVM, though this property is common
to several other methods as well (like Gaussian processes). It tends to be more
parsimonious in identifying only a small number of diagnostically relevant genes.
We have also found that most of the genes have typically been implicated in earlier
results published in the literature.

14.6 Availability of Software

MATLAB implementations of sparse probit regression, RVM, JCFO, and forward
feature selection with the SVM can be obtained by emailing the first author. The
code is provided freely for noncommercial use.

MATLAB implementations of zero-norm minimization, RFE, and radius/margin
bound minimization methods are publicly available in the Spider library from:
http://www.kyb.tuebingen.mpg.de/bs/people/spider/index.html.

MATLAB implementations of the one-norm SVM software are publicly available
from: http://www.cs.wisc.edu/dmi/svm/.

C++ implementations of the Generalized-LASSO, an algorithm similar to the
RVM, are available from: http://www.informatik.uni-bonn.de/∼roth/GenLASSO/.

S-Plus implementations of the RFE for penalized kernel logistic regression for
academic research use were obtained by contacting Zhu and Hastie (2003) directly.
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Appendix: Derivation for Q-Function and E-Step

As a first step, we see that the complete log-posterior on the learning parameters
θ and α, including the hidden variables τ , ρ, and z, is

log P (α, θ|y, z, ρ, τ ) ∝ log P (z|α, θ) + log P (α|τ ) + log P (θ|ρ)

∝ −‖Hα− z‖2 −αT T α− θT Rθ

∝ −zT z−αT HT (Hα− 2z)−αT Tα− θT Rθ,

(14.17)

where the matrix T = diag(τ−1
1 , τ−1

2 , . . . , τ−1
M ) and R = diag(ρ−1

1 , ρ−1
2 , . . . , ρ−1

d ).
Thus, the Q function is

Q
(
α, θ

∣∣∣ θ̂
(t)

, α̂(t)
)

= E
[
−zT z−αT HT (Hα− 2z)

−αT Tα− θT Rθ
∣∣∣ y, α̂(t), θ̂

(t)
]
. (14.18)

Since we seek to maximize the Q-function w.r.t. α in the EM algorithm, terms like
E
[
−zT z

∣∣∣ y, θ̂
(t)

, α̂(t)
]

that do not involve α or θ can be effectively ignored in the
M-step, and thus are irrelevant in the E-step as well. Therefore, the Q-function
simplifies to

Q
(
α, θ

∣∣∣ θ̂
(t)

, α̂(t)
)

= −αT HT Hα + 2αT HT E
[
z
∣∣∣ y, θ̂

(t)
, α̂(t)

]
−αT E

[
T
∣∣∣ y, θ̂

(t)
, α̂(t)

]
α− θT E

[
R
∣∣∣ y, θ̂

(t)
, α̂(t)

]
θ. (14.19)

The E-step thus simplifies to computing the expectations associated with each of
these terms. Fortunately, each of these computations can be expressed in closed
form, as shown below.

As for the term associated with the expectation of z, we have

vi = E
[
z(i)

∣∣∣ y, α̂(t), θ̂
(t)
]

=

⎧⎪⎪⎨⎪⎪⎩
hT (x(i))α̂(t) +

N hT (x(i))α̂(t)
∣∣0,1

1−Φ(−hT (x(i))α̂(t)) , if y(i) = 1

hT (x(i))α̂(t) − N hT (x(i))α̂(t)
∣∣0,1

Φ(−hT (x(i))α̂(t)) , if y(i) = 0,

(14.20)
which follows from the observation that z(i) is distributed as a Gaussian with mean
hT (x(i))α̂(t), but left-truncated at zero if y(i) = 1, and right-truncated at zero if
y(i) = 0. This expression can be simplified further to remove the case statement, as
shown earlier in (14.12).
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After some further algebraic manipulations, it can be shown that for the expec-
tation of τ−1

i is given by

ωi = E
[
τ−1
i

∣∣∣ y, α̂
(t)
i , γ1

]
=

∞∫
0

τ−1
i P (τi|γ1)P

(
α̂

(t)
i

∣∣∣ τi

)
dτi

∞∫
0

P (τi|γ1)P
(
α̂

(t)
i

∣∣∣ τi

)
dτi

= γ1

∣∣∣α̂(t)
i

∣∣∣−1

.

(14.21)
The last term in the E-step computation is associated with the expectation of R,
and a manipulation similar to that above yields the following:

δi = E
[
ρ−1

i

∣∣∣ y, α̂(t), θ̂
(t)

i , γ2

]
= γ2

(
θ̂

(t)

i

)−1

. (14.22)



 

15 Gene Selection for Microarray Data
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In this chapter we discuss methods for gene selection on data obtained from
the microarray technique. Gene selection is very important for microarray data
(a) as a preprocessing step to improve the performance of classifiers or other
predictors for sample attributes; (b) in order to discover relevant genes, that is,
genes which show specific expression patterns across the given set of samples; and
(c) to save costs, for example, if the microarray technique is used for diagnostic
purposes. We introduce a new feature selection method based on the support vector
machine (SVM) technique. The new feature selection method extracts a sparse
set of genes, whose expression levels are important for predicting the class of a
sample (e.g., “positive” vs. “negative” therapy outcome for tumor samples from
patients). For this purpose the support vector technique is used in a novel way:
instead of constructing a classifier from a minimal set of most informative samples
(the so-called support vectors), the classifier is constructed using a minimal set of
most informative features. In contrast to previously proposed methods, however,
features rather than samples now formally assume the role of support vectors.
We introduce a protocol for preprocessing, feature selection, and evaluation of
microarray data. Using this protocol we demonstrate the superior performance
of our feature selection method on data sets obtained from patients with certain
types of cancer (brain tumor, lymphoma, and breast cancer), where the outcome of
chemo- or radiation therapy must be predicted based on the gene expression profile.
The feature selection method extracts genes (the so-called support genes) which are
correlated with therapy outcome. For classifiers based on these genes, generalization
performance is improved compared to previously proposed methods.
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15.1 Introduction

Gene expression profiles obtained by the microarray technique provide a snapshot
of the expression values of up to some 10000 genes in a particular tissue sample.
The advantage of the microarray method—namely to monitor a large number of
variables of a cell’s (or a piece of tissue’s) state, however, often turns out to be
difficult to exploit. The number of samples is small and the level of noise is high,
which makes it difficult to detect the small number of genes relevant to the task
at hand. Therefore, specific gene selection methods must be designed to reliably
extract relevant genes.

15.1.1 Microarray Technique

The microarray technique (Southern, 1988; Lysov et al., 1988; Drmanac et al.,
1989; Bains and Smith, 1988) is a recent technique which allows monitoring of the
concentration of many kinds of messenger RNA (mRNA) simultaneously in cells of
a tissue sample and provides a snapshot of the pattern of gene expression at the
time of preparation (Wang et al., 1998; Gerhold et al., 1999). The so-called DNA
microarrays allow for the first time the simultaneous measurement of up to 10,000
expression levels providing valuable information about whole genetic networks.
DNA microarrays allow a search for genes related to certain properties of the sample
tissue and extraction of related genes via dependencies in their expression pattern.

Figure 15.1 depicts the microarray procedure. mRNA is extracted from the
samples (step 1) and reverse-transcribed to complementary DNA (cDNA) (step 2).
This “target” cDNA is then coupled to a fluorescent dye (step 3). The target cDNA
is then hybridized with a large number of probes of immobilized DNA (steps 4 and 5)
which had been synthesized and fixed to different locations of the DNA chip during
fabrication. The cDNA from the samples binds to their corresponding probes on the
chip (step 5). After cleaning, the chip is scanned with a confocal microscope and the
strength of the fluorescent light is recorded (step 6). Genes which are predominantly
expressed in the sample give rise to bright spots of strong fluorescent light. No
expression is indicated by weak fluorescent light. After segmentation of the stained
locations on the chip and a correction for background intensity, intensity values
are transformed to real numbers for every location (step 7). After processing, the
data from several experiments with different samples are collected and represented
in matrix form, where columns correspond to tissue samples, rows correspond to
genes, and matrix entries describe the result of a measurement of how strong a
particular gene was expressed in a particular sample.

Expression values as measured by the DNA microarray technique are noisy. First,Microarray noise
there exists biological noise, because samples do not show the same “expression
state” and exactly the same levels of mRNA even if they belong to the same class or
the same experimental condition. Then there is noise introduced by the microarray
measurement technique. Sources of noise include tolerances in chip properties
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Figure 15.1 The microarray technique (see text for explanation).
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which originate from the fabrication process, different efficiencies for the mRNA
extraction and reverse transcription process, variations in background intensities,
nonuniform labeling of the cDNA targets (the dye may bind multiple times and with
different efficiencies), variations in dye concentration during labeling, pipette errors,
temperature fluctuations and variations in the efficiency of hybridization, and
scanner deviations. The effect of measurement noise can be reduced by averaging
over multiple measurements using the same sample but it usually remains large.
Measurement noise is not always Gaussian. Hartemink et al. (2001), for example,
found that the measurement noise distribution of the logarithmic expression values
has heavy tails.

15.1.2 Gene Selection for Microarrays

Gene selection aims at three goals:

Data preprocessing to improve the prediction quality of machine learning ap-Why
gene/feature
selection?

proaches

Identification of indicator genes (this would aid in the interpretation and under-
standing of the data)

Reducing costs, if microarray data are used, for example, for diagnostic purposes.

Data preprocessing This is an important issue in machine learning if the input
dimension is larger than the number of samples. Kohavi and John (1997), for
example, found that decision tree approaches like ID3 (Quinlan, 1986), CART
(Breiman et al., 1984), and C4.5 (Quinlan, 1993), as well as instance-based (e.g.,
K-nearest neighbor) methods, degrade in performance when the number of features
is larger than a minimal set of relevant features. The Naive-Bayes method is
reported to be more robust to irrelevant features but the prediction accuracy
decreases if correlated features are present. Also, Kittler (1986) observed decreasing
performance of machine learning methods for large feature sets.

The reduction in performance for data sets with many attributes is known as
the “curse of dimensionality” (Bellman, 1961). According to Stone (1980), theCurse of

dimensionality number of training examples has to increase exponentially with the number of
dimensions to ensure that an estimator also performs well for higher-dimensional
data. Otherwise overfitting (high variance in model selection) occurs, that is, fitting
of the selected model to noise in the training data. On the other hand, if the
model class is chosen to be smooth so that the variance of model selection is
restricted (low overfitting), then underfitting (high bias of model selection) occurs,
that is, the training data are not approximated well enough. The latter is shown
by Friedman (1997) who demonstrated for K-nearest neighbor classifiers that the
curse of dimensionality leads to large bias. Practical applications confirm the theory:
many input dimensions lead to poor generalization performance. Fewer features, on
the other hand, should improve generalization for equal training error.
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For microarray data the situation is especially difficult because the number of
features (genes) is often more than 10 times larger than the number of examples
(tissue samples). The high level of noise additionally complicates the selection of
relevant genes of microarray data. Both facts, the large number of genes and the
presence of noise, led Guyon et al. (2002) to state that “the features selected matter
more than the classifier used” for DNA microarray data classification, a fact whichMicroarray data

require gene
selection

will be confirmed by our analysis later on.

