Pre-processing the data



Scaling in case the input variables are on
different scale

* Recommended to give equal weights to all
variables.

— Just think about the euclidean distance

d(p,a) = d(a,p) = /(a1 —p1)* + (@ — p2)? +++ + (g0 — Pa)’

= 'J i(fﬁ —pi)*.

]

Larger values will drive the distance (think about gene expression)
...and you don’t want this




Scaling in case the input variables are on
different scale

* Recommended to give equal weight to all
variable.

— Just think about linear regression

Coeffients would be different highly express versus lowly express
genes



...but this can introduce come problems

* Scaling or centering assumes that the mean
across different datasets would be similar ie
the mean in the training versus test and to
other future datasets have to be the same....

* We have shown it is not always the case and
that subtle modifications to a dataset can
change the results. True in breast cancer gene
expression datasets at least....



Example with breast cancer subtypes

Genomic Subtyping Scheme (PAM50)

Training set
11 datasets

5 platforms
4924 patients
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PAMS50 uses a gene centering pre-processing step....
It assumes all datasets would be equa ie have roughly the same composition

Paquet et al. JNCI 2015



Not all breast cance datasets have the same
composition

Table 1. Characteristics of the breast cancer datasets used in this study”

Dataset (Reference) Training/validation  Platform No.of samples| %ER+ | %HER2+ %BasalL % HER2E % LumA  %LumB % NormL
expO Bittner M. (www.intgen.org, training Affymetrix (U133 Plus 2.0) 312 65.7 28.1 21.20 16.30 31.40 18.90 12.20
accessed October 31, 2014)
Lu et al. Breast Cancer Res Treat 2008 (35) training Affymetrix (U133 Plus 2.0) 127 58.3 236 26.80 17.30 37.00 16.50 2.40
Li et al. Nat Med 2010 (36) training Affymetrix (U133 Plus 2.0) 115 60.9 313 27.00 16.50 36.50 18.30 1.70
Parker et al. J Clin Oncol 2009 (19) training Agilent 226 58.2 12.4 31.00 12.40 33.20 16.40 7.10
Curtis et al. Nature 2012 (11) training Mlumina (HT-12 v3) 1992 76.2 12.5 20.50 16.00 26.70 22.80 14.00
Guedj et al. Oncogene 2012 (8) training Affymetrix (U133 Plus 2.0) 537 75.9 13.0 16.20 17.10 24.80 24.20 17.70
TCGA Nature 2012 (27) training Agilent 233 79.3 21.9 22.30 15.50 30.90 21.00 10.30
Loi et al. J Clin Oncol 2007 (37) training Affymetrix (U133AB) 414 88.6 10.6 15.20 17.40 25.40 22.70 19.30
Miller et al. PNAS 2005 (38) training Affymetrix (U133AB) 251 86.2 13.1 15.90 18.30 25.10 20.30 20.30
Pawitan et al. Breast Cancer Res 2005 (39)  training Affymetrix (U133AB) 159 N/A 13.8 12.60 13.80 28.30 27.70 17.60
TCGA Nature 2012 (27) training RNA-seq ([llumina) 558 77.9 242 19.20 12.90 30.50 22.20 15.20
McGill MCGQ GSE58644 (20) validation Affymetrix Gene ST 321 78.1 18.47 20.56 17.45 37.69 16.20 8.1
* BasalL = Basal-like intrinsic subtype; ER+ = estrogen receptor positive; HER2+ = HER2 receptor positive; HER2E = HER2-enriched ifitrinsic subfype; LumA = Luminal A intrinsic subtype; LumB = Luminal B intrinsic subtype;

NormlL = Normal-like intrinsic subtype.

Paquet et al. JNCI 2015




What happen if we artificially change the
composition of the dataset?

S
@ Luminal A

@@ Luminal B
@D Basal
@D Normal
@ HER2

> Removed

Unstable
subtype
assignments

Luminal A percentage (%)

Paquet et al. JNCI 2015



How did we solve this?

Select optimal
simple rules

A

Paquet et al. JNCI 2015

ﬂ

% Repeat 20 times on different train/test samples |

We decided to go for simple binary feature rules estimated

K
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Take home message

* Sometime pre-processing is important BUT

* [t also introduces strong assumption on the
future composition of your datasets

* You need to think about this when training
your models



Imputation



What to do when you have missing data?

