
Introduction to deep learning in

computational biology

María Rodríguez Martínez

Technical Lead Systems Biology, IBM, Zürich Research Lab

Overview

• Introduction to deep learning
• History and motivation
• Activations functions
• Cost functions
• Backpropagation
• Regularization
• Optimization

• Multi-Layer Perceptron (MLP)
• Auto-enconders (AE)
• Convolutional Neural Networks (CNN)
• Recurrent Neural Networks (RNN)

Overview

• Introduction to deep learning
• History and motivation
• Activations functions
• Cost functions
• Backpropagation
• Regularization
• Optimization

• Multi-Layer Perceptron (MLP)
• Auto-enconders (AE)
• Convolutional Neural Networks (CNN)
• Recurrent Neural Networks (RNN)

The beginnings: perceptron.

https://www.youtube.com/watch?v=cNxadbrN_aI

A brief history of deep learning

https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction

Βασικές Μέθοδοι Μηχανικής Μάθησης και Εξόρυξης Δεδομένων

Machine learning

Experimental data

Preprocessing

Unsupervised Supervised

Higher level analysis

Knowledge

Feature
Selection/Engineering

Machine Learning is a type of Artificial Intelligence that provides computers with the ability
to learn without being explicitly programmed.

Costs a lot of time.

Cannot be fully automated.

Learning approaches

Dimensionality reduction: e.g. PCA, tSNE
Clustering: e.g. Phenograph, FlowSOM

Classification: SVMs, Random Forests

Supervised Learning: Learning with a labeled training set.
E.g. email spam detector with training set of already labeled emails.

Unsupervised Learning: Discovering patterns in unlabeled data.
E.g. cluster similar documents based on the text content .

Reinforcement Learning: learning based on feedback or reward.
E.g. learn to play chess by winning or losing.

Neural networks

Input OutputHidden layer 1

…

… …

depth

width

Hidden layer 𝑘

• Learn data representations. Exceptional effective at learning patterns.
• Use a hierarchy of layers that mimic the neural networks of our brain.
• Can learn highly complex patterns if sufficient data is available for training.

The mammalian visual cortex is
hierarchical

• First hierarchy of neurons are sensitive to edges.
• Brain regions further down the visual pipeline are sensitive to more complex structures

(e.g. faces).
• The strength of the connections between neurons represents long term knowledge.

Simon J. Thorpe, Michèle
Fabre-Thorpe, Science 2001

• Deep neural networks (DNNs) consists of a hierarchy of layers.
• Each layer transforms the input data into more abstract representations:

e.g. edge -> nose -> face.
• The output layer combines those features to make predictions.

Untangling invariant object
recognition

James J. DiCarlo, David D.
Cox, 2007

DNNs mimic the neuronal hierarchical
connectivity.

• Deep neural networks (DNNs) consists of a hierarchy of layers.
• Each layer transforms the input data into more abstract representations:

e.g. edge -> nose -> face.
• The output layer combines those features to make predictions.

DNNs mimic the neuronal hierarchical
connectivity.Deep Learning - Basics

What did it learn?

Edges Nose, Eye… Faces

• Neurons filter and detect specific features or patterns (e.g. edge, nose) by receiving a
weighted input, transforming it with the activation function and passing it to the outgoing
connections.

• Each neuron performs a dot product with the input and its weights, adds the bias
and applies the activation function.

• Artificial neurons mimic brain neurons.

http://cs231n.github.io/neural-networks-1/

Biological vs. artificial neurons

Simplest neural network

…

𝑤$

𝑤%

𝑤&

𝑤'

𝑓) 𝑤*𝑥* + 𝑏
'

* 𝑦

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝒏

• Weights and biases are the learnable parameters.
• Weight: controls the strength of the connection. Weights near zero mean changing this input will not change the

output.
• Bias: measure of how easy it is to get a node to fire. A node with a large bias will tend produce large positive

outputs.

A more realistic example

…

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝒏

𝒚

ℎ$$

ℎ$%

ℎ$&

ℎ%$

𝑊	$ =

𝑤$$$ 𝑤$%$ 𝑤$&$

𝑤%$$
.
.
.

𝑤%%$
.
.
.

𝑤%&$
.
.
.

𝑤'$$ 𝑤'%$ 𝑤'&$

, 𝑏 =
𝑏$$

𝑏%$

𝑏&$
𝑊	% =

𝑤$$%

𝑤$%%

𝑤$&%
, 𝑏 = 𝑏$%

A more realistic example

…

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝒏

𝒚

ℎ$$

ℎ$%

ℎ$&

ℎ%$

• Each DNN consists of one input, one output and multiple fully-connected hidden layers in between.
• Each layer is represented as a series of neurons that progressively extract higher-level features of the input

until the final layer makes a decision about what the input shows.
• The more layers the network has, the more abstract features it can learn.