Identification of Genes This refers to the identification of genes whose expres-
sion values change with the sample class. Genes which show different expression
values in a control condition when compared to the condition under analysis areIdentify genes
useful to differentiate between these conditions and should be extracted (see Jäger
et al., 2003). The knowledge of the relevant genes can then be exploited in two
ways. First, cellular mechanisms can be understood and active pathways may be
identified. Second, target genes or target proteins for causing or avoiding conditions
can be detected. In medical applications both kinds of information are highly rel-
evant to diagnosis and drug design. Note, however, that the selection of genes for
prediction and the selection of genes whose expression levels are correlated lead to
different sets. Redundant sets of genes, which are the outcome of the latter task,
may lead to a reduced performance of the former task. On the other hand, genes
selected for the purpose of prediction may not include genes strongly correlated to
each other in order to keep the number of features small.

Reducing Costs This refers to the costs of large scale microarray studies, for
example, for diagnostic purposes. Small gene ensembles lead to cheaper chips (fewerReducing costs
probes on a chip), to savings in manpower (fewer experiments), and to easier
interpretable experiments (Jäger et al., 2003).

15.1.3 Feature Selection Methods to Extract Relevant Genes

In the previous subsection we stated three important reasons why it is necessary to
reduce the number of genes, that is, to reduce the number of a sample’s expression
values obtained by the microarray technique. These expression values are considered
as features of the sample in the field of machine learning. In order to reduce the
number of genes and to select the most important genes, machine learning methods,
called “feature selection” methods, must be applied. Because of the special structure
of the microarray data, namely the large number of noisy features, not all previously
proposed feature selection methods are suited for the analysis of microarray data.
Feature selection methods should be able to cope with many features but few
samples, to remove redundancies, and to consider dependencies of whole subsets
of features.

To address both the suitability for and the performance on microarray data, this
chapter consists of two parts. In the first, methodological, part we review previous
approaches and then derive a feature selection method, which is particularly suited
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to the peculiarities of microarray data. In the second, application, part we assess
the algorithms’ performance and provide benchmark results. More precisely, this
chapter is organized as follows. In section 15.2 we review feature selection methods
with respect to their ability to address the particular constraints of microarray data.
Then we introduce the new feature selection method in section 15.3. In section 15.4
we describe a “gene selection protocol” which is then evaluated together with the
new feature selection method in section 15.5. Benchmark results on microarray data
are provided using several previously described approaches.

15.2 Review of Feature Selection Methods

For simplicity let us consider a classification task where the objects to classify are
described by vectors with a fixed number of components (the features). The training
set consists of vectors which are labeled by whether the according object belongs to
a class or not and—again for reasons of simplicity—we assume that there are only
two classes. Given the training data, a classifier should be selected which assigns
correct class labels to the feature vectors. The goal of machine learning methods is
not only to select a classifier which performs well on the training set but which also
correctly classifies new examples, that is, which correctly predicts future events.

There are two classes of preprocessing methods which are commonly used to
improve machine learning techniques: feature selection and feature construction
methods. Feature construction methods compute new features as a combination
of the original ones and are often used for dimensionality reduction. Many popularFeature selection

vs. feature
construction

methods for feature construction are based on linear combinations of the original
features, that is, on projections of data points into low-dimensional spaces, like
projection pursuit (e.g., see Friedman and Tukey, 1974; Friedman and Stuetzle
1981; Huber, 1985), principal component analysis (PCA; e.g., Oja, 1982; Jolliffe,
1986; Jackson, 1991), or independent component analysis (ICA; e.g., Cardoso and
Souloumiac, 1993; Jutten and Herault, 1991; Bell and Sejnowski, 1995; Hochreiter
and Schmidhuber, 1999; Hyvärinen et al., 2001). More recently, nonlinear feature
construction algorithms based on kernel methods (Cristianini et al., 2002a) and the
information bottleneck idea (Tishby et al., 1999; Tishby, 2001) have been proposed.

Feature selection methods, on the other hand, choose a subset of the input
components which are supposed to be relevant to solving a task and leave it to
a subsequent stage of processing to combine their values in a proper way.1. In the
following we focus on feature selection, that is, on the task of choosing a subset
of “informative” input components, that is, components which are relevant to
predicting the class labels. The classifier is then selected using the reduced feature

1. This combination can also be done during feature selection.
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vectors as the objects’ description. Therefore, only feature selection techniques
address the extraction of indicator genes and cost reduction.2.

Review articles on feature selection have been published in a special issue on
relevance of the journal Artificial Intelligence (see Kohavi and John, 1997; Blum
and Langley, 1997) and a special issue on variable and feature selection of theOverview feature

selection Journal of Machine Learning Research (Guyon and Elisseeff, 2003) to which we
refer the reader for more details. The book of Liu and Motoda (1998) also gives an
overview of feature selection.

15.2.1 Feature Selection Using Class Attributes

This subsection gives a general overview of feature selection techniques which have
been used for gene selection on microarray data, whereas the next subsection focuses
on the more recently developed kernel-based methods. In both sections we consider
feature selection techniques which extract features according to their dependencies
with the sample classes; hence we assume that the class labels are available for the
training set. Methods which exploit the additional information given by the class
labels are in general superior to methods not using this information; features which
can be removed without changing the conditional probability of class labels with
respect to all features are irrelevant to classification. Without explicit class labels
feature selection must be based on the distribution of feature values, for example,
on entropy or saliency measures. Those methods are not considered here.

Feature selection methods perform either feature ranking or subset selection.
In feature ranking an importance value is assigned to every feature while subsetFeature ranking

and subset
selection

selection attempts to construct an optimal subset of features. While some feature
ranking methods do not consider dependencies between features, subset selection
methods usually do and may even include features which have low correlations with
the class label if justified by a good classification performance. The latter usually
happens if dependencies between features (and not between class label and a certain
feature) are important for prediction. In those cases the selection of interacting
features is important, but it is also difficult to achieve (see Turney, 1993a,b).

Feature selection methods fall into one of two categories (Langley, 1994; Kohavi
and John, 1997; John et al., 1994; Das, 2001; Liu and Motoda, 1998; Liu and
Setiono, 1996):

Filter methods

Wrapper methods

2. Note that the identification of indicator genes may not be fully addressed by feature
selection approaches because redundant features are avoided and not all indicator genes
are extracted. However, the missing genes can be extracted by correlation analysis in a
subsequent step.
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Filter methods Filter methods extract features whose values show dependencies
with class labels without explicitly relying on a predictor (classifier). One example isFilter methods
statistical methods which compute the statistical dependencies between class labels
and features and select features where the dependencies are strong. The calculation
of dependencies is based on Pearson’s correlation coefficient, Wilcoxon statistics,
t-statistics, Fisher’s criterion or signal-to-noise ratios (see Hastie et al., 2001; Golub
et al., 1999; Furey et al., 2000; Tusher et al., 2001). Statistical methods are fastRanking

methods,
statistics and
information
theory

and robust, but assume certain data or class distributions and cannot recognize
dependencies between features. In principle, statistical methods can serve as subset
selection methods if the dependency between a whole feature subset and the class
label is computed. For example, the mutual information between feature sets and
class labels has been considered by Koller and Sahami (1996). However the number
of possible subsets increases exponentially with the number of features, which makes
these approaches unattractive. Therefore, the method in Koller and Sahami (1996)
is only tractable if approximations are made.

The “relief” methods (Kira and Rendell, 1992; Rendell and Kira, 1992; Kononenko,
1994; Robnik-Sikonja and Kononenko, 1997) are another approach to assigning rel-
evance values to features. Values are assigned according to the average separation
of data vectors belonging to different classes minus the average separation of data
points belonging to the same class. The averages are computed by randomly select-
ing a data point and determining its nearest data points from the same class and
the opposite class. The relief methods are fast, can detect feature dependencies,
but—again—do not remove redundant features.

Combinatorial search procedures are able to remove redundant features from the
selected set. These methods exhaustively test all feature subsets for their ability toSubset selection

methods separate the classes, that is, whether two training vectors have the same values on
the selected feature subset but different class labels. After testing, the minimal
subset necessary to predict the class label is chosen (e.g., FOCUS, Almuallim
and Dietterich, 1991; or the probabilistic approach in Liu and Setiono, 1996).
Combinatorial search methods, however, suffer from high computational costs and
can only be applied to a small number of features. They are prone to overfitting
through noise, but on the other hand they will find the best solution in the noiseless
case. Another feature subset selection which—like FOCUS—searches for a minimal
necessary feature subset to separate the classes is based on decision trees (Cardie,
1993). The decision tree is used for separating the classes but not as a classifier.
This method, however, is not applicable to small training sets because only log2 m

features are selected if m training examples are available. Since the sample size
for microarray data is usually below 100, only log2 100 ≈ 7 genes are typically
selected. These are too few genes.

Wrapper Methods Wrapper methods (see Kohavi and John, 1997; John et al.,
1994) use a classifier as the objective function for the evaluation of a subset of
features. The classifier is obtained through a model selection (training) method
which minimizes the classification error on the training data. The classifier is then
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used to compute the prediction error on a validation set. Typical classifiers areWrapper
methods decision trees, for example, ID3 (Quinlan, 1986), CART (Breiman et al., 1984),

and C4.5 (Quinlan, 1993), or instance-based classifiers like K-nearest neighbor.
Well-known wrapper methods are the nested subset methods which are based on

greedy strategies like hill-climbing (e.g., SLASH, Caruana and Freitag, 1994; and
the random mutation hillclimbing—random mutation of feature presence map—
described in Skalak, 1994). Nested subset methods perform either “forward selec-
tion” (Cover and Campenhout, 1977) or “backward elimination” (Marill and Green,
1963). Forward selection works in the underfitting regimen. It starts from an emptyForward vs.

backward
selection

set of features and adds features step by step leading to the largest reduction of the
generalization error. Backward elimination, on the other hand, works in the overfit-
ting regimen. It starts with the set of all features and removes unimportant features
step by step to maximally reduce the generalization error. The major shortcoming
of these methods is that they do not consider all possible combinations of features
(Cover and Campenhout, 1977). If, for example, only the XOR of two features isHill-climbing and

search methods important, these features would not be recognized by a forward selection proce-
dure which adds only a single feature at a time. The backward selection procedure
suffers from a similar problem. Assume that one feature conveys the information
of two other features and vice versa. The best strategy would be to remove these
two features to obtain a minimal set, but backward selection may keep these two
features and remove the single one. Another problem of backward selection is to
determine good candidate features for deletion because overfitting makes it hard to
distinguish between label noise fitting and true dependencies with class labels.

Other search strategies are computationally more expensive but explore more
possible feature sets. Such search methods include beam and bidirectional search
(Siedlecki and Sklansky, 1988), best first search (Xu et al., 1989), and genetic
algorithms (Vafaie and De Jong, 1992, 1993; Bala et al., 1995).

15.2.2 Kernel-Based Methods

Recently, kernel based feature selection methods which use the SVM approach have
shown good performance for feature selection tasks (see, e.g., the review in Guyon
and Elisseeff, 2003). Kernel-based feature selection methods are emphasized in this
subsection because they are especially suited for microarray data due to the fact
that they have shown good results in high-dimensional data spaces and have been
successfully applied to noisy data. These methods use either one of two feature
selection techniques, which were already known in the field of neural networks:Feature selection

during or after
learning Feature selection by pruning irrelevant features after a classifier has been learned

Adding a regularization term to the training error which penalizes the use of
uninformative features during learning a classification task

Feature Selection After Learning Guyon et al. (2002) proposed a feature
selection method for support vector learning of linear classifiers where the features
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with the smallest squared weight values are pruned after learning is complete.
This method is a special case of the “optimal brain surgeon” (OBS, Hassibi and
Stork, 1993) or “optimal brain damage” (OBD, LeCun et al., 1990) techniques
for dependent (in the case of OBS) or independent (in the case of OBD) feature
values under the assumption that feature values have variance 1. OBS is based on a
Taylor expansion of the mean squared error around its minimum, and the increase
in training for a pruned feature is estimated by the Hessian.3 Intuitively, the support
vector method corresponds to projecting the normal vector of the separating
hyperplane into the subspace perpendicular to the less important directions. The
features for which these values are lowest are then deleted. Guyon et al. (2002)
also describe an iterative version of this feature selection procedure where the
feature with the smallest absolute weight is removed after each SVM optimizationRecursive feature

elimination step. This method is then called “recursive feature elimination” (RFE) and is an
example of backward elimination of features. It has recently been extended by
Rakotomamonjy (2003) to nonlinear kernels. Note, however, that these methods,
which prune features after learning, cannot detect redundant features and they are
sensitive to outliers.