* Throw away the samples with NA
— In case you don’t have a lot of samples with NA this is a
good option
* Throw away the variables with NA

— |f the variable is mostly NA then it is fine, the variable
was not informative anyway

* Do some imputation

— Example. Use a knn based approach. Find the k closest
samples using knn and non-NA values and impute the
NA with the mean of the k-nearest neighbors.



knnlmpute

‘ Sample with NAs

K=3 1) d = dist(a,b) not using NA
2) Average the NA values from other samples



Class imbalance



With high class imbalance we could have the
“fealing” of performance

* Example
— 80% patients are of class responders

— 20% patients are of class non-responders
* Random prior would classify all patients as responders

* You need to be careful when working with strong
imbalance.

* Look at several metrics sensitivity and specificity +
accuracy. Maybe also Matthew'’s correlation coefficient
(less sensitive to imbalance):

IT'PxTN—-FPx<xFN
V(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

MCC =




Example (caret computeCon

Accuracy : 0.812
95% CI : (0.7598, 0.8571)

No Information Rate : @.6165
P-Value [Acc > NIR] : 4.357e-12

Kappa : @.5872
Mcnemar's Test P-Value : 0.00721
Sensitivity : 0.9085
Specificity : 0.6569
Pos Pred Value : 0.8098
Neg Pred Value : 0.8171
Prevalence : 0.6165
Detection Rate : 0.5602
Detection Prevalence : 0.6917
Balanced Accuracy : 0.7827
"Positive' Class : @



Features selection
P>>N
genomics



P>>N

* Case where number of features are way higher than the
number of samples
—P>>N

* 3 strategies :

— Select features (how many? -> Cross-validation)
* What about correlated features?
* Use you favorite approaches (t-test, wilcox-test, fold change, etc)

— Dimension reduction [generalization ?]
* PCA

— Regularization approaches
* Ridge (L2-norm), lasso (L1-norm), elastic net (mixing L2 and L1)



Regularization : Ridge, lasso, elastic net

Ridge(L2-norm)

N p P
e iS00 3oy S
j=1 j=1

B i=1

Lasso (L1-norm)
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The elements ot statistical learning



Lasso and elastic net would set coefficients to O
“selecting features” while optimizing

Ridge Lasso Elastic net
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Different regularizations, different properties
(number of features)

* Ridge would not
select features P | "
le set
coefficients to O

* Lasso would do
FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression

featu re (right). Shown are contours of the error and constraint functions. The solid blue

areas are the constraint regions |B1| + |B2| < t and B3 + B3 < t2, respectively,
| ti [ while the red ellipses are the contours of the least squares error function.
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Different regularizations, different properties

(correlated features)

* Ridge regression
would tend to give
equal weigths to
correlated features
[robustness].

* Lasso would tend
to select one of
the correlated
features randomly.

B, ¢

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |B1| + |B2| < t and B3 + B3 < t2, respectively,
while the red ellipses are the contours of the least squares error function.
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Take home

* Regularization and shrinkage are important
tools

* Select in function of application

* Keep in mind Occam'’s razor (law of
parsimony):
— Keep it simple.
— Simpler solutions should be prefered to more
complex ones



MAQC-II
Best pratices to translate classifiers
in the clinic



Goal of personalized medicine

Training . ﬁ

T ﬂ Good outcome (no chemo)

Trained
classifier

Good outcome

Tralned
classifier N Bad outcome

Individual patients
ﬂ raw gene expression ﬁ

N Bad outcome (chemo)



One good example
Mammaprint (70-gene

Figure 2: Supervised classification on prognosis signatures.
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THE MAQC II

The MicroArray Quality Control (MAQC)-II study of
common practices for the development and validation
of microarray-based predictive models

MAQC Consortium”

Gene expression data from microarrays are being applied to predict preclinical and clinical endpoints, but the reliability of
these predictions has not been established. In the MAQC-II project, 36 independent teams analyzed six microarray data sets

to generate predictive models for classifying a sample with respect to one of 13 endpoints indicative of lung or liver toxicity in
rodents, or of breast cancer, multiple myeloma or neuroblastoma in humans. In total, >30,000 models were built using many
combinations of analytical methods. The teams generated predictive models without knowing the biological meaning of some of
the endpoints and, to mimic clinical reality, tested the models on data that had not been used for training. We found that model
performance depended largely on the endpoint and team proficiency and that different approaches generated models of similar
performance. The conclusions and recommendations from MAQC-II should be useful for regulatory agencies, study committees
and independent investigators that evaluate methods for global gene expression analysis.

