Best pratice in applied machine learning

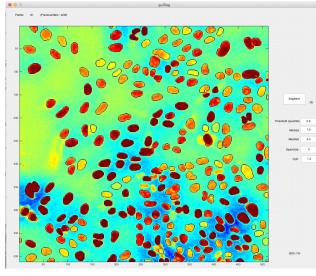
Eric Paquet Computational Systems Biology EPFL November 21th, 2017

Who am I?

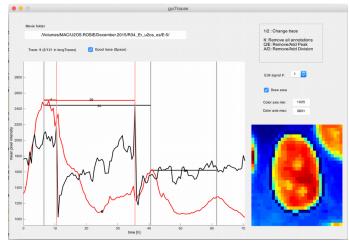
- Post-Doc at EPFL in the Computational Systems Biology group (Naef's lab)
 - Currently involve in projects tracking individual cells over long period of time using live-cell imaging data to study protein dynamics

Our tracking pipeline

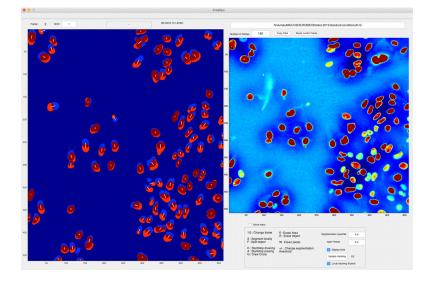
1-Segmentation



3- QC (traces)



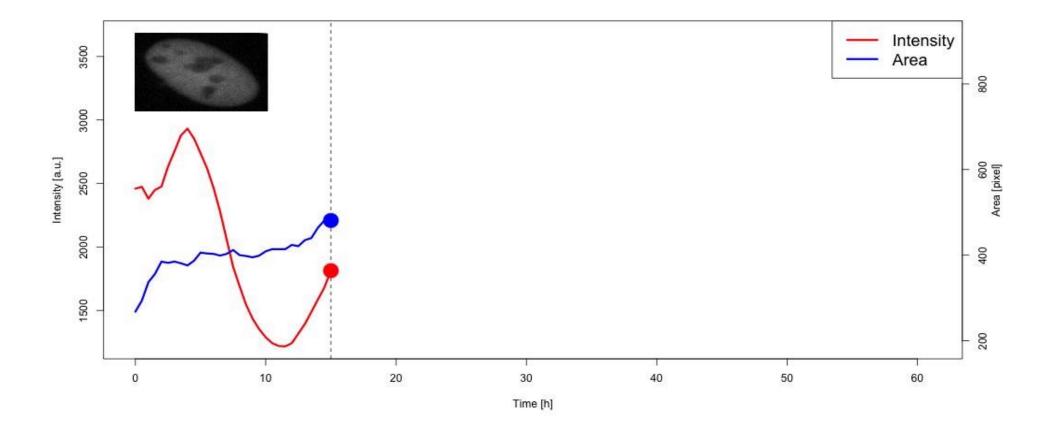
2- Tracking



Strengths :

- Matlab suite of highly-customizable GUIs
 - Segment
 - Track
 - Quality control
- ~20 72h high-quality traces per field of view (20X)