Feature Selection During Learning Regularization techniques have been pro-
posed for SVMs to improve prediction performance by selecting relevant features.
The first set of techniques directly favors SVMs with sparse weight vectors. This
can be done by using the 1-norm in the SVM objective function, a technique known1-norm SVMs
as the linear programming (LP) machine (Schölkopf and Smola, 2002; Smola et al.,
1999; Frieß and Harrison, 1998). This approach leads to many zero components
of the weight vector and to the removal of the corresponding features. In Bradley
and Mangasarian (1998) and Bi et al. (2003), these methods are utilized together
with backward elimination. In Bradley and Mangasarian (1998) the 0-norm of the
weight vector is considered as an objective to select a classifier. The 0-norm counts
the non-zero components of the weight vector which leads to a discrete and NP-hard
optimization problem. Approximations can be made but they are sensitive to the
choice of parameters (see Weston et al., 2003b) and the optimization is still compu-
tationally complex in high dimensions. Weston et al. (2003b) propose an improved0-norm SVMs
approximation of the 0-norm, which reduces to a method which iteratively solves
1-norm SVMs and adjusts scaling factors for the different features. In Perkins et al.
(2003) both the 0-norm and the 1- or 2-norm are used for feature selection, where
the 1- or 2-norm serves for regularization and the 0-norm selects features.

The second set of techniques is based on the proper choice of scaling factors for
the different features. Weston et al. (2000) applies scaling factors to the 2-norm
SVM approach (R2W2). Two phases are performed iteratively. First the SVM isR2W2
optimized and a bound for the generalization error is computed. Second, the scaling

3. For a linear classifier the Hessian of the mean squared error is equal to the estimated
covariance matrix.
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factors are determined by a gradient descent method minimizing the bound. This
method has the advantage that it can be extended to nonlinear kernels, where the
scaling factors are put into the kernel function. On the other hand, this method is
computationally expensive because two optimization problems (SVM solution and
error bound) have to be solved for every iteration and the kernel matrix must be
evaluated for every step. Additionally, the gradient-based optimization suffers from
convergence to local optima.

Statistical methods are so far the most common choice for selecting relevant
genes from microarray data (e.g., see Pomeroy et al., 2002). However, SVM-based
methods have recently been applied with good success (Shipp et al., 2002).

15.3 The Potential Support Vector Machine for Feature Selection

In this section we introduce a new feature selection method based on the SVM
technique (see also Hochreiter and Obermayer, 2003a). Feature selection and classi-
fication are performed simultaneously. The main differences to previous approaches
are the following:

Sphering. In order to judge the relevance of feature components, the variance
should be normalized, that is, the data should be sphered (whitened). Therefore,
an objective is formulated according to which the classifier is selected by maximizing
the margin after sphering. It turns out that sphering has two additional advantages
for the SVM technique. First, the derived new SVM approach is invariant to linear
transformation of the data—as are the margin bounds. Second, tighter margin
bounds can be obtained.

New constraints. The constraints of the optimization problem are modified to
ensure that the classifier is optimal with respect to the mean squared error between
the classification function and the labels. In contrast to previous approaches where
one constraint is associated with each of the m training examples, each constraint
is now associated with one feature and the number of new constraints is equal to
the number N of features.

Support features. The combination of the new objective with the new constraints
allows assignment of support vector weights to features, and the normal vector
of the classification boundary is expanded in terms of these weights rather than
in terms of support vector data points. This allows feature selection according to
whether a feature is a support vector or not. As a side effect the dual optimization
problem can be efficiently solved using a technique similar to sequential minimal
optimization (Platt, 1999).

In summary, a classifier is selected from the set of all classifiers with minimal mean
squared error which yields the largest margin after sphering the data. The new SVM
removes irrelevant features which lead to a minimal increase of the mean squared
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error when removed. More formally, feature selection is done by assigning support
vector weights to features—the features which are support vectors are selected.

In the following subsections, we first briefly review the classic SVM. Then
we introduce a new objective for achieving scale-invariant SVMs, present new
constraints for correct classification, and combine the new objective and the new
constraints into one framework. Finally, a summary of the new technique is given.

15.3.1 The Classic SVM

Let us consider a set of m objects, which are described by feature vectors x ∈ R
N ,

and let us represent this data set by the matrix X := (x1,x2, . . . ,xm). We
furthermore assume that every object belongs to one of two classes, and that class
membership is denoted by a binary label y ∈ {+1,−1}. The labels for the m

objects are summarized by a label vector y, where yi is the label of xi.
The goal is to construct a linear classifier based on the feature vectors x. In the

standard SVM approach (see chapter 2) this classifier is defined by taking the sign
of the classification function

f(x) = (w · x) + b , (15.1)

where the weight vector w has been normalized such that the margin ρ, that is
the distance between the classification boundary and the closest data point, is
ρ = ‖w‖−1.

Classic SVMs construct a classification function which maximizes the margin
under the constraint that the training data are classified correctly:

min
w,b

1
2
‖w‖2 (15.2)

subject to yi ((w · xi) + b) ≥ 1 .

Here we assume that the data X with label vector y are linearly separable; otherwise
slack variables have to be used. If the number of training examples m is larger than
the Vapnik-Chervonenkis (VC) dimension h (a capacity measure for classifiers, see,VC dimension
e.g., Vapnik, 1998), then one obtains the following bound on the generalization
error R(f) of f (also called “risk of f”) (Vapnik, 1998; Schölkopf and Smola, 2002):

R(f) ≤ Remp(f) +

√
1
m

(
h

(
ln
(

2 m

h

)
+ 1

)
−
(

ln (δ)
4

))
(15.3)

which holds with probability 1− δ. δ denotes the probability that a training set XWorst case
bounds of size m has been randomly drawn from the underlying distribution, for which the

bound (15.3) does not hold. Remp(f) denotes the training error of f (also called the
“empirical risk of f”). For the set of all linear classifiers defined on X, for which
ρ ≥ ρmin holds, one obtains

h ≤ min
{[

R2

ρ2
min

]
, N

}
+ 1 (15.4)
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Figure 15.2 Left; Data points from two classes (triangles and circles) are separated by
the largest margin hyperplane (solid line) according to the support vector approach. The
two support vectors (black symbols) are separated by dx along the horizontal and by dy

along the vertical axis, from which we obtain ρ = 1
2

d2
x + d2

y and R2

ρ2 = 4 R2

d2
x + d2

y
.

The dashed line indicates the classification boundary of the classifier shown on the right,
scaled back by a factor of 1

s
. Right; The same data but scaled along the vertical axis by

the factor s. The data points still lie within the sphere of radius R. The solid line denotes
the support vector hyperplane, whose scaled version is shown on the left (dashed line). We

obtain ρ = 1
2

d2
x + s2 d2

y and R2

ρ2 = 4 R2

d2
x + s2 d2

y
. For s 
= 1 and dy 
= 0 both the

margin ρ and the term R2

ρ2 change with scaling (see text for further explanation).

(see Vapnik, 1998; Schölkopf and Smola, 2002), where [·] denotes the integer part
and R is the radius of the smallest sphere in the data space, which contains all
the training data. The fact that the bounds4 become smaller for increasing ρ and
decreasing N motivates the maximum margin principle (15.2), as well as the concept
of feature selection (minimizing N). Bounds on the expected generalization error can
also be derived (cf. Vapnik, 1998; Schölkopf and Smola, 2002). They also become
smaller for increasing ρ and decreasing N .

15.3.2 A Scale Invariant Objective Function

Both the selection of a classifier using the maximum margin principle and the values
obtained for the bounds on the generalization error described in the last section
suffer from the problem that they are not invariant under linear transformations.
This problem is illustrated in figure 15.2. The figure shows a two-dimensional
classification problem, where the data points from the two classes are indicated by
triangles and circles. In the left figure, both classes are separated by the hyperplane
with the largest margin (solid line). In the right figure, the same classification
problem is shown, but scaled along the vertical axis by a factor s. Again, the solid

4. Note that these bounds can be improved using the concepts of covering numbers and
the fat shattering dimension (Shawe-Taylor et al., 1996, 1998; Schölkopf and Smola, 2002).
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line denotes the support vector solution, but when the classifier is scaled back to
s = 1 (dashed line in the left figure) it no longer coincides with the original SVM
solution. Therefore, the optimal hyperplane is not invariant under scaling, hence
predictions of class labels may change if the data are rescaled before learning. In
the legend of figure 15.2 it is shown that the ratio R2/ρ2, which bounds the VC
dimension [see (15.4)] and determines an upper bound on the generalization error
[see (15.3)] has also changed. If, however, the classifier depends on scale factors, the
question arises of which scale factors should be used for classifier selection.

Here we suggest scaling the training data such that the margin ρ remains constant
while the radius R of the sphere containing all training data becomes as small as
possible. This scaling results in a new sphere with radius R̃ which still contains all
training data and which leads to a tight margin-based bound for the generalization
error. Optimality is achieved when all directions orthogonal to the normal vector w
are scaled to zero and R̃ = mint∈R maxi | (ŵ · xi) + t| ≤ maxi | (ŵ · xi) |, where
ŵ := w

‖w‖ . Note that with offset b of the classification function the sphere must not
be centered at the origin (Vapnik, 1998). Unfortunately, the above formulation does
not lead to a manageable optimization problem. Therefore, we suggest minimizing
the upper bound:

R̃2

ρ2
= R̃2 ‖w‖2 ≤ max

i
(w · xi)

2 ≤
∑

i

(w · xi)
2 =

∥∥X� w
∥∥2

. (15.5)

In Hochreiter and Obermayer (2003b) it is shown that replacing the objective
function in (15.2) by the upper boundNew objective

w�X X�w =
∥∥X�w

∥∥2
, (15.6)

of (15.5) on R2/ρ2 corresponds to the integration of sphering (whitening) and SVM
learning into one framework. The resulting classifier is called a “sphered supportImproved error

bound by
sphering

vector machine” (S-SVM). Minimizing the new objective leads to normal vectors
which tend to point in directions of low variance of the data. If the data have
already been sphered, then the covariance matrix is given by X X� = I and
we recover the classical SVM.5 In Hochreiter and Obermayer (2003b) a new error
bound based on covering numbers is derived according to the considerations above,
which additionally motivates the new objective function (15.6). There it is also
shown, that the new objective is well defined for cases where X X� or X� X or
both are singular.

The new objective leads to separating hyperplanes which are invariant to linear
transformations of the data. Consequently, the bounds and the performance of theInvariant under

linear
transformations

derived classifier no longer depend on scale factors. Note that the kernel trick carries
over to the S-SVM as shown in Hochreiter and Obermayer (2003b). The S-SVM
can also be applied to kernels which are not positive definite, that is, which are not
Mercer kernels (Hochreiter and Obermayer, 2002).

5. In general, however, sphering is not possible as a preprocessing step if a kernel is used.
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15.3.3 New Constraints

To assign support vector weights to the feature components the m constraints
enforcing correct classification have to be transformed into N constraints associated
with the features. The idea of the transformation is to compute the correlation
between the residual error and a feature component. If these correlations are zero,
the empirical risk is minimal.

