Introduction to deep learning in

computational biology

Maria Rodriguez Martinez

Technical Lead Systems Biology, IBM, Zurich Research Lab

Overview

Introduction to deep learning
History and motivation
Activations functions
Cost functions
Backpropagation
Regularization
Optimization

Multi-Layer Perceptron (MLP)

Auto-enconders (AE)

Convolutional Neural Networks (CNN)

Recurrent Neural Networks (RNN)

Overview

Introduction to deep learning
- History and motivation

- Activations functions

- Cost functions

- Backpropagation

- Regularization

- Optimization

The beginnings: perceptron.

https://www.youtube.com/watch?v=cNxadbrN al

A brief history of deep learning

Convolution Neural Networks for Google Brain Project on
Handwritten Recognition 16k Cores

1958 Perceptron 1974 Backpropagation 1998 i | ' 2012

awkward silence (Al Winter)

1969 1995 2006 2012
Perceptron criticized SVMreigns Restricted AlexNet wins
y e Boltzmann ImageNet
‘ . Machine Ay A GENET

https://www.slideshare.net/LuMa92 | /deep-learning-a-visual-introduction

Machine learning

Machine Learning is a type of Artificial Intelligence that provides computers with the ability
to learn without being explicitly programmed.

Experimental data

Preprocessing Cannot be fully automated.

Feature

:) . Costs a lot of time.
Selection/Engineering

Higher level analysis

Unsupervised Supervised

Knowledge

Learning approaches

>

Dimensionality reduction: e.g. PCA, tSNE
Clustering: e.g. Phenograph, FlowSOM

Classification: SYMs, Random Forests

Supervised Learning: Learning with a labeled training set.

E.g. email spam detector with training set of already labeled emails.
Unsupervised Learning: Discovering patterns in unlabeled data.

E.g. cluster similar documents based on the text content .
Reinforcement Learning: learning based on feedback or reward.

E.g. learn to play chess by winning or losing.

Neural networks

Input Hidden layer 1 Hidden layer k Output
width
\— _/
Y
depth

* Learn data representations. Exceptional effective at learning patterns.
* Use a hierarchy of layers that mimic the neural networks of our brain.
* Can learn highly complex patterns if sufficient data is available for training.

The mammalian visual cortex is
hierarchical

of command

Categorical judgments,

decision making Simple visual forms,

edges, comers

"\ joms o

H object
m Simon J. Thorpe, Michele

faces, objects Fabre-Thorpe, Science 200

\\ a
e To spinal cord

o finger muscle e 160-220 ms
180-260 ms

* First hierarchy of neurons are sensitive to edges.
* Brain regions further down the visual pipeline are sensitive to more complex structures

(e.g. faces).
* The strength of the connections between neurons represents long term knowledge.

DNNs mimic the neuronal hierarchical
connectivity.

Untangling invariant object
recognition
James J. DiCarlo, David D.
Cox, 2007

10 mm

)

000000

888
2

A
000000

0 000000000Q0002V0
86838833333 33000

é888888888888%%%

o

Pixel RGC LGN Vi1 'z T

<
n

* Deep neural networks (DNNs) consists of a hierarchy of layers.

* Each layer transforms the input data into more abstract representations:
e.g. edge -> nose -> face.

* The output layer combines those features to make predictions.

DNNs mimic the neuronal hierarchical
connectivity.

* Deep neural networks (DNNs) consists of a hierarchy of layers.

* Each layer transforms the input data into more abstract representations:
e.g. edge -> nose -> face.

* The output layer combines those features to make predictions.

Biological vs. artificial neurons

impulses carried Z0 Wo
*@® synapse
toward cell body axon from a neuron
branches woT(
dendrites (! of axon
, cell body f (wa 4 b)
ason s > Zw'az- +b + : >
nucleus terminals - ; ks output axon
activation
impulses carried Wo T function

away from cell body

http://cs23 I n.github.io/neural-networks- 1/

* Neurons filter and detect specific features or patterns (e.g. edge, nose) by receiving a
weighted input, transforming it with the activation function and passing it to the outgoing

connections.
* Each neuron performs a dot product with the input and its weights, adds the bias

and applies the activation function.
* Artificial neurons mimic brain neurons.

