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The beginnings: perceptron.

https://www.youtube.com/watch?v=cNxadbrN al



A brief history of deep learning
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https://www.slideshare.net/LuMa92 | /deep-learning-a-visual-introduction



Machine learning

Machine Learning is a type of Artificial Intelligence that provides computers with the ability
to learn without being explicitly programmed.

Experimental data

Preprocessing Cannot be fully automated.

Feature

: ) . Costs a lot of time.
Selection/Engineering

Higher level analysis

Unsupervised Supervised

Knowledge



Learning approaches

>

Dimensionality reduction: e.g. PCA, tSNE
Clustering: e.g. Phenograph, FlowSOM

Classification: SYMs, Random Forests

Supervised Learning: Learning with a labeled training set.

E.g. email spam detector with training set of already labeled emails.
Unsupervised Learning: Discovering patterns in unlabeled data.

E.g. cluster similar documents based on the text content .
Reinforcement Learning: learning based on feedback or reward.

E.g. learn to play chess by winning or losing.



Neural networks
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* Learn data representations. Exceptional effective at learning patterns.
* Use a hierarchy of layers that mimic the neural networks of our brain.
* Can learn highly complex patterns if sufficient data is available for training.



The mammalian visual cortex is
hierarchical
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* First hierarchy of neurons are sensitive to edges.
* Brain regions further down the visual pipeline are sensitive to more complex structures

(e.g. faces).
* The strength of the connections between neurons represents long term knowledge.



DNNs mimic the neuronal hierarchical
connectivity.

Untangling invariant object
recognition
James J. DiCarlo, David D.
Cox, 2007

10 mm

)

000000

888
2

A
000000

0 000000000Q0002V0
86838833333 33000

é888888888888%%%

o

Pixel RGC LGN Vi1 'z T

<
n

* Deep neural networks (DNNs) consists of a hierarchy of layers.

* Each layer transforms the input data into more abstract representations:
e.g. edge -> nose -> face.

* The output layer combines those features to make predictions.



DNNs mimic the neuronal hierarchical
connectivity.

* Deep neural networks (DNNs) consists of a hierarchy of layers.

* Each layer transforms the input data into more abstract representations:
e.g. edge -> nose -> face.

* The output layer combines those features to make predictions.



Biological vs. artificial neurons
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http://cs23 I n.github.io/neural-networks- 1/

* Neurons filter and detect specific features or patterns (e.g. edge, nose) by receiving a
weighted input, transforming it with the activation function and passing it to the outgoing

connections.
* Each neuron performs a dot product with the input and its weights, adds the bias

and applies the activation function.
* Artificial neurons mimic brain neurons.



Simplest neural network
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Weights and biases are the learnable parameters.

Weight: controls the strength of the connection. Weights near zero mean changing this input will not change the
output.

Bias: measure of how easy it is to get a node to fire. A node with a large bias will tend produce large positive
outputs.



A more realistic example
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A more realistic example

Xn

Each DNN consists of one input, one output and multiple fully-connected hidden layers in between.

Each layer is represented as a series of neurons that progressively extract higher-level features of the input
until the final layer makes a decision about what the input shows.

The more layers the network has, the more abstract features it can learn.



Commonly used activation functions

— sigmoid SlngId(X) — —
J—tan | 1+e™
- RelLU
== softplus
X __ e X
Tanh(x) =
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ReLU(x) = max(0, x)

Softplus(x) = log(1 + e*)
https://imiloainf.wordpress.com/2013/11/06/rectifier-nonlinearities/
* Activations functions are non-linear. Non-linearity is needed to learn complex
representations of data, otherwise the DNN would be just a linear function (analogous to
PCA).
* Most deep networks use RelLU in hidden layers:
- it trains much faster (constant derivative),
- improve discriminative performance,
- prevents the gradient vanishing problem.



Activation functions
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Sigmoid
S (x) = —
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+ Resembles neuronal firing

— Saturation — zero gradients
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Rectified Linear Unit

ReLU(x) = max(0, x)

Cheap operation

+ Accelerates convergence
— Large gradients — Dying
RelUs
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Additional activation functions

" Leaky RelLUs: solves the dying RelLUs issue, results are
not consistent
. Maxout: generalization of RelLUs, no saturation, no

dying, very expensive to compute




Examples of cost functions

* A cost function measures how well a neural network predicts the expected outputs given
the training samples.
* A cost function is single valued function:

Ci(W, B, 54, 01)

Weights Biases  Sample i Expected output of sample i

* Cost function requirements:
* The cost function C must be able to be written as an average over individual
training samples:

n
1
C(W, B, S, O) = 52 C/(W, B, S;, O )
i=1

* The cost function C must not depend on any network activation value besides the

activation value of the output layer, ajL.

« C(W,B,S, O) =0 means the DNN is well trained.