We define a residual error ri for a data point xi as the difference between its class
label yi and the value of the classification function f , f(x) = (w · x) + b:Residual error

ri = (w · xi) + b − yi . (15.7)

For every feature component j we then compute the mixed moments σj ,

σj =
1
m

m∑
i=1

(xi)j ri , (15.8)

between the residual error ri and the measured values (xi)j . These mixed moments
σj should be made small (or zero). The rationale behind minimal values for σj is
that, given quadratic loss functions, they lead to an optimal classifier. Consider the
quadratic loss function

c(xi, yi, f(xi)) =
1
2
r2
i (15.9)

and the empirical loss (the mean squared error)

Remp(fw) =
1
m

m∑
i=1

c (xi, yi, f(xi)) . (15.10)

The mixed moments σj are equal to the derivative of the empirical loss with respect
to (w)j :

σj =
∂Remp(f)

∂ (w)j

. (15.11)

That is, the empirical error is minimal ifConstraint
assures minimal
empirical risk σj =

1
m

∑
i

(xi)j ri = 0 . (15.12)

Note that there exists only one minimum since the squared error is a convex function
in the parameters w.

These considerations motivate a new set of constraints:

X r = X
(
X� w + b1 − y

)
= 0 , (15.13)

which an optimal classifier must fulfill, because

(X r)j =
m∑

i=1

(xi)j ri = m σj = m
∂Remp(f)

∂ (w)j

. (15.14)
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However, measurement noise may lead to high values of σj which, when minimized,
would lead to strong overfitting. Therefore, we introduce a “correlation threshold”
ε which separates the noise from the signal part, and we modify the constraints inCorrelation

threshold ε (15.13) according to

X
(
X� w + b1 − y

) − ε 1 ≤ 0 , (15.15)

X
(
X� w + b1 − y

)
+ ε 1 ≥ 0 .

This formulation is analogous to the ε-insensitive loss (Schölkopf and Smola, 2002).
If measurements of some features have larger variance then others, a global

(independent of the feature j) correlation threshold ε cannot distinguish between
high σj values resulting from high correlation between the ri and (xi)j and high σj

values resulting from large variance of the values (xi)j . A global, that is, feature-
independent, ε would lead to an undesired preference of highly varying features even
if they do not convey information about the class label. Therefore, the variance of
the values (xi)j should be taken into account. For example, a more appropriate
measure would be Pearson’s correlation coefficient

σ̂j =

∑m
i=1

(
(xi)j − x̄j

)
(ri − r)√∑m

i=1

(
(xi)j − x̄j

)2 √∑m
i=1 (ri − r)2

, (15.16)

where r = 1
m

∑m
i=1 ri is the mean residual and x̄j = 1

m

∑m
i=1 (xi)j is the mean

of the jth feature. In order to utilize the correlation coefficient σ̂j for a global ε,
we assume that the data vectors

(
(x1)j , (x2)j , . . . , (xm)j

)
are normalized to zero

mean and unit variance:

1
m

m∑
i=1

(
(xi)j − x̄j

)2

= 1 and x̄j =
1
m

m∑
i=1

(xi)j = 0 . (15.17)

This normalization assumption is sufficient for a global ε because σj ,

σj =
1
m

m∑
i=1

(xi)j ri = σ̂j
1√
m
‖r − r1‖ , (15.18)

is linear in the correlation coefficient σ̂j and otherwise independent of component
j. If the noise is large, random correlations will occur more often, and the value
of ε must be increased. If the strength of the measurement noise is known, the
correct value of ε can be determined a priori. Otherwise, it takes the role of a
hyperparameter and must be adapted using model selection techniques.

Besides the important interpretation of ε as a noise parameter, there is a second
interpretation in terms of bounding the increase of the residual error when a featureε bounds the

error increase is removed. If we change w in the direction ej by an amount of β, the new residual
error rnew

i is

rnew
i = ((w + β ej) · xi) + b − yi , (15.19)
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where ej is the unit vector parallel to the jth feature axis. We obtain∑
i

(rnew
i )2 =

∑
i

(
rold
i + β (ej · xi)

)2
(15.20)

=
∑

i

(
rold
i

)2
+ 2 β

∑
i

rold
i (xi)j +

∑
i

β2 (xi)
2
j

=
∑

i

(
rold
i

)2
+ 2 β m σj + m β2 .

Because the constraints ensure that |σj | m ≤ ε, the increase on the residual error
after the elimination the jth feature is bounded by

2 ε |(w)j | + m (w)2j , (15.21)

where we set β = − (w)j .

15.3.4 The Potential SVM

Now we combine both the new objective from (15.6) and the new constraints from
(15.15) and call the new procedure of selecting a classifier the potential support
vector machine (P-SVM). As we will see, the combination of new objective and
new constraints leads to an expansion of the normal vector of the classification
boundary into a sparse set of features, hence allows expressing the relevance of
features via support vector weights. Combining (15.6) and (15.15) we obtainpotential SVM:

Primal
min
w,b

1
2
‖X� w‖2 (15.22)

subject to X
(
X� w + b1 − y

)
+ ε 1 ≥ 0

X
(
X� w + b1 − y

) − ε 1 ≤ 0 .

If the row vectors of X are normalized to mean zero, then X1 = 0 and the term
containing b vanishes. The parameter ε serves two important purposes:Why ε?

Large values of ε lead to a sparse expansion of the weight vector through the
support features.

If X X� is singular and w is not uniquely determined, ε enforces a unique solution,
which is characterized by the most sparse representation through features.

The interpretation of ε as a sparseness property is known from support vector
regression (Schölkopf and Smola, 2002).

Optimization is usually performed using the Wolfe dual of (15.22) given by (see
appendix A)Potential SVM:

Dual
min

α+,α−

1
2
(
α+ − α−)� X X� (

α+ − α−) − (15.23)

y� X� (
α+ − α−) + ε 1� (α+ + α−)

subject to 1� X� (
α+ − α−) = 0 ,

0 ≤ α+ , 0 ≤ α− ,
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where the quantities α = (α+ − α−) denote the Lagrange parameters.
1� X� (α+ − α−) = 0 is automatically satisfied if the row vectors of X
are normalized to zero mean. The dual problem is solved by a sequential minimal
optimization (SMO) technique (see Platt, 1999). A fast solver for the P-SVM isFast optimization

by SMO described in Hochreiter and Obermayer (2003b), where advantage can be taken
of the fact that the equality constraint vanishes for zero mean row vectors of X.
The SMO technique is important if the number of features is large because the
optimization problem of the P-SVM is quadratic in the number of features rather
than in the number of data points. In contrast to standard SVMs with a linear
kernel it is the correlation matrix X X� and not the Gram matrix X� X which
enters the SVM objective.

Finally, the classification function f has to be constructed using the optimal
values of the Lagrange parameters α. In appendix A,we show that

w = α . (15.24)

In contrast to the standard SVM expansion of w by its support vectors x, the
weight vector w is now expanded into a sparse set of feature components which
serve as the support vectors in this case. The value for b can be computed from the
condition that the average residual error r is equal to zero:Computing b

b = − 1
m

m∑
i=1

((w · xi) − yi) . (15.25)

Note that b is chosen so that
∂Remp(f)

∂b
=

1
m

∑
i

ri = b +
1
m

∑
i

((w · xi) − yi) = 0 . (15.26)

That means b takes on its optimal value for minimization of the empirical risk (as
was already ensured for w through the constraints). If the row vectors of X are
normalized to zero, we obtain

b =
1
m

m∑
i=1

yi . (15.27)

The classification function is then given by

f(u) = (w · u) + b =
n∑

j=1

αj (u · ej) + b =
n∑

j=1

αj (u)j + b . (15.28)

The classifier based on (15.28) depends on the weighting coefficients αj and b,
which were determined during optimization, and on the measured values (u)j of the
selected features for the object to be classified. The weighting coefficients αj canClass indicators
be interpreted as class indicators, because they separate the features into features
which are relevant for class 1 and class -1, according to the sign of αj = α+

j − α−
j .

If the value of ε is large enough during learning, the expansion (15.24) of the
weight vector contains only a few “most informative” features, hence most of
the components of w are zero. The other features are discarded because of being
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too noisy or not conveying information about the class labels. Sparseness can be
attributed to the term ε 1� (α+ + α−) (or ε ‖α‖1) in the dual objective functionSparseness
(15.23). For large enough values of ε, this term pushes all αj toward zero except for
the features most relevant to classification.Feature selection

One may wonder whether the P-SVM is similar to the 1-norm SVM because
sparseness of w is enforced through ε ‖α‖1. However in contrast to the 1-norm
SVM, the P-SVM still contains a quadratic part which enforces a large Euclidean
margin on the training data. The 1-norm term originates from the ε-insensitive loss
in the primal optimization problem. The P-SVM is in this sense similar to support
vector regression (SVR) (Schölkopf and Smola, 2002), where the vector α is also
regularized by a quadratic and a 1-norm part. However, all terms of the P-SVM are
different from the corresponding terms in the SVR: the quadratic matrix, the linear
term, and the constraints. In contrast to both the 1-norm SVM and the SVR the
value ε which weights the sparseness has a noise interpretation (measurement noise)
and ε can be used to bound the residual error if a feature component is deleted.

15.3.5 Summary of the P-SVM and Its Application to Microarray Data

The P-SVM is a method for selecting a classification function, where the classifica-
tion boundary depends on a small number of “relevant” features. The method can
be used for feature selection, and it can also be used for the subsequent prediction
of class labels in a classification task. The optimal P-SVM classifier is a classifier
with minimal empirical risk but with the largest margin after sphering the data.
Feature selection can be interpreted as removing features from the optimal classifier
but bounding the increase in mean squared error through the value ε.

The first observation is that optimization (i.e., the selection of the proper values
for α and b) only involves the measurement matrix X and the label vector y. In
order to apply the P-SVM method to the analysis of microarray data, we identify
the objects with samples, the features with genes, and the matrix X with the matrix
of expression values. Due to the term X X� in the dual objective, the optimization
problem is well defined for measurement matrices X of expression values. From a
conceptual point of view, however, it is advantageous to interpret the matrix X of
observations (here: expression values) itself as a dot product matrix whose values
emerge as a result of the application of a measurement kernel. This view is taken
by Hochreiter and Obermayer (2003a,b) and briefly summarized in Appendix B.

The second observation is that an evaluation of the classifier for new samples
i only involves the measurement of its expression values (xi)j for the selected
“support genes” j. The number of support genes depends on the value of a noise
parameter, the correlation threshold ε. If the value of ε is large during learning, only
a few “most informative” genes are kept. The other genes are discarded because of
being too noisy or not conveying information about the class labels.

The set of all genes for which the weighting coefficients αj are non-zero (the set
of support genes) is the selected feature set. The size of this set is controlled by the
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value of ε, and if the P-SVM is applied for feature selection, the value of ε should
be large.

15.4 The Gene Selection Protocol

In this section we describe the protocol for extracting meaningful genes from a
given set of expression values for the purpose of predicting labels of the sample
classes. The protocol includes data preprocessing, the proper normalization of the
expression values, the feature selection and ranking steps, and the final construction
of the predictor. We use the protocol together with our feature selection procedure,
which was described in section 15.3. The protocol, however, can also be applied to
other feature selection or ranking methods.

Note that our feature selection method requires class labels which must beAdditional
information by
labels

supplied together with the expression values of the microarray experiment. When
this technique is applied to the classification of tumor samples in subsection 15.5.2
we are provided with binary class labels, but real values associated with the different
samples may also be used. For the following, however, we assume that the task is to
select features for classification and that m labeled samples are given for training
the classifier.