Simplest neural network

1 (ZW" +0) oy

Weights and biases are the learnable parameters.

Weight: controls the strength of the connection. Weights near zero mean changing this input will not change the
output.

Bias: measure of how easy it is to get a node to fire. A node with a large bias will tend produce large positive
outputs.

A more realistic example

7/

\”
%

A more realistic example

Xn

Each DNN consists of one input, one output and multiple fully-connected hidden layers in between.

Each layer is represented as a series of neurons that progressively extract higher-level features of the input
until the final layer makes a decision about what the input shows.

The more layers the network has, the more abstract features it can learn.

Commonly used activation functions

— sigmoid SlngId(X) — —
J—tan | 1+e™
- RelLU
== softplus
X __ e X
Tanh(x) =
eX +e %

ReLU(x) = max(0, x)

Softplus(x) = log(1 + e*)
https://imiloainf.wordpress.com/2013/11/06/rectifier-nonlinearities/
* Activations functions are non-linear. Non-linearity is needed to learn complex
representations of data, otherwise the DNN would be just a linear function (analogous to
PCA).
* Most deep networks use RelLU in hidden layers:
- it trains much faster (constant derivative),
- improve discriminative performance,
- prevents the gradient vanishing problem.

Activation functions

i

Sigmoid
S (x) = —
o) = 1+e™™*
+ Resembles neuronal firing

— Saturation — zero gradients
— Sigmoid outputs are not zero-
centered

L
-10

-5

1
10

Hyperbolic Tangent (tanh)

-2x

—e
L(Jg //——— tanh(x) = m = 20'(2x) —1
" i + Outputs are zero-centered

— Saturation — zero gradients

-10 -5 Ir 5 10

10 F

Rectified Linear Unit

ReLU(x) = max(0, x)

Cheap operation

+ Accelerates convergence
— Large gradients — Dying
RelUs

+

1
10

Additional activation functions

" Leaky RelLUs: solves the dying RelLUs issue, results are
not consistent
. Maxout: generalization of RelLUs, no saturation, no

dying, very expensive to compute

Examples of cost functions

* A cost function measures how well a neural network predicts the expected outputs given
the training samples.
* A cost function is single valued function:

Ci(W, B, 54, 01)

Weights Biases Sample i Expected output of sample i

* Cost function requirements:
* The cost function C must be able to be written as an average over individual
training samples:

n
1
C(W, B, S, O) = 52 C/(W, B, S;, O)
i=1

* The cost function C must not depend on any network activation value besides the

activation value of the output layer, ajL.

« C(W,B,S, O) =0 means the DNN is well trained.

Cost functions

Mean square error (aka maximum likelihood and sum squared error):

1 n m
_ L 2
C(W, B,5,0)= —) (a - 0y)

i=1 j=1

Cross-entropy (aka Bernoulli negative log-likelihood and binary cross-entropy):

n m

1
C(W, B, S, O)=- 32 z[Oi]- log a]L + (1 — Oi]-) log(l — a]L)]

i=1 j=1

Kullback-Leibler divergence (aka information divergence, information gain and

relative entropy): .

IO 0;
C(W, B, S, O)= ;Z z 0y log—

1=1]:1 J

(- o)

Hellinguer distance n

1
C(W, B, S, O)= —
()

1=1)

-

Il
[N

The importance of network
architecture

output layer

input layer input layer

hidden layer 1 hidden layer 2

hidden layer

* The capacity of a network can be increased with the number of layers and units per layer.
* As a rule of thumb, going deeper results in more expressive networks, while going wider
may lead to overfitting
* more layers lead to more nested functions and non-linearities that increase the
abstraction power, while more units in the same layer usually add features of the
same complexity, which might lead to redundancy.

http://cs231n.github.io/neural-networks-1/#bio

Overfitting

A
A

8 Training

c

:

T E

Q |

o :
Validation ' Point of
set + early stopping

> 4 >
Epoch

* Overfitting occurs when a model with high capacity fits the noise in the data
instead of the (assumed) underlying relationship.