What to do with classifiers in the clinic? FDA?



MAQC-I reliability of arrays

in identifying all differentially expressed genes that would potentially
constitute biomarkers. The MAQC-I found high intra-platform repro-
ducibility across test sites, as well as inter-platform concordance of
differentially expressed gene lists'*1 and confirmed that microarray
technology is able to reliably identify differentially expressed genes




MAQC-II (challenge, 17 different teams)

* Different teams applying machine learning
supervised algorithms to predict different

endpoints.
* Evaluate how good/different they are



Examples of datasets

Date set

code

Hamner

Iconix

NIEHS

Endpoint

code

A

Endpoint

description

Lung
tumorigen
Vvs. non-
tumorigen

(mouse)

Non-
genotoxic
liver
carcinogens
VS. non-
carcinogens
(rat)

Liver
toxicants
VS. non-
toxicants
based on
overall
necrosis

score (rat)

Number
Microarray of
platform samples
Affymetrix 70
Mouse 430
2.0
Amersham 216
Uniset Rat 1
Bioarray
Affymetrix 214
Rat 230 2.0

Positives
(P)
26

73

79

Negatives
(N)
44

143

135



Other controls

H

Clinical 340

parameter
S1 (CPS1).
The actual
class label
is the sex of
the patient.
Used as a
“positive”
control

endpoint

Clinical 340
parameter
R1 (CPR1).
The actual
class label
is randomly
assigned.
Used as a
“negative”
control
endpoint

194

200

140

146



Results [Performance depends on endpoint and

2V

External validation (MCC)

MCC

can be estimated during training]
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Results [Data analysis teams show different
proficiency]
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Take home message

* Hard problems are hard for everyone.

— There is no magic approach. You are limited by the
signal in your data



Kernel trick



Sometime data cannot be mapped using a
linear hyperplane (eg. SVM
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http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html



Sometime data cannot be mapped using a
linear hyperplane (eg. SVM)

SVM Decision Boundary accuracy=0.445 (Kernel=linear
s Dataset: N=800, '0": 0.71375 '1": 0.28625 ‘ , c=1.0)
10t
1.0} o@w: yé@B °%§ °®°
’ ° g,%t)%%m"g ou?s"ao@d’@o" °
c¥y o °® Boole
o, & B o %000 o5t
° %o%s’ &° °g ®
0.5F qbg’% ® a0’ £ g %"b
2 00 oo Bge, 8o
8 R ... “," ° %, d %ga %0 © °
2 -"'. ° Rad 778 ] 2o 0.0}
L] Ll
oor %o%, 2y ° ‘!: 3% e oo;o ?o °
@ ..'.. . o'g t‘ ° o°
© @ e ° ooo —
° B DA VE %0 P o2
-0.5¢ ,‘# %0 °8 H o° ® % ° 00’
o %gg o® *
oog 93 &K o 2 8°° ° 1.0
Wf%’% -4 og o{ég&" % |
-1.0f £8 2 ds 8, 43 1 .
° o %o [No Title]
° -1.0 -0.5 0.0 0.5 1.0
133 -0 ~05 0.0 05 10 15
) ' ' ' i o ' ' Figure 4: The decision boundary of a linear SVM classifier. Because
Figure 3: A two-class dalta:set that is not linearly separable. Tlhel outer the dataset is not linearly separable, the resulting decision boundary
ring (cyan) is class 0", while the inner ring (red) is class "1". performs and generalizes extremely poorly. Like in Figure 2, we train
the SVM on 75% of the dataset, and test on the remaining 25%.

http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html



Separable in higher dimension

15 Data projected to R~ 2 (nonseparable)
Data in R™3 (separable)
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Separable in higher dimension

Data in R~ 3 (separable w/ hyperplane)
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Different kernels

1.0}

0.5+

0.0+

Figure 6: The decision boundary with a Polynomial kernel.

SVM Decision Boundary accuracy=1.0 (Kernel=poly
C=1.0 coef0=10.0 gamma=0.1 degree=4)

SVM Decision Boundary accuracy=1.0 (Kernel=rbf
C=10.0 gamma=0.1)

Figure 7: The decision boundary with a Radial Basis Function (RBF)
kernel.

linear:

u"v
polynomial:

(gamma*u™v + coef0)degree
radial basis:

exp(-gamma*lu-vi*2)
sigmoid:

tanh(gamma®u"v + coef0)

SVM Decision Boundary accuracy=0.99 (Kernel=sigmoid
C=1000.0 coef0=-10.0 gamma=10.0)

Figure 8: The decision boundary with a Sigmoid kernel.