15.4.1 Description of the Protocol

1. Expression values vs. ratios. Before data analysis starts it is necessaryGene selection
protocol to choose an appropriate representation of the data. Common representations are

based on the ratio Tj = Rj

Gj
of expression values between the value Rj (red) of a

gene j in the sample to analyze and the value Gj (green) in the control sample, and
the log ratio Lj = log2(Tj). We, however, suggest using the original expression
values Rj because our experimental findings on different data sets (e.g., the GIST
data from Allander et al., 2001) showed increased classification performance when
the original values were used.

2. Present call. The present call is usually the first step in the analysis of
microarray data. During this step genes are identified for which the confidence is
high that they are actually expressed in at least one of the samples. Genes for whichPresent call
this confidence is low are excluded from further processing in order to suppress noise.

For this purpose an error model has to be constructed for the expression values
or their ratios (sometimes before, sometimes after averaging across multiple mea-
surements of the same sample; see Tseng et al., 2001; Schuchhardt et al., 2000;
Kerr et al., 2000; Hartemink et al., 2001). This error model accounts for both
measurement-specific noise (e.g., background fluctuations), which affects all ex-
pression values in a similar way, and gene specific noise (for example the binding
efficiency of the dye), which affects expression values for different genes in a differ-
ent way. Using this error model one assigns a p-value, which gives the probability
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that the observed measurement is produced by noise, to every measurement of an
expression level. If the p-value is smaller than a threshold q1 (typical values are 5%,
2%, or 1%), the expression level is marked “reliable”. If this happens for a minimum
number q2 (typical values range from 3 to 20) of samples, the corresponding gene
is selected and a so-called present call has been made.

3. Normalization. Before further processing, the expression values are normal-
ized to mean zero and unit variance across all training samples and separately for
every gene. Normalization accounts for the fact that expression values may differ byNormalization
orders of magnitudes between genes and allows assessing the importance of genes,
including genes with small expression values. Sometimes more advanced normaliza-
tion techniques are used (Schuchhardt et al., 2000; Hill et al., 2001; Durbin et al.,
2002; Yang et al., 2002; Huber et al., 2002).

4. Gene ranking and gene selection. Here we assume that a feature selection
method has been chosen where the size of the set of selected genes is controlled byGene ranking,

determining
hyperparameters
and number of
genes

a hyperparameter which we call ε in the following. Although we propose to use the
P-SVM method, any other features selection method can be used with this gene
selection protocol.

In this step we perform two loops: an “inner loop” and an “outer loop” (the
leave-one-out loop). The inner loop serves two purposes. It ranks features if only
a subset method like the P-SVM is available and it makes feature selection more
robust against variations due to initial conditions of the selection method. The outer
loop also serves two purposes. It makes the selection robust against outlier samples
and allows determination of the optimal number of selected genes together with
the optimal values of hyperparameters for the later prediction of class labels. In
order to do this, a predictor must be constructed. Here we suggest using a ν-SVM
where the value of ν is optimized by the outer loop. In order to implement the outer
(leave-one-out) loop, m different sets of samples of size m − 1 are constructed by
leaving out one sample for validation. For each of the m sets of reduced size, we
perform gene selection and ranking using the following “inner loop.”

Inner loop. The subset selection method is applied multiple times to every reduced
set of samples for different values of ε. For every set of samples multiple sets of genesInner loop
of different size are obtained, one for every value of ε. If the value of ε is large, the
number of selected genes is small, and vice versa. The inner loop starts with values
of ε which are fairly large in order to obtain a few genes only. Gradually the value
is reduced to obtain more genes per run. Genes obtained for the largest value of ε

obtain the highest rank; the second highest rank is given to genes which additionally
appear for the second largest value of ε, and so on. The values of ε are constant
across sample sets. The minimal value should be chosen such that the number of
extracted genes is approximately the total number m of samples. The maximal value
should be chosen such that approximately five to ten genes are selected. The other
values are distributed uniformly between these extreme values. In the numerical
experiments in section 15.5 a total of three to five different values were used.
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Outer loop. The results of the inner loops are then combined across the m different
sets of samples. A final ranking of genes is obtained according to how often genes areOuter loop
selected in the m leave-one-out runs of the inner loop. If a gene is selected in many
leave-one-out runs, it is ranked high; otherwise it is ranked low. Genes which are
selected equally often are ranked according to the average of their rank determined
by the inner loops. The advantage of the leave-one-out procedure is that a high
correlation between expression values and class labels induced by a single sample
is scaled down if the according sample is removed. This makes the procedure more
robust against outliers.

The outer loop is also used for selecting an optimal number of genes and other
hyperparameters. For this purpose, ν-SVMs are trained on each of the m sets of
samples for different values of the hyperparameter ν and the number F of high-
ranking genes (ranking is obtained by the inner loop). Then the average error is
calculated on the left-out samples. Since the leave-one-out error as a function of
the number F of selected genes is noisy, the leave-one-out error for F is replaced
by the average of the leave-one-out errors for F , F + a, and F − a. Then the values
of the hyperparameter ν and the number of genes F which give rise to the lowest
error are selected. This completes the feature selection procedure.

15.4.2 Comments on the Protocol and on Gene Selection

Corrections to the outer, leave-one-out loop. The samples which were removed from
the data in the outer loop when constructing the m reduced subsets for the gene
ranking should not be considered for the present call and for determining the
normalization parameters. Both steps should be done individually for each of the m

sets of sample, otherwise feature or hyperparameter selection may not be optimal.
Computational costs. The feature selection protocol requires m × nε feature se-

lection runs, where nε is the number of different values of the ε parameter. However
the computational effort is justified by the increased robustness against correlation
by chance (see next item) and the elimination of single sample correlations.

Correlations by chance. “Correlations by chance” refers to the fact that noise
induced spurious correlations between genes and class labels may appear for a
small sample size if the level of noise is high. If the number of selected genes is small
compared to the total number of probes (genes) on the chip, spurious correlations
may become a serious problem. The Monte-Carlo simulations of van’t Veer et al.Correlation by

chance (2002) on randomly chosen expression values for a data set of 78 samples and 5000
genes resulted in 36 “genes” which had noise-induced correlation coefficients larger
than .3. In order to avoid large negative effects of the above mentioned spurious
correlations the number of selected genes should not be too small, and one should
extract a few tens of genes rather than a few genes only to decrease the influence ofMany genes are

better than few
genes

single spurious correlated genes. The random correlation effect can also be reduced
by increasing q2, the minimum number of “reliable” expression values for making a
present call. This avoids the selection of genes for which too few samples contribute
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to the correlation measure. However as explained in the next paragraph, too many
genes should be avoided as well.

Redundancy. Redundant sets of genes, that is, sets of genes with correlated
expression patterns, should be avoided in order to obtain good machine learning
results (Jäger et al., 2003). Selection of too many genes with redundant informationRedundancy
may lead to low generalization performance (cf. section 15.1). The P-SVM described
in section 15.3 extracts a sparse set of genes, hence reduces redundancy. Another
reason for avoiding redundancy is that not all causes which imply the conditions
may be recognized. This may happen if the set has to be kept small while redundant
genes are included (redundant genes indicate the same cause; see experiments
in subsection 15.5.1). Reducing redundancy does not preclude the extraction of
coexpressed clusters of genes: coregulated genes can be extracted in a subsequent
processing step, for example, based on classic statistical analysis.

Finally, one may wonder why redundant information does not help to decrease
the noise level of otherwise informative genes. Empirically, one finds that nonredun-
dant feature selection methods (P-SVM and R2W2) outperform feature selection
methods which include redundant genes (Fisher correlation and RFE); see subsec-
tion 15.5.1. It seems as if the detrimental effects of a larger number of features are
stronger.

15.4.3 Classification of Samples

In order to construct a predictor for the class labels of new samples a classifier is
trained on all the m samples using the optimal set of genes and the optimal value
of the hyperparameter (here: ν, cf. subsection 15.4.1, step 4). The generalization
performance of the classifier can again be estimated using a cross-validation pro-
cedure. This procedure must involve performing the full gene selection procedure
including all preprocessing steps (for example normalization and feature selection)
separately on all m cross-validation subsets. Otherwise a bias is introduced in the
estimate. Note that this also requires performing the “inner loop” of step 4 on sets
of m− 2 samples.

Before the classifier is applied to new data, the expression values for the new
sample must be scaled according to the parameters derived from the training set.
As a consequence we may observe expression values which are larger than the
ones which occur in the training data. We set the expression values exceeding the
maximal value in the training set to this maximal value. With this procedure we
may underestimate certain expression levels, but the robustness against unexpected
deviations from the training data is increased.
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15.5 Experiments

15.5.1 Toy Data

We compare different methods on data analogous to, but more difficult than the
ones used in Weston et al. (2000). Compared to the data in Weston et al. (2000), the
number of features is 10 times larger, the ratio of the number of relevant features
to the number of all features is smaller, and the noise in the data (measured by
the misclassification rate on data vectors where all irrelevant features are set to
zero) is larger too. The methods which are chosen for comparison are the Fisher
score, recursive feature elimination (RFE) (Guyon et al., 2002), R2W2 according
to Weston et al. (2000), and the P-SVM. The benchmark methods have all been
successfully applied to microarray data: the Fisher score in Pomeroy et al. (2002)
and van’t Veer et al. (2002), RFE in Guyon et al. (2002), and R2W2 in Shipp et al.
(2002).

For the toy experiments we simulate microarray data by assuming two or more
causes (“modes”) for the class labels. Each mode is characterized by a few indicators
which means that a cause is reflected by an expression pattern across a few genes, for
example, genes belonging to the same pathway. Most features have no dependencies
with the label. All features are very noisy, and only a few samples are given, because
microarray data typically suffer from small sample sizes.

Weston Data 1 We randomly chose 600 data points (samples) with probabilities
.5 from class 1 (yi = 1) and .5 from class 2 (yi = −1). One hundred data points
are available for feature selection and training and the remaining 500 data points
are used for testing the classifier. Next, we generated the 2000 attributes which
simulate expression values of 2000 genes. Each data point was generated according
to one of two modes to simulate two class-determining causes for every sample.

Mode 1 was chosen with probability .7 and mode 2 with probability .3. In
mode 1 the first 10 features indicate mode 1 and are generated according to
(xi)l ∼ yi·N(l, 10) , 1 ≤ l ≤ 10, where N (μ, σ) denotes a normal distribution with
mean μ and standard deviation σ. The features from 11 to 20 are chosen according
to (xi)l ∼ N(0, 10) , 11 ≤ l ≤ 20. In mode 2 the features from 11 to 20 indicate
mode 2 and are generated according to (xi)l ∼ yi · N(l− 10, 10) , 11 ≤ l ≤ 20.
The first 10 features are drawn from (xi)l ∼ N(0, 10) , 1 ≤ l ≤ 10. The remaining
1980 features are chosen according to (xi)l ∼ N(0, 20) , 21 ≤ l ≤ 2000, for both
modes.