Source: https://livingthing.danmackinlay.name/deep_learning.html

Overfitting

3 hidden neurons © hidden neurons 20 hidden neurons
¢ = |8 S = ® o wdes ¢ O
® ¢ ® @) ® ©
_) O (J
o O © © @ o) o C e
@ o] @ ® CJ G (9] ﬁ O
o > @ 9 o @)
o © NS o © < _ o © u—. 4 |
® © O ® %) © ® C (&)
: - :
e} o) o e © o)
&) O @ O > @ o O
@ @ O @ D ©
@ @ @
b © O

* Larger DNNS can represent more complicated functions. Should therefore we go always

very deep!
* No, DNNs with more neurons can express more complicated functions, however,
large networks trained on scarce data might lead to overfitting.

* When data is scarce, it is essential to implement methods to prevent overfitting (L2
regularization, dropout, input noise, etc).

* In practice, it is always better to use methods to control overfitting instead of reducing the
number of neurons.

http://cs231n.github.io/neural-networks-1/#bio

How to prevent overfitting.

Early stopping:
* Stop training as so on as the error on the validation set is higher than it
was the last time it was checked.

Noise addition:

* Dropout: dropping out units (both hidden and visible) in a neural
network.

* Add noise to data (e.g. denoising autoencoders): we train the network
to reconstruct the input from a corrupted version of it.

Regularization penalties :
* Create weight penalties L1 and L2.

Dataset augmentation:
* Create fake data and add it to the training set.

Dropout

At each training iteration a dropout layer randomly removes some nodes in the network with
probability p along with all of their incoming and outgoing connections.

Dropout can be applied to hidden or input layer.
Why it works:

Prevents co-adaptation between neurons.
[

Dropout is an example of ensemble technique, where multiple thinned networks with
shared parameters are averaged out.

Weight regularization

* L2 norm
* penalizes the square value of the weight (p = 2).
* tends to drive all the weights to smaller values.

e L| norm

* penalizes the absolute value of the weight (p = 1)
* tends to drive some weights to exactly zero (introducing sparsity in the
model), while allowing some weights to be big.

p
C(W, B, S, O)yeguiarizea= C(W, B, S, O) + A E |wij|
L,j

25

The effect of regularization

A =0.001 A =0.01

* The effects of regularization strength:
* Each neural network above has 20 hidden neurons, but increasing the regularization
strength makes its final decision regions smoother.

http://cs23 In.github.io/neural-networks-1/#bio

Backpropagation

—> hy; = fGwix + by)

X rd propagation

Backpropagation

Backpropagation

_ .2
— 011 = Wwi1024

Loss function

X L(H,)

Backpropagation

. *

*
* “’
.-......-%‘..;---
* o ®
*

=)

Loss function

X kward propagation L(y,y)

Weight update

/
KA

N
29

The effect of different learning rates

low learning rate

high learning rate

good learning rate

L

epoch

Loss

25

20t

0.0

20 40 60 80 100
Epoch &

* Low learning rates decrease linearly (slow convergence).

* High learning rates initially decrease exponentially, but saturate at higher values: there is
too much "energy" in the optimization and the parameters keep bouncing chaotically,
unable to settle in a good minimum.

http://cs23 I n.github.io/neural-networks-3/

Optimizers

Stochastic gradient descent:

|. Choose an initial vector of parameters

2. Repeat until convergence:

* Randomly shuffle training examples

* Move the weight vector towards the
direction of steepest descent by
learning rate n

L(w)

Advanced choices:

* Momentum: save the update at each
iteration, and determine the next update
as a linear combination of the gradient and
the previous update

* Adaptive learning rate methods:
RMSprop, Adagrad, Adam

Figure from Angermueller et al., Mol Syst Biol. (2016) 12: 878

Global
optimum

Different optimizers achieve very
different convergence rates

ST T T

SGD

Momentum

NAG

Adagrad

Adadelta

Rmsprop

T Trrr

— SGD

= Momentum
- NAG

- Adagrad
Adadelta
Rmsprop

L
o
e

1.0

Images credit: Alec Radford.