Boosting

10.1 Boosting Methods

Boosting is one of the most powerful learning ideas introduced in the last
twenty years. It was originally designed for classification problems, but as

The elements of statistical learning



AdaBoost, Freund and Schapire 1997

FINAL CLASSIFIER

G(x) = sign [Zﬂf:l UG, (.’I:)]

4

e Gu(a)

'

G3 ({L‘)

e Ga(a)

FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted ver-
sions of the dataset, and then combined to produce a final prediction.

The elements of statistical learning



Example
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https://sebastianraschka.com/fag/docs/baggin
g-boosting-rf.html



Gradient Boosting Models

Prediction: Decision functions of first 30 trees
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predictions of GB (all 50 trees)

train loss: 0.451 test loss: 0.491

_

http://arogozhnikov.github.io/2016/07/05/gra
dient_boosting_playground.html
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EXtreme Gradient Boosting (XGBoost)

* Currently one of the best performing method
In Kaggle competition

* http://xgboost.readthedocs.io/en/latest/
* You should have a look




Image Analysis :
Mostly how do you extract
features to feed your ML algorithm



ML base on images

E> @ :> Classification




ML base on images

=

Etract features
from image

-

> Classification



Different tools to extract features

Cell profiler
— Mostly for cells

Matlab

— Powerful image processing toolbox. Not specific for systems biology.
Might take time

llastik
— Machine learning for images

Phenoripper

— Segmentation free
Directly in R:

— EBImage

— imageHTS



Cell Profiler

“Identification”
(segmentation) “Measurement”
{extraction of raw “Hit picking”
features) (phenotype
scoring,

narmalization,

Cuantitative and )
quality control)

automatic
measurement of =  MySQLor =P _
hundreds of — Oracle  —ip Data E:-:plnratlun.
features for every database, analysis, and
cell in every image, =®  ilionsof — ¥ machine learning-
including: — measure- = Dased cell scoring
size, shape, —  ments e

intensity, texture, CellProfiler
overlap of colors, Analyst
el dta esploration witwane

CellProfiler”

ol image anatysis softwarne

http://cellprofiler.org/ http://cellprofiler.org/cp-analyst/
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PhenoRipper

* Segmentation free image analysis
— Just extract block features (composition in colors) an co-

occurrence within 3 by 3 grids.

(vi) Visualize profile

d () Load (i) Identify (iii) Identify block (iv) Identify (v) Profile
images foreground blocks types superblock types images similarity
'®
% 1.. .ON
: @
7 ry
vD
Superblock types
- Superblock % PCAMDS plot
N 5
RE K

http://awlab.ucsf.edu/Web_Site/PhenoRipper/
default.htm



EBImage

e Matlab “like” butinR

Feature extraction

* Function getFeatures()
— Extracts features from image objects
— Geometric, image moment based features
— Texture based features (Zernike moments, Haralick features)

100 features

g.s g.p g.pdm g.pdsd g.

76 cells




ImageHTS

Segmentation + feature
extraction

Can do some supervised learning
Example : SVM with radial kernel

Figure 5: Predicted cell labels (grey: interphase, red: mitotic, blue: debris) in well ’001-02-C03’



Example in breast cancer C-Path

RESEARCH ARTICLE [IMAGING

Systematic Analysis of Breast Cancer Morphology
Uncovers Stromal Features Associated with Survival

Andrew H. Beck'-%>", Ankur R. Sangoi'-}, Samuel Leung*, Robert J. Marinelli®, Torsten 0. Nielsen*, Marc J. van de Vijver®, R...
+ See all authors and affiliations

Science Translational Medicine 09 Nov 2011:
Vol. 3, Issue 108, pp. 108ra113
DOI: 10.1126/scitranslmed.3002564



C-path

and feature construction:

Basic image processing

JAF-- o e DN ) LY
Lt '.f'..' ;

H&E image Image broken into superpixels Nuclei identified within
B each superpixel

each superpixel

Building an epithelial/stromal classifier:

