A Word Embedding is a

representation of words where each word is expressed as a real-valued vector. Words with similar meanings have similar vectors.

A Recurrent Neural Network (RNN)

is a class of artificial neural network where connections between units form a directed cycle. This allows it to exhibit dynamic temporal behavior. [1]

[1] https://en.wikipedia.org/wiki/Recurrent_neural_network
[2] Mikolov et al, 2013
[3] http://colah.github.io/posts/2015-08-Understanding-LSTMs

Influences and history

Map words to vectors

$W: words \to \mathbb{R}^n$

$$W("cat") = (0.2, -0.4, 0.7, ...)$$
$$W("mat") = (0.1, -0.6, -0.1, ...)$$

Tasks

Similarities between terms Classification Document clustering Named Entity recognition Sentiment analysis

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/ https://www.tensorflow.org/tutorials/word2vec

Similarities between terms

FRANCE	JESUS	XBOX	REDDISH	SCRATCHED	MEGABITS
454	1973	6909	11724	29869	87025
AUSTRIA	GOD	AMIGA	GREENISH	NAILED	OCTETS
BELGIUM	SATI	PLAYSTATION	BLUISH	SMASHED	MB/S
GERMANY	CHRIST	MSX	PINKISH	PUNCHED	BIT/S
ITALY	SATAN	IPOD	PURPLISH	POPPED	BAUD
GREECE	KALI	SEGA	BROWNISH	CRIMPED	CARATS
SWEDEN	INDRA	PSNUMBER	GREYISH	SCRAPED	$\kappa BIT/S$
NORWAY	VISHNU	HD	GRAYISH	SCREWED	MEGAHERTZ
EUROPE	ANANDA	DREAMCAST	WHITISH	SECTIONED	MEGAPIXELS
HUNGARY	PARVATI	GEFORCE	SILVERY	SLASHED	$_{\rm GBIT}/{\rm s}$
SWITZERLAND	GRACE	CAPCOM	YELLOWISH	RIPPED	AMPERES

word2vec

the quick brown fox jumped over the lazy dog

window size: 1 context: left word, right word

Continuous Bag of Words (CBOW)

predict target word from context smoother because uses whole context useful for smaller datasets

Skip-gram

predict context from target word better with larger datasets [the, brown], quick [quick, fox], brown [brown, jumped], fox

quick, the quick, brown brown, quick brown, fox fox, brown fox, jumped

. . .

. . .

Mikolov et al., 2013 https://en.wikipedia.org/wiki/Word2vec https://www.tensorflow.org/tutorials/word2vec

word2vec

Traditional approach Use maximum likelihood expensive

$$J_{ML} = \log P(w_t|h)$$

= score(w_t, h) - log ($\sum_{Word w' in Vocab} \exp\{score(w', h)\}$)

word2vec binary classifier with negative sampling more efficient

$$J_{\text{NEG}}^{(t)} = \log Q_{\theta}(D = 1 | \text{fox, brown}) + \log(Q_{\theta}(D = 0 | \text{sheep, brown}))$$

INtERAcT

Interaction Network InfErence from VectoR RepresentATion of Words

Prostate Cancer (top 50 predicted)

E2F3

Visualization and vector operations

Relationship	Example 1	Example 2	Example 3	
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee	
big - bigger	small: larger	cold: colder	quick: quicker	
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii	
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter	
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan	
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium	
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack	
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone	
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs	
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza	[2

rome -italy +germany (demo)

A Word Embedding is a

representation of words where each word is expressed as a real-valued vector. Words with similar meanings have similar vectors.

A Recurrent Neural Network (RNN)

is a class of artificial neural network where connections between units form a directed cycle. This allows it to exhibit dynamic temporal behavior. [1]

[1] https://en.wikipedia.org/wiki/Recurrent_neural_network
[2] Mikolov et al, 2013
[3] http://colah.github.io/posts/2015-08-Understanding-LSTMs

Sequences

I grew up in France... I speak fluent _____.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/ https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/

Unrolled

A: neural network x: input h: output

11

Difference

Short- versus long-term memory

The clouds are in the *sky*

I grew up in France ... I speak fluent French.

Types

sentiment analysis

no RNN

image captioning

language translation

Types

no RNN image captioning sentiment analysis language translation

Exercise: Text classification

sentiment analysis

disease classification

[1]

A Word Embedding is a

representation of words where each word is expressed as a real-valued vector. Words with similar meanings have similar vectors.

A Recurrent Neural Network (RNN)

is a class of artificial neural network where connections between units form a directed cycle. This allows it to exhibit dynamic temporal behavior. [1]

[1] https://en.wikipedia.org/wiki/Recurrent_neural_network
[2] Mikolov et al, 2013
[3] http://colah.github.io/posts/2015-08-Understanding-LSTMs