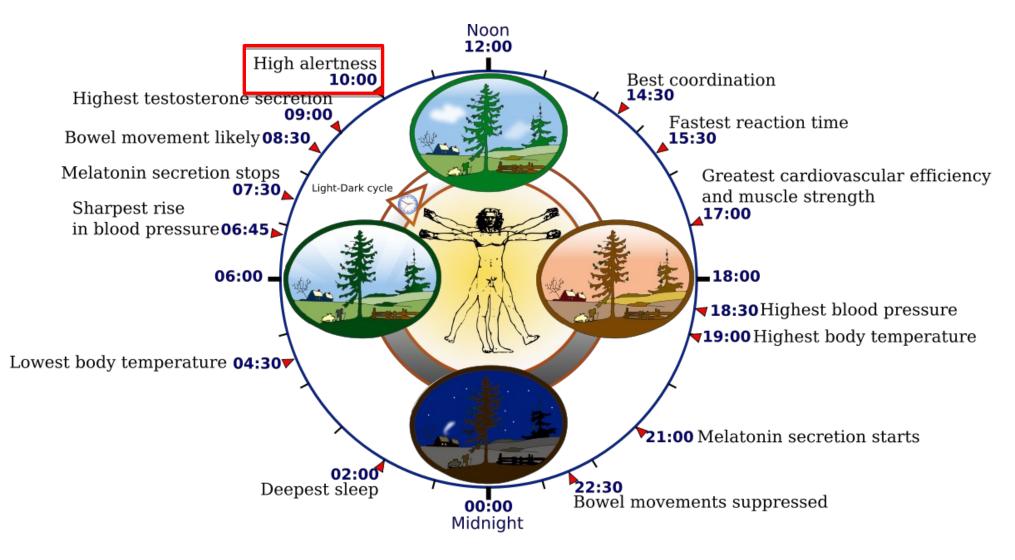
Example of a trace from one cell



Understanding the interaction between the circadian clock and the cell cycle

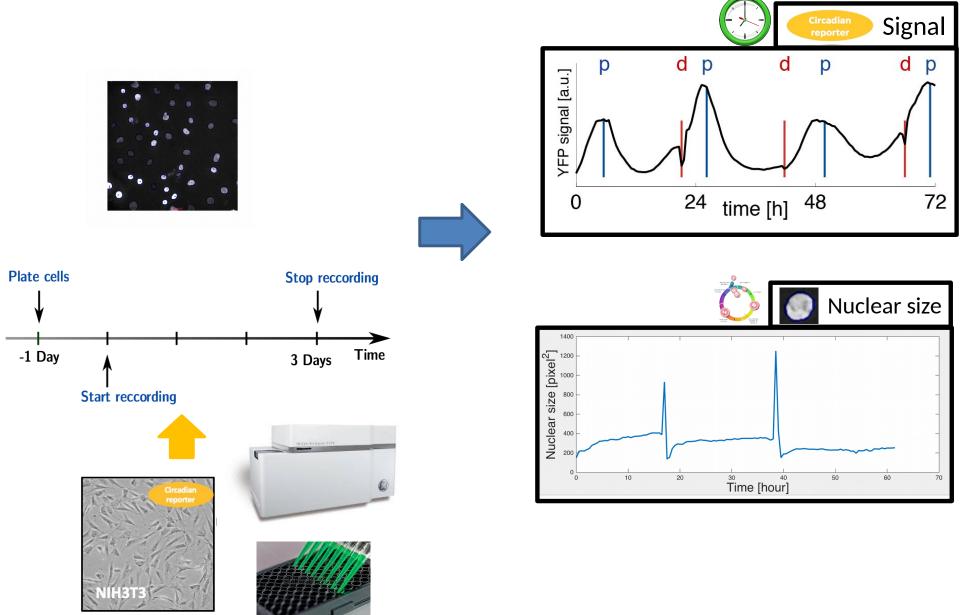


Examples of processes driven by the circadian clock

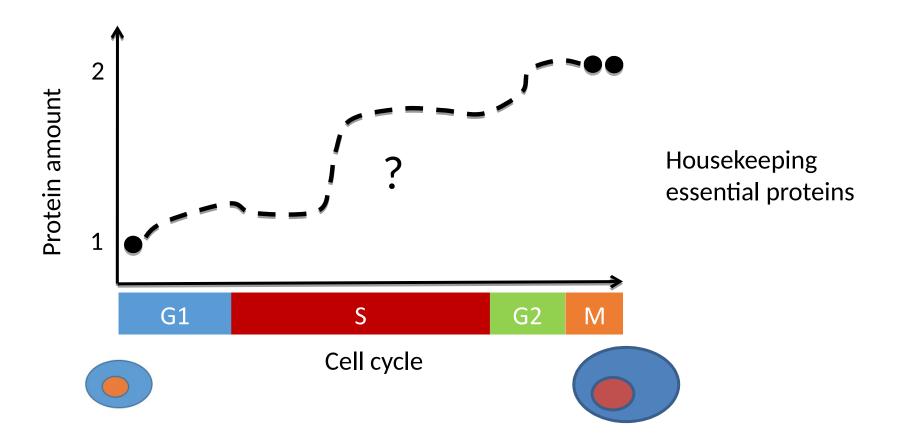


The Body Clock Guide to Better Health, Lamberg, and Smolensky, 2001. Wikipedia

How do we simultaneously track the cell and circadian cycles?

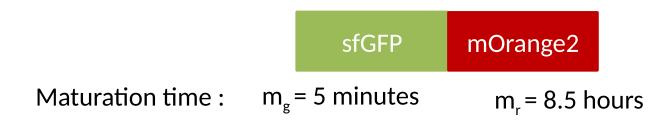


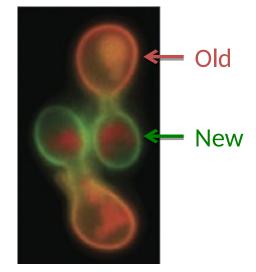
Protein dynamics around the cell cycle



How are we studying this ?