Epithelial vs. stroma
classifier




C-path

Constructing higher-level Relationships of contiguous epithelial
contextual/relational features: regions with underlying nuclear objects
Relationships between epithelial
nuclear neighbors

Relationships between morphologically
regular and irregular nuclei

Relationships between epithelial
and stromal objects
Relationships between epithelial
4 nuclei and cytoplasm

— Characteristics of
Characteristics of ™= opithelial nuclei and

stromal nuclei  anithelial cytoplasm
and stromal matrix

D Learning an image-based model to predict survival

Processed images from patients
alive at 5 years
. —

Processed images from patients
deceased at 5 years
I ;

logistic regression

< model building
P(survival)

L1-regularized

5YS predictive model )

'O Time

Identification of novel prognostically
important morphologic features



Deep learning (Chest X-ray)

NIH Clinical Center provides one of the largest publicly
available chest x-ray datasets to scientific community

The dataset of scans is from more than 30,000 patients, including many with advanced lung
disease.

https://nihcc.app.box.com/v/ChestXray-NIHCC

Dataset published in September 2017

A chest x-ray identifies a lung mass.



CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays
with Deep Learning

Pranav Rajpurkar ! Jeremy Irvin“! Kaylie Zhu! Brandon Yang! Hershel Mehta!
Tony Duan! Daisy Ding'! Aarti Bagul' Curtis Langlotz? Katie Shpanskaya 2
Matthew P. Lungren? Andrew Y. Ng!

Input
Chest X-Ray Image

CheXNet
121-layer CNN

Output

Pneumonia Positive (85%)

Sensitivity
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Figure 2. CheXNet outperforms the average of the radiologists at pneuomonia detection using X-ray images. ChexNet



Pathology Wang et al. (2017) Yao et al. (2017) CheXNet (ours)

Atelectasis 0.716 0.772 0.8209
Cardiomegaly 0.807 0.904 0.9048
Effusion 0.784 0.859 0.8831
Infiltration 0.609 0.695 0.7204
Mass 0.706 0.792 0.8618
Nodule 0.671 0.717 0.7766
Pneumonia 0.633 0.713 0.7632
Pneumothorax 0.806 0.841 0.8932
Consolidation 0.708 0.788 0.7939
Edema 0.835 0.882 0.8932
Emphysema 0.815 0.829 0.9260
Fibrosis 0.769 0.767 0.8044
Pleural Thickening 0.708 0.765 0.8138
Hernia 0.767 0.914 0.9387

Table 1. CheXNet outperforms the best published results on all 14 pathologies in the ChestX-rayl4 dataset. In detecting
Mass, Nodule, Pneumonia, Pneumothorax, and Emphysema, CheXNet has a margin of >0.05 AUROC over previous state
of the art results.



(a) Patient with multifocal com-
munity acquired pneumonia. The
model correctly detects the airspace
disease in the left lower and right up-
per lobes to arrive at the pneumonia
diagnosis.

(b) Patient with a left lung nodule.
The model identifies the left lower
lobe lung nodule and correctly clas-
sifies the pathology.

(c) Patient with primary lung ma-
lignancy and two large masses, one
in the left lower lobe and one in
the right upper lobe adjacent to the
mediastinum. The model correctly
identifies both masses in the X-ray.

(d) Patient with a right-sided pneu-
mothroax and chest tube. The

model detects the abnormal lung
to correctly predict the presence of
pneumothorax (collapsed lung).

(e) Patient with a large right pleural
effusion (fluid in the pleural space).
The model correctly labels the effu-
sion and focuses on the right lower
chest.

(f) Patient with congestive heart
failure and cardiomegaly (enlarged
heart). The model correctly identi-
fies the enlarged cardiac silhouette.

Figure 3. ChexNet localizes pathologies it identifies using Class Activation Maps, which highlight the areas of the X-ray
that are most important for making a particular pathology classification.



GUI machine learning

* WEKA

Machine Learning Group at the University of Waikato

FWEKA

The University
- of Waikato

Project Software Book Publications People Related

Weka 3: Data Mining Software in Java



Good technical book online

* The elements of statistical learning. Hastie,
Tibshirani, and Friedman

— https://web.stanford.edu/~hastie/Papers/ESLII.pdf

* Pattern recognition and machine learning.
Christopher Bishop

— http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bi
shop%20-%20Pattern%20Recognition%20And
%20Machine%20Learning%20-%20Springer
%20%202006.pdf




The end