• Activations functions are non-linear. Non-linearity is needed to learn complex
representations of data, otherwise the DNN would be just a linear function (analogous to
PCA).

• Most deep networks use ReLU in hidden layers:
- it trains much faster (constant derivative),
- improve discriminative performance,
- prevents the gradient vanishing problem.

Sigmoid x = 	
1

1 + 𝑒CD

Tanh x = 	
𝑒D − 𝑒CD

𝑒D + 𝑒CD

ReLU x = max	(0, x)

Softplus x = log	(1 +	𝑒D)
https://imiloainf.wordpress.com/2013/11/06/rectifier-nonlinearities/

Commonly used activation functions

Activation functions

Sigmoid Hyperbolic Tangent (tanh)

Rectified Linear Unit

𝐑𝐞𝐋𝐔 𝒙 = 𝐦𝐚𝐱 𝟎, 𝒙

+ Cheap operation
+ Accelerates convergence
― Large gradients → Dying

ReLUs

𝝈 𝒙 =
𝟏

𝟏 + 𝒆C𝒙

+ Resembles neuronal firing
― Saturation → zero gradients
― Sigmoid outputs are not zero-

centered

𝐭𝐚𝐧𝐡 𝒙 =
𝟏 − 𝒆C𝟐𝒙

𝟏 + 𝒆C𝟐𝒙 = 𝟐𝝈 𝟐𝒙 − 𝟏

+ Outputs are zero-centered
― Saturation → zero gradients

Additional activation functions

§ Leaky ReLUs: solves the dying ReLUs issue, results are
not consistent

§ Maxout: generalization of ReLUs, no saturation, no
dying, very expensive to compute

• A cost function measures how well a neural network predicts the expected outputs given
the training samples.

• A cost function is single valued function:

Cd(W, B,	Sd, Od)

• Cost function requirements:
• The cost function C must be able to be written as an average over individual

training samples:

C(W, B, S, O) =
1
n)Cd(W, B,	Sd,Od)

f

dg$

• The cost function C must not depend on any network activation value besides the
activation value of the output layer, 𝑎ij.

• C(W, B, S, O) ≈ 0 means the DNN is well trained.

Examples of cost functions

Weights Biases Sample i Expected output of sample i

• Mean square error (aka maximum likelihood and sum squared error):

• Cross-entropy (aka Bernoulli negative log-likelihood and binary cross-entropy):

• Kullback–Leibler divergence (aka information divergence, information gain and
relative entropy):

• 𝐇𝐞𝐥𝐥𝐢𝐧𝐠𝐮𝐞𝐫	𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞

Cost functions

C(W, B, S, O)=
1
n)) atu − Odt

%
v

tg$

f

dg$

C(W, B, S, O)= −
1
n)) Odt log atu + 1 − Odt log 1 − atu 	

v

tg$

f

dg$

C(W, B, S, O)=
1
n))Odt log

Odt
atu

v

tg$

f

dg$

C(W, B, S, O)=
1
n 2�

)) atu
� − Odt

�
%v

tg$

f

dg$

• The capacity of a network can be increased with the number of layers and units per layer.
• As a rule of thumb, going deeper results in more expressive networks, while going wider

may lead to overfitting
• more layers lead to more nested functions and non-linearities that increase the
abstraction power, while more units in the same layer usually add features of the
same complexity, which might lead to redundancy.

http://cs231n.github.io/neural-networks-1/#bio

The importance of network
architecture

Source: https://livingthing.danmackinlay.name/deep_learning.html

Overfitting

• Overfitting occurs when a model with high capacity fits the noise in the data
instead of the (assumed) underlying relationship.

• Larger DNNS can represent more complicated functions. Should therefore we go always
very deep?

• No, DNNs with more neurons can express more complicated functions, however,
large networks trained on scarce data might lead to overfitting.

• When data is scarce, it is essential to implement methods to prevent overfitting (L2
regularization, dropout, input noise, etc).

• In practice, it is always better to use methods to control overfitting instead of reducing the
number of neurons.

http://cs231n.github.io/neural-networks-1/#bio

Overfitting

• Early stopping:
• Stop training as so on as the error on the validation set is higher than it

was the last time it was checked.

• Noise addition:
• Dropout: dropping out units (both hidden and visible) in a neural

network.
• Add noise to data (e.g. denoising autoencoders): we train the network

to reconstruct the input from a corrupted version of it.

• Regularization penalties :
• Create weight penalties L1 and L2.

• Dataset augmentation:
• Create fake data and add it to the training set.

How to prevent overfitting.

• At each training iteration a dropout layer randomly removes some nodes in the network with
probability p along with all of their incoming and outgoing connections.

• Dropout can be applied to hidden or input layer.
• Why it works:

• Prevents co-adaptation between neurons.
• Dropout is an example of ensemble technique, where multiple thinned networks with

shared parameters are averaged out.