Cost functions

Mean square error (aka maximum likelihood and sum squared error):

1 n m
_ L 2
C(W, B,5,0)= — )  (a - 0y)

i=1 j=1

Cross-entropy (aka Bernoulli negative log-likelihood and binary cross-entropy):

n m

1
C(W, B, S, O)=- 32 z[Oi]- log a]L + (1 — Oi]-) log(l — a]L)]

i=1 j=1

Kullback-Leibler divergence (aka information divergence, information gain and

relative entropy): .
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The importance of network
architecture

output layer

input layer input layer

hidden layer 1 hidden layer 2

hidden layer

* The capacity of a network can be increased with the number of layers and units per layer.
* As a rule of thumb, going deeper results in more expressive networks, while going wider
may lead to overfitting
* more layers lead to more nested functions and non-linearities that increase the
abstraction power, while more units in the same layer usually add features of the
same complexity, which might lead to redundancy.

http://cs231n.github.io/neural-networks-1/#bio



Overfitting
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* Overfitting occurs when a model with high capacity fits the noise in the data
instead of the (assumed) underlying relationship.

Source: https://livingthing.danmackinlay.name/deep_learning.html




Overfitting
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* Larger DNNS can represent more complicated functions. Should therefore we go always

very deep!
* No, DNNs with more neurons can express more complicated functions, however,
large networks trained on scarce data might lead to overfitting.

* When data is scarce, it is essential to implement methods to prevent overfitting (L2
regularization, dropout, input noise, etc).

* In practice, it is always better to use methods to control overfitting instead of reducing the
number of neurons.

http://cs231n.github.io/neural-networks-1/#bio



How to prevent overfitting.

Early stopping:
* Stop training as so on as the error on the validation set is higher than it
was the last time it was checked.

Noise addition:

* Dropout: dropping out units (both hidden and visible) in a neural
network.

* Add noise to data (e.g. denoising autoencoders): we train the network
to reconstruct the input from a corrupted version of it.

Regularization penalties :
* Create weight penalties L1 and L2.

Dataset augmentation:
* Create fake data and add it to the training set.



Dropout

At each training iteration a dropout layer randomly removes some nodes in the network with
probability p along with all of their incoming and outgoing connections.

Dropout can be applied to hidden or input layer.
Why it works:

Prevents co-adaptation between neurons.
[

Dropout is an example of ensemble technique, where multiple thinned networks with
shared parameters are averaged out.



Weight regularization

* L2 norm
* penalizes the square value of the weight (p = 2).
* tends to drive all the weights to smaller values.

e L| norm

* penalizes the absolute value of the weight (p = 1)
* tends to drive some weights to exactly zero (introducing sparsity in the
model), while allowing some weights to be big.

p
C(W, B, S, O)yeguiarizea= C(W, B, S, O) + A E |wij|
L,j

25



The effect of regularization

A =0.001 A =0.01

* The effects of regularization strength:
* Each neural network above has 20 hidden neurons, but increasing the regularization
strength makes its final decision regions smoother.

http://cs23 In.github.io/neural-networks-1/#bio



Backpropagation
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Backpropagation




Backpropagation
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The effect of different learning rates

low learning rate

high learning rate

good learning rate
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* Low learning rates decrease linearly (slow convergence).

* High learning rates initially decrease exponentially, but saturate at higher values: there is
too much "energy" in the optimization and the parameters keep bouncing chaotically,
unable to settle in a good minimum.

http://cs23 I n.github.io/neural-networks-3/



Optimizers

Stochastic gradient descent:

|. Choose an initial vector of parameters

2. Repeat until convergence:

* Randomly shuffle training examples

* Move the weight vector towards the
direction of steepest descent by
learning rate n

L(w)

Advanced choices:

* Momentum: save the update at each
iteration, and determine the next update
as a linear combination of the gradient and
the previous update

* Adaptive learning rate methods:
RMSprop, Adagrad, Adam

Figure from Angermueller et al., Mol Syst Biol. (2016) 12: 878

Global
optimum



Different optimizers achieve very
different convergence rates
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Images credit: Alec Radford.



Hyperparameter tuning and reproducibility
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DNNs can involve many hyperparameters. The most common include:

* initial learning rate

* momentum

* regularization strength (L2 penalty, dropout strength, etc)

A grid search exploration of all possible parameter combination might not be the
most efficient way of tuning the DNN!



Trained network




Trained network




Trained network




Training and testing
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Multi-layer perceptron (MLP)

output layer

hidden layer

input layer

e An MLP is a DNN that:

* Consists at least of three layers of nodes (i.e. there is at least one hidden layer).
* |t is always feedforward (no loops are allowed).
* Consecutive layers are fully connected.

* A single hidden layer is sufficient to make MLPs a universal approximator. However
usually there are substantial benefits to using more than one hidden layer.

http://deeplearning.net/tutorial/mlp.html



Deep learning in genomics
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Deep learning frameworks

High-level frameworks make deep learning easier
Deep Learning Frameworks:
Keras
Lasagne
Caffe
Graph compilers:
Theano
Tensor Flow
Linear Algebra Libraries:
PyCuda (python)
CUDAMat (python)
JCuda (java)



Thank you!

CompSysBio team @ IBM Research