Table 15.1 shows the fraction of misclassification on the test set which is averaged
over 10 different runs with different training and test sets. Features were selected
using the Fisher score, RFE (Guyon et al., 2002), R2W2 (Weston et al., 2000), and
the P-SVM method. Numbers are reported for classifiers using the 5, 10, 15, 20,
and 30 top–ranked features. With these features we trained a classic C-SVM on the
training set and validated the performance on a test set with 500 data points. The



15.5 Experiments 343

Table 15.1 Classification performance for the Weston data 1. The values are the
fractions of misclassification averaged over 10 runs on different test sets for classifiers
trained on the selected features. The original data have 2000 features of which only 20
are relevant. Features 1 to 10 were class indicators in 70% and features 11 to 20 in 30%
of the data points. The table shows the results using the top-ranked 5, 10, 15, 20, and 30
features. The methods are Fisher score, RFE, R2W2, and the P-SVM. The new P-SVM,
performed best in all cases.

features 5 10 15 20 30

Fisher 0.21 0.23 0.26 0.26 0.28

RFE 0.26 0.28 0.28 0.28 0.27

R2W2 0.23 0.24 0.24 0.23 0.24

P-SVM 0.21 0.20 0.22 0.22 0.23

hyperparameter C was selected through five fold cross-validation on the training set
from the set {0.01, 0.1, 1, 10, 100} (0.1 was chosen in most cases) for all methods. To
ensure a fair comparison of the methods the hyperparameter C was not determined
in the outer loop of our protocol for the P-SVM. Because we neither imposed label
noise nor generated extreme outliers in our data, the SVM was not sensitive to the
hyperparameter choice and the C-SVM performed as well as the ν-SVM which we
proposed in the protocol.

The success of feature selection depends on how many noisy, irrelevant features
are wrongly selected and whether all modes which influence classification perfor-
mance are represented sufficiently well. The result of a C-SVM for using all features
is 0.37 (no feature selection) and for using the relevant 20 features (the perfect se-
lection) is 0.11. The P-SVM shows the best results in all cases (see table 15.1).

Weston Data 2 Here we extend the number of modes to five to make the task
more difficult. Each mode was chosen with equal probability .2. For every mode
r, 1 ≤ r ≤ 5, we draw the values for the 4 associated features. We first choose a
mode r, then we draw the feature values for the 4 associated features according to
(xi)l ∼ yi · N(2, 0.5 τ), where 1 ≤ τ ≤ 4 and l = (r − 1) · 5 + τ . The remaining
features from 1 to 20 (i.e., excluding the features associated with r) are chosen
according to (xi)l ∼ N(0, 1). The remaining 1980 features are for all modes always
chosen according to (xi)l ∼ N(0, 20) , 21 ≤ l ≤ 2000. All other parameters
and the hyperparameter selection scheme were similar to the previous experiments
(Weston data 1). This data set is more challenging because there is a high chance
of missing indicators for one mode, especially if the set of selected features is small.
Missing a mode leads to differences in performance.

Table 15.2 shows the fractions of misclassification on the test set averaged over
10 different combinations of training and test set. It is instructive to compare the
results of table 15.2 with the values obtained for the 20 relevant features (perfect
selection), which leads to a fractional error of 0.10, and for all 2000 features (no
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Table 15.2 Classification performance for the Weston data 2. Parameters and proce-
dures are described in the legend of table 15.1.

features 5 10 15 20 30

Fisher 0.31 0.28 0.26 0.25 0.26

RFE 0.33 0.32 0.32 0.31 0.32

R2W2 0.29 0.28 0.28 0.27 0.27

P-SVM 0.28 0.23 0.24 0.24 0.26

Table 15.3 Numbers of the top 30 selected features for a typical single trial, listed
according to their rank. Relevant features are in boldface.

P-SVM: 7 837 2 18 1248 5 6 12 20 14

1562 980 664 1110 11 1404 1822 668 525 9

80 1205 997 1228 1331 289 1605 621 1277 1987

R2W2: 837 2 980 7 20 11 1277 6 45 5

18 1822 12 621 398 664 289 14 1110 587

1605 1833 1331 1248 1752 525 1060 1443 820 997

Fisher: 980 7 5 837 6 18 1562 12 2 837

20 1248 8 1404 14 1110 11 1228 80 664

1987 1275 1331 668 263 640 621 1954 1774 1605

RFE: 837 7 1987 1277 2 753 20 1110 1774 997

219 1636 12 398 6 1472 536 820 18 314

974 525 14 877 621 1516 540 654 1331 664

selection), which leads to a fractional error of 0.38. Feature selection improves
the classification result but does not quite reach the performance of the “perfect
selection” case because not all relevant genes were selected. R2W2 with the weighing
coefficients instead of selecting features has an error of 0.26, which means R2W2 in
the nonselection mode is better than in the selection mode. P-SVM shows the best
results in all cases.

In table 15.3 we listed the numbers of the top 30 selected features for a typical
single trial according to their rank. P-SVM found 11, R2W2 9, Fisher statistic 10,
and RFE 7 relevant features (numbers in boldface). All other features are spurious.
All five modes were detected by P-SVM, R2W2, Fisher statistics, and RFE using
the 10, 18, 15, and 23 most highly ranked features. P-SVM detected indicator genes
corresponding to all five modes using the smallest features set from all the methods
tested, which explains in part the better performance of classifiers based on the
P-SVM feature set.
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15.5.2 Microarray Data

Data Sets In this subsection we apply the P-SVM to the DNA microarray data
published in Pomeroy et al. (2002),Shipp et al. (2002), and van’t Veer et al. (2002).

1. Brain tumor data set (Pomeroy et al., 2002). In our first data set embryonal
tumors in the central nervous system are investigated. The response to therapy for
the malignant brain tumor medulloblastoma should be predicted. Patients have a
highly variable response to therapy, which made it difficult for classic methods to
predict the therapy outcome. A good machine-based prognosis, however, is highly
desirable. Negative prognoses may indicate the necessity of an alternative therapy
while positive prognoses may lead to a therapy with reduced toxicity.
Data are provided (supplementary to Pomeroy et al., 2002) for 60 samples of human
tissue taken from patients with different brain tumors of the medulloblastoma kind
before treatment. The patients were treated in a similar way by chemotherapy
and radiation. The clinical follow-up was monitored and the samples were labeled
according to treatment outcome. From the frozen tumor samples RNA was isolated
and hybridized to an array containing 7129 probes.
The data were generated by the Affimetrix software and numbers denote “perfect
match minus mismatch.” Perfect match probes are oligonucleotides which are the
probes with the highest hybridization efficiency (the identifying base sequence)
for a cDNA, and mismatch probes are oligonucleotides with a small difference
from the perfect match probe (one base in the middle of the identifying base
sequence changed). Therefore, the specialization and the efficiency of the probe
can be normalized by subtracting the expression value of the mismatch probe from
the probe’s expression value. For more details see Pomeroy et al. (2002).

2. Lymphoma data set (Shipp et al., 2002). Lymphoma tumors (diffuse large B-
cell lymphoma, DLBCL) show a positive response to therapy in fewer than 50% of
cases. Previous methods were not sufficient to reliably predict treatment outcome,
hence new approaches are necessary. Good predictions would allow identification of
high-risk patients, closer observation and monitoring, and would certainly improve
existing treatments.
Samples and clinical follow-ups on 58 DLBCL patients are available. For all patients
the chemotherapy is the same and the labels denote the treatment outcome: positive
or negative. From the frozen tumor samples RNA was isolated and hybridized to
an array containing 7129 probes resulting in an 58× 7129 matrix of “perfect match
minus mismatch.” For more details see Shipp et al. (2002).

3. Breast cancer data set (van’t Veer et al., 2002). Seventy percent to 80% of
breast cancer patients receiving chemotherapy or hormone therapy survive without
treatment (van’t Veer et al., 2002), because metastasis appears in only 20% to
30% of cases. Because therapy has strong side effects, it would be important to
predict beforehand whether a patient would benefit from a particular therapy or
not. Therefore, tumor samples were analyzed using the DNA microarray technique
to search for gene expression patterns indicating the development of metastasis
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and the need for stronger medication. Clinical indicators, however, failed to predict
treatment outcome. The data set is a collection of 78 patients and expression values
of 24,481 genes. All patients were treated with modified radical mastectomy or
breast-conserving treatment. The treatment outcome was monitored and the tumor
samples were labeled according to whether the outcome was positive or negative.
The data were given as log expression ratios; for more details see van’t Veer et al.
(2002).

Common Setting in All Following Experiments We normalized the rows of
the data matrix X to mean 0 and variance 1. In step 4 of our protocol we used
a = 5 for the first and third, and a = 3 for the second experiment for estimating
the optimal number of features because the number of features was smaller in the
second experiment.

To classify the tissue samples after selecting the relevant genes, we applied a linear
ν-SVM (Schölkopf and Smola, 2002). We found that the choice of the classifier does
not matter much (also C-SVM and K-nearest neighbor worked) but the ν-SVM
was the most robust against variations in the hyperparameter ν which allowed a
simpler optimization scheme in the outer loop of the protocol: ν was chosen from
the set {0.2, 0.3, 0.4, 0.5}. For all ν-SVM classifiers we fixed the threshold value b

to 0, because initial experiments showed that these reduced sets of classifiers led
to better generalization performance compared to the full set (b �= 0). Table 15.4
summarizes the parameters used in the experiments.

Benchmark Methods We compared the result of the P-SVM method in combi-
nation with the ν-SVM to the results reported in the literature. Therefore, for each
data set, the compared methods are different. For the ν-SVM and the C-SVM, we
used LIBSVM (Chang and Lin, 2001) whereas the P-SVM was implemented in C.

Results for the Brain Tumor Data Set The data set from Pomeroy et al.
(2002) was processed according to the protocol from section 15.4, except for step 2
because of the missing p-values.

For the P-SVM method, the optimal number of features was 45 (average over
the leave-one-out runs). Table 15.5 shows the number of misclassifications obtained
from a leave-one-out cross-validation procedure. The P-SVM is compared with the
“TrkC”-gene classification (one gene classification), R2W2, “weighted voting” clas-
sification (the sum of the features weighted by their correlation to class labels ac-
cording to the signal-to-noise statistics), K-nearest neighbor, and combined SVM-
TrkC-KNN classifier. Feature selection was based on the correlation of features
with classes using signal-to-noise statistics (Golub et al., 1999) for K-nearest neigh-
bor and weighted voting. The other feature selection method is called SPLASH,
developed by Califano et al. (1999). SPLASH is a greedy subset selection method
(wrapper method) and the subsequent classifier is a likelihood ratio classifier (LRC)
based on density estimation for each gene. For the R2W2 SVM technique (Weston
et al., 2000), see section 15.2.2. The results show that the P-SVM method clearly
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Table 15.4 Summary of parameter values used in the numerical experiments. Top, The
first column (data set) gives the number of the data set (1, brain tumor; 2, lymphoma;
3, breast cancer). The second column (samples) reports the number of tumor samples
(patients). The third column (genes) gives the number of probes (genes) in the original
data. The fourth column (nε) shows the number nε of ε runs in our protocol. The fifth
column (ε) lists the ε values for the runs. Bottom, The second column (step 2) tells whether
step 2 of our protocol is performed, that is, whether the p-values were available. The third
column (q1) shows the p-value threshold for step 1 of our protocol. The fourth column (q2)
gives the minimal number of samples which must possess a p-value below the threshold in
step 1 of our protocol to select the gene. The fifth column (N) is the number of features
after step 1 of our protocol. The sixth column (a) lists the number of features which
are subtracted and added to the actual feature number to build an average. The seventh
column (F ) shows the average number of features used for classification.

data set samples genes nε ε

1 60 7129 3 0.25, 0.15, 0.05

2 58 7129 3 0.23, 0.13, 0.03

3 78 24481 4 0.1, 0.07, 0.03, 0.01

data set step 2 q1 q2 N a F

1 no – – 7129 5 45

2 no – – 7129 3 18

3 yes 0.02 20 3623 5 30

outperforms standard methods—the number of misclassifications is down by a fac-
tor of 3.