Dropout

ℎ%%

…

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝒏

𝒚

ℎ$$

ℎ$%

ℎ$&

ℎ%$

25

• L2 norm
• penalizes the square value of the weight (p = 2).
• tends to drive all the weights to smaller values.

• L1 norm

• penalizes the absolute value of the weight (p = 1)
• tends to drive some weights to exactly zero (introducing sparsity in the

model), while allowing some weights to be big.

Weight regularization

C(W, B, S, O)yz{|}~y*�z�= C(W, B, S, O) + 	𝜆) 𝑤*i
�

�

*,i

• The effects of regularization strength:
• Each neural network above has 20 hidden neurons, but increasing the regularization

strength makes its final decision regions smoother.

http://cs231n.github.io/neural-networks-1/#bio

The effect of regularization

Backpropagation

Forward propagation𝑋

…

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝒏

𝒚�

ℎ$$

ℎ$%

ℎ$&

ℎ%$

ℎ$$ = 𝑓 ∑𝑤$$𝑥 + 𝑏$

Forward propagation𝑋 𝐿(𝑦�, 𝑦)

Loss function

≠ 𝒚

…

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝒏

𝒚�

ℎ$$

ℎ$%

ℎ$&

ℎ%$

Backpropagation

Backward propagation𝑋

…

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝒏

𝒚�

ℎ$$

ℎ$%

ℎ$&

ℎ%$

𝛿%$ = 𝑦� − 𝑦

𝛿$$ = 𝑤	$$% 𝛿%$

𝐿(𝑦�, 𝑦)

Loss function

Backpropagation

Backward propagation𝑋 𝐿(𝑦�, 𝑦)

Loss function

…

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝒏

𝒚�

ℎ$$

ℎ$%

ℎ$&

ℎ%$

Backpropagation

Weight update

…

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝒏

𝒚

ℎ$$

ℎ$%

ℎ$&

ℎ%$

𝑤$$$ 𝑛𝑒𝑤 = 𝑤$$$ +η	𝛿$$
𝜕

𝜕𝑤*i�
𝐽(𝒘) 𝑥$ 	

𝑤$$$
learning rate

The effect of different learning rates

http://cs231n.github.io/neural-networks-3/

• Low learning rates decrease linearly (slow convergence).
• High learning rates initially decrease exponentially, but saturate at higher values: there is

too much "energy" in the optimization and the parameters keep bouncing chaotically,
unable to settle in a good minimum.

Optimizers
Stochastic gradient descent:
1. Choose an initial vector of parameters
2. Repeat until convergence:
• Randomly shuffle training examples
• Move the weight vector towards the

direction of steepest descent by
learning rate η

Figure from Angermueller et al., Mol Syst Biol. (2016) 12: 878

Advanced choices:
• Momentum: save the update at each

iteration, and determine the next update
as a linear combination of the gradient and
the previous update

• Adaptive learning rate methods:
RMSprop, Adagrad, Adam

Different optimizers achieve very
different convergence rates

Images credit: Alec Radford.

Hyperparameter tuning and reproducibility

Bayesian Optimization
Gaussian Processes

Get
performance

Suggest
parameters

DNNs can involve many hyperparameters. The most common include:
• initial learning rate
• momentum
• regularization strength (L2 penalty, dropout strength, etc)
A grid search exploration of all possible parameter combination might not be the
most efficient way of tuning the DNN!

Trained network

…

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝒏

𝒚

ℎ$$

ℎ$%

ℎ$&

ℎ%$

Trained network

…

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝒏

𝒚

ℎ$$

ℎ$%

ℎ$&

ℎ%$

Trained network

…

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝒏

𝒚

ℎ$$

ℎ$%

ℎ$&

ℎ%$

Single cells with their
class labels

70%

Training set

Test set

30%

Training and testing

𝒚

Overview

1.Introduction to deep learning
• History and motivation
• Activations functions
• Cost functions
• Backpropagation
• Regularization
• Optimization

2.Multi-Layer Perceptron (MLP)
3.Auto-enconders (AE)
4.Convolutional Neural Networks (CNN)
5.Recurrent Neural Networks (RNN)

Multi-layer perceptron (MLP)

http://deeplearning.net/tutorial/mlp.html

• An MLP is a DNN that:
• Consists at least of three layers of nodes (i.e. there is at least one hidden layer).
• It is always feedforward (no loops are allowed).
• Consecutive layers are fully connected.

• A single hidden layer is sufficient to make MLPs a universal approximator. However
usually there are substantial benefits to using more than one hidden layer.

Deep learning in genomics

High-level frameworks make deep learning easier
Deep Learning Frameworks:
• Keras
• Lasagne
• Caffe
Graph compilers:
• Theano
• Tensor Flow
Linear Algebra Libraries:
• PyCuda (python)
• CUDAMat (python)
• JCuda (java)

Deep learning frameworks

Thank you!

CompSysBio team @ IBM Research