Hyperparameter tuning and reproducibility

X2 hyy
5 hiz >h21 >
/ : s
Get Suggest
performance parameters
Bayesian Optimization

Gaussian Processes

=

DNNs can involve many hyperparameters. The most common include:

* initial learning rate

* momentum

* regularization strength (L2 penalty, dropout strength, etc)

A grid search exploration of all possible parameter combination might not be the
most efficient way of tuning the DNN!

Trained network

Trained network

Trained network

Training and testing

70%
Single cells with their |)
class labels

30% l

I
I Test set

Overview

2.Multi-Layer Perceptron (MLP)
3.Auto-enconders (AE)

4.Convolutional Neural Networks (CNN)
5.Recurrent Neural Networks (RNN)

Multi-layer perceptron (MLP)

output layer

hidden layer

input layer

e An MLP is a DNN that:

* Consists at least of three layers of nodes (i.e. there is at least one hidden layer).
* |t is always feedforward (no loops are allowed).
* Consecutive layers are fully connected.

* A single hidden layer is sufficient to make MLPs a universal approximator. However
usually there are substantial benefits to using more than one hidden layer.

http://deeplearning.net/tutorial/mlp.html

Deep learning in genomics

NATURE METHODS | BRIEF COMMUNICATION
Deep Learning in Label-free Cell

Classification Predicting effects of noncoding variants with deep
Claire Lifan Chen 58, Ata Mahjoubfar, Li-Chia Tai, lan K. Blaby, Allen Huang, Kayvan Reza Niazi & Ieaming—based Sequence mOdel

Bahram Jalali

Jian Zhou & Olga G Troyanskaya

RESEARCH ARTICLE

The human splicing code reveals new insights A deep learning framework for modeling
into the genetic determinants of disease structural features of RNA-binding protein

Hui Y. Xiong"%>", Babak Alipanahi“*~-", Leo J. Lee"?*", Hannes Bretschneider"**, Daniele Merico®®’, taPSEtS
Ryan K. C. Yuen®®”, Yimin Hua®, Serge Gueroussov®’, Hamed S. Najafabadi“23, Timothy R. Hughes?3”,

Quaid Morris*%>’, Yoseph Barash'>?, Adrian R. Krainer®, Nebojsa Jojic'’, Stephen W. Scherer®>%/, Sai Zhang:. Jingtian Zhouz'f. Hailin Huz". Haipeng Congs'd. Ligong Chenz. Chao Chcngs"

Benjamin J. Blencowe“~"’, Brendan J. Frey <>~ and Jianyang chgl.‘%"

Gene expression inference with deep learning (=

Deep biomarkers of human aging: Application of deep neural
141 11 5 . 13+ networks to biomarker development
" .) | - % I o 2 e = . % a
b it . el A————————————— Evgeny Putin 12, Polina Mamoshinal/3, Alexander Aliper!, Mikhail Korzinkin, Alexey
Moskalevl4, Alexey Kolosov®, Alexander Ostrovskiy®, Charles Cantor®, Jan Vijg7, and Alex

Zhavoronkov!-3

Basset: Learning the regulatory code of the
accessible genome with deep convolutional

Deep learning of the tissue-regulated splicing =
neural networks P & gul P 8

code

David R Kelley!, Jasper Snoek and John Rinn 12 12 12

Michael K. K. Leung ", Hui Yuan Xiong ", Leo J. Lee™ 2,3,

and Brendan J. Frey '™

Deep learning frameworks

High-level frameworks make deep learning easier
Deep Learning Frameworks:
Keras
Lasagne
Caffe
Graph compilers:
Theano
Tensor Flow
Linear Algebra Libraries:
PyCuda (python)
CUDAMat (python)
JCuda (java)

Thank you!

CompSysBio team @ IBM Research