Results for the Lymphoma Data Set The data set from Shipp et al. (2002)
was processed according to the protocol from section 15.4, except for step 2 because
of the missing p-values. For the P-SVM the optimal number of features was 18.

Table 15.6 summarizes the results. The P-SVM is compared with weighted voting,
K-nearest neighbor, and the R2W2 technique. The signal-to-noise statistics was
used to select feature for weighted voting and KNN. The new P-SVM selected more
features than the selection methods taken from Shipp et al. (2002). The increased
number of features in this experiment was not too surprising because sometimes
“many genes are better than a few genes” to reduce the impact of “correlations by
chance” (see subsection 15.4.2). The P-SVM method yields comparable to slightly
better results than the best methods from Shipp et al. (2002).
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Table 15.5 Brain tumor data set: comparison of different approaches to prediction of
therapy outcome based on the DNA microarray data (for explanation, see text). The
table shows the leave-one-out error given by the number of wrong classifications (E) for
a given number of selected features (F). For R2W2 * means that there is no “number
of features” (R2W2 scales features and does not select features). For the P-SVM/ν-SVM
the protocol determined ν = 0.4. Features were selected using signal-to-noise-statistics
(statistics), R2W2 (Weston et al., 2000), SPLASH (Califano et al., 1999), and P-SVM.
Data with statistical feature selection are provided for TrkC—gene classification, weighted
voting, K-nearest neighbor (KNN), combined SVM/TrkC/KNN (Comb). For SPLASH the
classifier is a likelihood ratio classifier (LRC). The ν-SVM is used as a classifier after feature
selection with P-SVM. Except for our method (P-SVM/ν-SVM), results were taken from
Pomeroy et al. (2002).

Feature Selection # #

/ Classification F E

TrkC (one gene) 1 20

SPLASH / LRC 15

R2W2 * 15

statistics / weighted voting 14

statistics / KNN 8 13

Comb 12

P-SVM / ν-SVM 45 4

Results for the Breast Cancer Data Set Before further processing of the
data set from van’t Veer et al. (2002) the log-ratios of the expression values were
transformed according to

Sj = sgn (Lj) 2|Lj| =

⎧⎪⎪⎨⎪⎪⎩
Rj

Gj
for Rj ≥ Gj

− Gj

Rj
otherwise .

(15.29)

This transformation was performed to scale up the ratios into magnitudes of the
original Rj (see Step 1 of the protocol). Because p-values were given, step 2 of our
protocol was performed and we set the parameters q1 and q2 (see table 15.4) to
pick between 3000 and 8000 genes (however, we did not optimize these values);
3623 were selected after step 2 for further processing. For the P-SVM the optimal
number of features was 30.

In van’t Veer et al. (2002) the results for different classification threshold values
are published in the supplementary information report. That allowed us to compare
classifiers according to the receiver operating characteristic (ROC) curve. The ROC
curve consists of points whose x-components (distance to the left) denote the false-
positive rate (class 2 misclassification rate), that is, wrongly positive classified
negatives divided by the overall number of negatives. The y-components denote
the true-positive rate, that is, correctly classified positives divided by the overall
number of positives. Note that (1−y) (distance to the top) is the false-negative rate
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Table 15.6 Lymphoma data set: comparison of different approaches to prediction of
therapy outcome based on the DNA microarray data (for explanation, see text). The
columns are as in table 15.5. The outer loop of the protocol yielded ν = 0.5 for the
P-SVM/ν-SVM method. Feature selection is done by signal-to-noise-statistics (statistic),
R2W2, and the P-SVM. The classifiers are K-nearest neighbor (KNN), weighted voting,
and R2W2. Except for P-SVM, results were taken from Shipp et al. (2002).

Feature Selection / # #

Classification F E

statistic / KNN 8 16

statistic / weighted voting 13 14

R2W2 * 13

P-SVM / ν-SVM 18 12

(class 1 misclassification rate) and that n x + p (1−y) is the overall misclassification
rate, where n is the fraction of class 2 (negative) examples and p the fraction of
class 1 (positive) examples. For this experiment we observe n = 0.44 and p = 0.56,
therefore, the overall misclassification rate is approximately x + (1 − y). A high-
performance classifier has a ROC curve which is close to the left upper corner (x = 0
and y = 1—no misclassification). The ROC curve gives more information on the
quality of the classifier, especially if it is required to work in different regimens, for
example, under the requirement that class 1 or class 2 misclassifications should be
below a given threshold. The ROC allows, for example, optimization for (a) the
selection of patients for adjuvant therapy where negative therapy outcome should
not be misclassified, that is, a small false-positive rate required (small x-values
should have large y-values: the curve steeply increases at the left hand side); (b)
the selection of patients for alternative treatment where positive treatment outcome
should not be misclassified, that is, a small false-negative rate required (large y-
values should have small x-values: the curve should not decrease starting from the
right upper corner); (c) the selection of good indicator genes (indicated by both
the minimal misclassification error given by the minimal distance x+(1− y) of the
ROC curve to the left upper corner and the area under the ROC curve).

Table 15.7 reports the results for the breast cancer data set. The ROC curves
are shown in figure 15.3 where the threshold b of the ν-SVM classifier was varied
to produce the ROC curve for the P-SVM/ν-SVM method. For comparison these
figures also contain the weighted voting result from van’t Veer et al. (2002) (sup-
plementary information). Item (a) is the goal described in van’t Veer et al. (2002)
(distance of the left part of the ROC curve to the top), where the poor-prognosis
patients should be recognized. In contrast to (a), in (b) positive-prognosis patients
should be recognized (distance of the top of the ROC curve to the left). The ROC
curve judges all the regimens between (a) and (b). For (c) we suggest two indica-
tors, the minimum leave-one-out error (indicated by the distance x + (1− y) of the
ROC curve to the left upper corner) and the area under the ROC curve, where both
indicators must use all genes in an optimal way. For (a) the poor-prognosis indica-



350 Gene Selection for Microarray Data

Table 15.7 Breast cancer data set: comparison of different approaches to predict therapy
outcome based on the DNA microarray data (for explanation, see text). Features are
selected by Fisher statistics (statistics) and the P-SVM. The classifiers are weighted
voting and ν-SVM where weighted voting results were taken from van’t Veer et al. (2002).
The number F of selected features, the number E of minimal misclassifications over the
threshold range, and the area under the ROC curve are shown. The protocol chose ν = 0.2
for the ν-SVM.

Feature Selection / # min. ROC

Classification F # E area

statistics / weighted voting 70 20 0.77

P-SVM / ν-SVM 30 12 0.88

tors are more important and in (b) the positive-prognosis indicators are the most
relevant. The P-SVM results are comparable with van’t Veer et al. (2002) for (a),
but the results are better for (b) and (c). Overall, the P-SVM method performed
better than weighted voting in van’t Veer et al. (2002) which is expressed by the
larger values for the ROC areas. Larger values of the area under the ROC curve
(ROC area) mean higher performance where the minimum is 0.5 and the maximum
1.0.

Table 15.7 shows that the P-SVM method identified a smaller number of genes.
Here a small number of genes is desirable because we already discarded genes with
present calls based on less than 20 reliable values, which reduces the risk of random
correlations.

15.6 Summary

We have introduced a new feature selection method based on the SVM technique
and applied it to the analysis of DNA microarray data. In contrast to previous ap-
proaches, features become support vectors and determine the classification bound-
ary. This allows selection and ranking of features by the support vector weights.
Because the set of support vectors is sparse and avoids redundancy, the P-SVM
approach is preferred over statistical methods which cannot recognize redundant
information. We described a data analysis protocol for the extraction of relevant
genes from microarray data which can be used with the P-SVM as well as with
other feature selection techniques. We compared our feature selection approach on
toy problems with state-of-the-art feature selection techniques and showed that
our method gave the best results. Finally, we applied the P-SVM method to three
data sets where the outcome of chemo- or radiation therapy for cancer or tumors
is predicted on the basis of gene expression profiles obtained from the microarray
technique. The P-SVMs outperform previously used algorithms due to an improved
selection of relevant genes.



15.6 Summary 351

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P-SVM  /    -SVM (ROC area = 0.88)
Fisher statistic / weighted voting (ROC area = 0.77)

tr
ue

 p
os

itv
e 

ra
te

false positive rate

ν

Figure 15.3 Breast cancer data set: the receiver operating characteristic (ROC) curve
is shown for the P-SVM feature selection followed by a ν-SVM classifier (solid line) and
for the weighted voting approach of van’t Veer et al. (2002) (dotted line). The number of
selected features was F=30 for the P-SVM. The P-SVM outperformed the weighted voting
approach of van’t Veer et al. (2002) except for small numbers of false positives (left).
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Appendix A: Derivation of the Dual Optimization Problem for the P-SVM

The primal optimization problem of the P-SVM is

min
w,b

1
2
‖X� w‖2 (15.30)

subject to X
(
X� w + b1 − y

)
+ ε 1 ≥ 0

X
(
X� w + b1 − y

) − ε 1 ≤ 0 .
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Following standard techniques of constrained optimization, we now derive the dual
formulation of the optimization problem. The Lagrangian L is given by

L =
1
2

w� X X� w − (15.31)(
α+

)� (
X
(
X� w + b1 − y

)
+ ε 1

)
+(

α−)� (
X
(
X� w + b1 − y

) − ε 1
)

,

where the vectors α+ ≥ 0 and α− ≥ 0 are the Lagrange multipliers for
the constraints in (15.30). The optimality conditions (Schölkopf and Smola, 2002)
require that the following derivatives with respect to the primal variables of the
Lagrangian L are zero:

∇wL = X X� w − X X� α = 0 , (15.32)
∂L

∂b
= 1� X� α = 0 ,

where we used the abbreviation α = α+ − α− (αi = α+
i − α−

i ). In order to
ensure the first condition X X� w = X X� α we set

w = α . (15.33)

We then obtain the dual optimization problem of the P-SVM:

min
α+,α−

1
2
(
α+ − α−)� X X� (

α+ − α−) − (15.34)

y� X� (
α+ − α−) + ε 1� (α+ + α−)

subject to 1� X� (
α+ − α−) = 0 ,

0 ≤ α+ , 0 ≤ α− .

Normalization of X to zero mean during preprocessing automatically leads to the
satisfaction of 1� X� (α+ − α−) = 0.

If vectors u �= 0 exist for which X�u = 0 holds, then the solution of (15.33)
and of the primal optimization problem (15.30) is not unique (in the primal problem
w appears only in context X�w). For positive values of ε, however, this degeneracy
does not matter and a vector w is chosen that is most sparse in its components,
that is, which has the largest number of zero components. The sparseness is due to
w = α and the dual problem eqs. (15.34), where α appears only in context X�α

except for the ε-part which enforces sparseness.

Appendix B: Measurements of Complex Features

Here we consider the case that objects are fully described by a feature vector x, but
that we have measurement devices at hand that do not allow us to measure all of its
individual components. Instead we assume that a measurement apparatus allows
us to determine the values of a limited set of Ñ complex features v. The complex
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features v are linear combinations of the elementary features (x)l , 1 ≤ l ≤ N ,Complex features
and the value of a complex feature j for an object i is given by the dot product

Kij = (xi · vj) . (15.35)

If we define the matrix V := (v1,v2, . . . ,vÑ ), our (incomplete) knowledge about
the set X of objects can be summarized by the measurement or data matrix K,Measurement

matrix
K = X� V . (15.36)

For an application to microarray data, for example, we would identify the measured
matrix K with the matrix of expression values obtained by a microarray experiment.

The complex features v span a subspace of the original feature space, but we
do not require them to be orthogonal, normalized, or linearly independent. Due
to the measurements, all objects are now described by an Ñ -dimensional feature
vector (Ki1, Ki2, . . . , KiÑ ) = ((xi · v1) , (xi · v2) , . . . , (xi · vÑ )). If the number Ñ

of different measurements is large, overfitting may occur. In order to obtain good
generalization performance, feature selection must be performed on the set V of
complex features.

Using the same line of arguments as in subsection 15.3.3, the following constraints
can be derived:

K� (X� w + b1 − y
) − ε 1 ≤ 0 , (15.37)

K� (X� w + b1 − y
)

+ ε 1 ≥ 0 .

Again we normalize the vectors which correspond to single genes,
m∑

i=1

Kij = 0 and
1
m

m∑
i=1

K2
ij = 1 , (15.38)

and—together with the P-SVM objective of subsection 15.3.2—we obtain the primal
optimization problem:

min
w,b

1
2
‖X� w‖2 (15.39)

subject to K� (X� w + b1 − y
)

+ ε 1 ≥ 0

K� (X� w + b1 − y
) − ε 1 ≤ 0 .

The corresponding dual formulation is

min
α+,α−

1
2
(
α+ − α−)� K� K

(
α+ − α−) − (15.40)

y� K
(
α+ − α−) + ε 1� (α+ + α−)

subject to 1� K
(
α+ − α−) = 0 ,

0 ≤ α+ , 0 ≤ α− ,
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where the normal vector w has now been expanded with respect to the complex
features v,

w = V α . (15.41)

The offset is again obtained by

b = − 1
m

m∑
i=1

((w · xi) − yi) , (15.42)

from which we obtain the classification function

f(u) = (w · u) + b =
Ñ∑

j=1

αj (u · vj) + b =
Ñ∑

j=1

αj Kiuj + b . (15.43)

Note that K is neither required to be positive definite nor square, because only the
quadratic part K�K appears in the objective function of (15.40). Therefore, we
may consider K as the Gram matrix of a kernel which is not positive definite, that
is, a kernel which is not a Mercer kernel. Indeed, it has been shown that kernels
which are not positive definite can be used for classification without any loss of
generalization performance (Hochreiter and Obermayer, 2003b).

The new interpretation allows data to be treated in matrix form, where the
matrix entries express the relationships between two sets of objects (“row objects”
and “column objects”), and also allows application of machine learning methods,
like classification, regression, or clustering, to this data. The matrix originates from
a dot product of representations of these objects in some feature space. An exampleMatrix data
of such matrix data is the drug-gene matrix in Scherf et al. (2000), where a drug-cell
matrix and a gene-cell matrix (expression values from a microarray experiment) are
multiplied to obtain a drug-gene matrix. In this example the matrices X and V can
be identified; however, the proposed framework allows these matrices to be related
not only by a plain dot product but by some kernel evaluation. In this case our new
interpretation holds as long as the kernel represents a dot product in some space
(see kernel/dot product considerations below).

A special case of data in matrix form occurs if the row objects are identical to
the column objects. This case is called “pairwise data,” and the data matrix isPairwise data
usually interpreted as a similarity matrix K. The advantage of the interpretation
put forward in this appendix is that the P-SVM framework can still be applied by
setting V = X. Pairwise data are common in bioinformatics, for example, when
considering the similarity measures for protein sequences (Lipman and Pearson,
1985), functional similarities of proteins (Sigrist et al., 2002; Falquet et al., 2002),
chromosome location similarities of genes (Cremer et al., 1993; Lu et al., 1994), or
coexpression data for genes (Heyer et al., 1999).

One issue, however, still remains open. Under what conditions is it possible to
interpret a matrix of measured values as a dot product matrix K? There is no full
answer to this question from a theoretical viewpoint; practical applications have
to confirm (or disprove) the chosen ansatz and data model. However, the question
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whether it is possible to describe a measurement by a dot product can be replaced
by the question whether or not the following three conditions hold (see Hochreiter
and Obermayer, 2003a):

1. Column objects (“samples”) to classify are elements of a Hilbert space H1, that
is, given a basis, these objects can be described by (possibly infinite dimensional)
vectors.

2. Row objects (“complex features”) are elements of a Hilbert space H2, that is,
given a basis, these features can be described by (possibly infinite dimensional)
vectors.

3. The measurement process can be expressed via the evaluation of a kernel.Measurement
device as kernel

Condition (3) equates the evaluation of a kernel as known from standard SVMs
with physical measurements. As the kernel matrix is measured, no model selection
has to be performed w.r.t. the kernel.
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Sören Sonnenburg

Fraunhofer FIRST
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alignment, 22
alternative splicing, 16
amino acid, 7
apoptosis, 17
archaea, 4

Bayes point machines, 58
binding pocket, 8
biological network, 26

C-terminus, 7
cancer diagnosis, 311
canonical correlation analysis, 212

integrated, 216
kernel, 89, 186, 212
multiple, 215
regularization, 214

CCA, see canonical correlation anal-
ysis

cDNA, see complementary DNA
cell, 3
chaperone, 7, 17
chemical compound, 165
cheminformatics, 32
chemoinformatics, 32
chromatin, 5
chromosome, 5
codon, 15
compartment, 12
cross-validation, 62

curse of dimensionality, 300, 322

data integration, 210
diagnosis, 30
diffusion, 174
diploid, 5
DNA, 4

complementary, 5
docking, 32
downstream, 5
drug design, 323, 354

EM algorithm, 90, 266, 309
empirical kernel map, 69, 141, 250
empirical risk minimization, 52
enzyme, 9, 11, 183
EST, see expressed sequence tag
eubacteria, 4
eukarya, 4
exon, 15, 281
expressed sequence tag, 24

FDR, see Fisher discriminant ratio
feature construction, 324
feature selection, 300, 324

backward elimination, 304
embedded, 305
filter, 301, 326
forward selection, 304
lasso, 305
R2W2, 328
ranking, 326
recursive feature elimination, 304
wrapper, 303, 326
zero-norm minimization, 305

feature space, 40
Fisher discriminant ratio, 301
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fold, 7
function prediction, 32, 255

gene, 6, 280
expression, 16, 184, 221
finding, 29
network, 183
selection, 299, 322

genetic marker, 30
genetic network, 32
genome, 4

comparison, 29
genotype, 18
graph

p-regular tree, 178
closed chain, 178
complete, 177
diffusion, 175
labeled, 157
Laplacian, 175, 219
product, 179

grid search, 62

haploid, 5
hidden Markov model, 23

pair HMM, 136
hinge loss, 52
histone, 5
HMM, see hidden Markov model
homology, 19
horizontal gene transfer, 19
hybridization, 5, 23
hydropathy profile, 249
hydrophobicity, 10

induced fit, 32
information geometry, 264
interactions, 26
intron, 15, 281

kernel
alignment, 198
Bhattacharrya, 169
combination, 226
completion, 262

composition, 74
conditionally positive definite, 67
convolution, 135
diagonal dominance, 139
diffusion, 175, 219, 251, 256
expected likelihood, 169
exponential, 168
FFT, 250
Fisher, 65, 72
gappy, 99
Gaussian RBF, 41, 63, 174
geometric, 168
heat, 175
label sequence, 158
linear, 39, 63
local alignment, 137
locality improved, 286
marginalized, 74, 157
metric space, 189
mismatch, 78, 98
motif, 75
normalization, 61
on groups, 67
operations, 67
pairwise comparison, 75, 250,

256, 288
Pfam, 250
polynomial, 63, 285
positive definite, 38
probability product, 169
rational, 169
Riemannian manifold, 189
Schur product, 67
sigmoid, 64
spectral translation, 141
spectrum, 77, 98, 288
string, 64, 115
substitution, 100
translation-invariant, 67
tree, 116
weighted degree, 287
wildcard, 101

kernel methods, 35
kernel trick, 44
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kinase, 11

Laplacian prior, 308
leave-one-out machine, 58
ligand, 8, 32
linear discriminant analysis, 303
linear programming machine, 59
LP machine, see linear programming

machine

MAR, see matrix attachment region
margin, 52
Markov model, 284
Markov random field, 234
mass spectrometry, 26
matrix attachment region, 5
membrane, 10
metabolic pathway, 26, 183, 221
metabolite, 9, 12
microarray, 23, 83, 184, 251, 320
mismatch tree, 101
mitochondria, 4
model organism, 27
molecular interactions, 26
motif, 7
mRNA, see messenger RNA
MS, see mass spectrometry
mutation, 18

N-terminus, 7
northern blotting, 25
novelty detection, 58
nucleosome, 5
nucleotide, 4
nucleus, 4

oligonucleotides, 5
oligopeptide, 7
one-against-all, 61
operon, 220
organelle, 12
ortholog, 19

pairwise data, 354
paralog, 19

pattern discovery algorithm, 165
pattern recognition, 51
PCA, see principal component analy-

sis
PCR, see polymerase chain reaction
penalized kernel logistic regression,

305
peptide, 7
peptide bonds, 7
pharmacophore, 33
phenotype, 18
phylogenetic profile, 80
point mutation, 5
poly(A), 15
polymerase chain reaction, 21

quantitative, 25
polymorphism, 18
polypeptide, 7
polyploid, 5
population genetics, 30
position-specific scoring matrix, 23
posttranslational modification, 15
predictive toxicology, 33, 166
principal component analysis, 48, 303

kernel PCA, 50, 218
prokarya, 4
promoter, 79, 281
protein

backbone, 7
classification, 268
domain, 8
expression, 16
function, 8
membrane, 248
primary structure, 7
secondary structure, 7, 194
sidechain, 7
structual, 11
tertiary structure, 7, 8

protein-protein interaction, 91
PSSM, see position-specific scoring

matrix
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qPCR, see quantitative polymerase
chain reaction

QSAR, see quantitative structure-
activity relationships

quantitative structure-activity rela-
tionships, 32

random walk, 158, 173
reading frame, 15
receptor, 11, 18
recursive feature elimination, 87, 328
regularization, 43

with diffusion, 180
regulation, 16, 29
regulatory interactions, 26
relevance vector machine, 60, 306
remote homology detection, 72, 142
representer theorem, 47
reproducing kernel Hilbert space, 43
residue, 7
ribosome, 10
ribozyme, 6
RNA, 5

functional, 82
messenger, 6, 11, 15
ribosomal, 10, 11
transfer, 11

rRNA, see ribosomal RNA

saccaride, 10
SAGE, see serial analysis of gene ex-

pression
SDP, see semidefinite programming
secondary structure, 82
selection, 18
semidefinite programming, 89, 236
sequence

alignment, 133
local alignment, 134
spectrum, 96

sequencing, 21
sequential minimal optimization, 336
serial analysis of gene expression, 24
shortest-path distance, 172

signal molecule, 12, 17
signal peptide cleavage sites, 81
single nucleotide polymorphism, 18
Smith-Waterman score, 134, 250, 256,

288
SNP, see single nucleotide polymor-

phism
sparse logistic regression, 306
sparse probit regression, 306
spectral clustering, 218
spectral variants, 263
splice sites, 81, 282
spliceosome, 282
splicing, 15, 281
structure prediction, 31
subcellular localization, 14, 80
substitution matrix, 200
subunit, 10
suffix tree, 119
support vector, 57
support vector machine, 50, 328

ν-SVM, 59
0-Norm, 328
implementations, 60
multiclass, 60, 195
one-norm, 306
potential, 335
sphered, 332

SVM, see support vector machine
systems biology, 30

target finding, 30
therapy optimization, 30
transcription, 15

factor, 11, 15
translation, 15

start sites, 81
translocation, 15
transposon, 19
tRNA, see transfer RNA

upstream, 4

virtual high-throughput screening, 32