- Single cell level
- Using live cell imaging to get synthesis and degradation rates
- No need for synchronization and perturbation.
- Dual fluorescent timer :

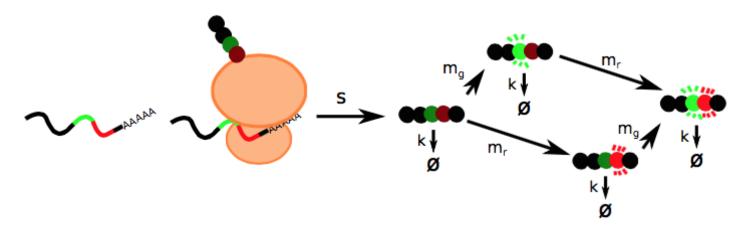




Hxt1 in yeast

Nature Biotechnology 30, 708-714 (2012)

Modeling the dual timer

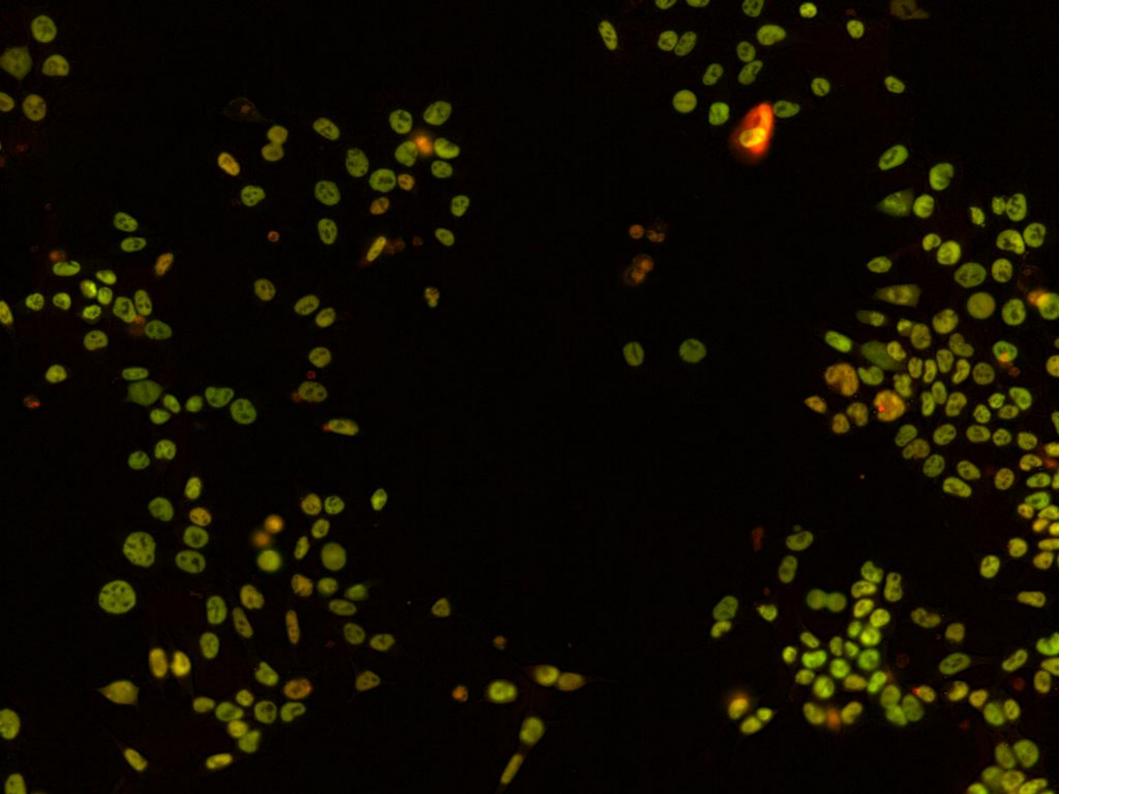


Transcription

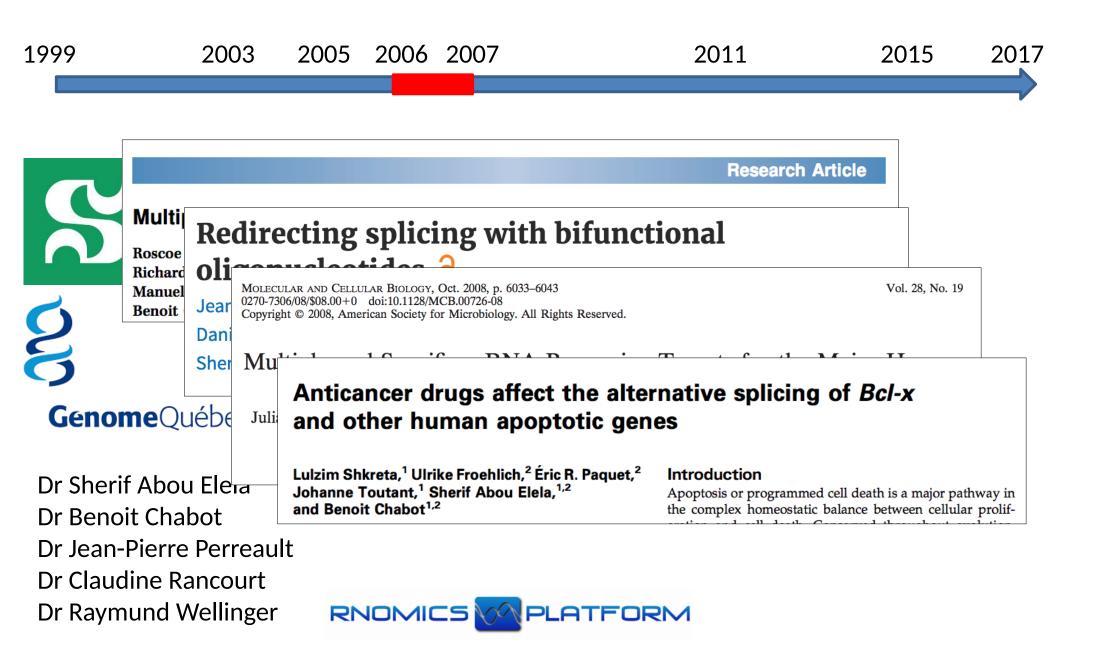
Synthesis

Maturation/Degradation

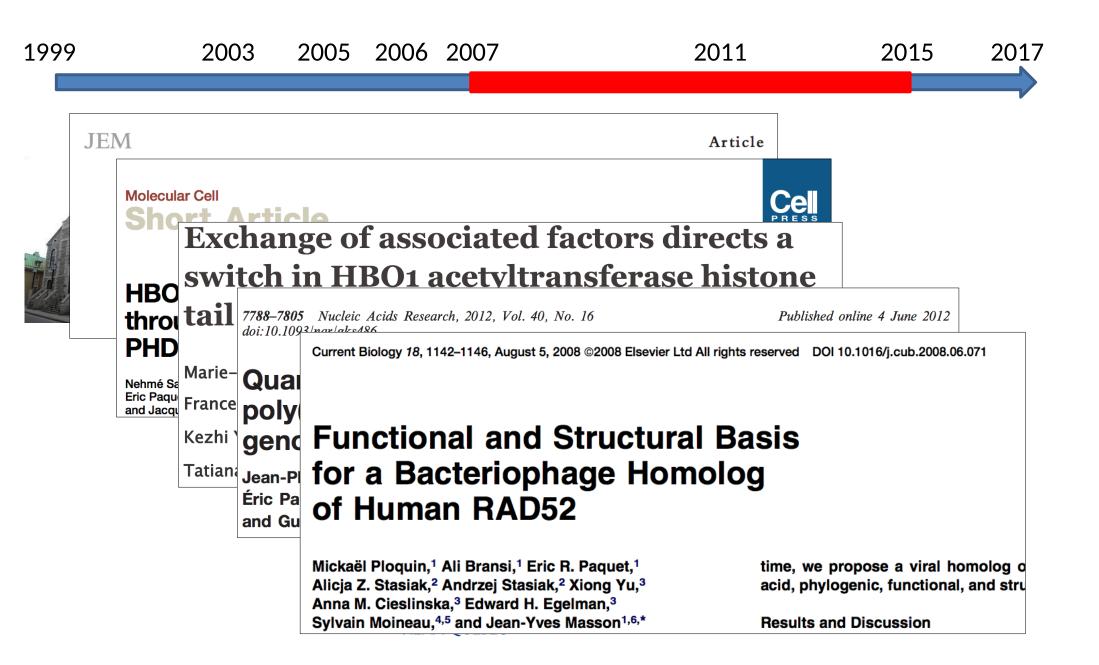
$$egin{aligned} \dot{B_G} &= s - (m_g + k) B_G \ \dot{G} &= m_g B_G - kG \ \dot{B_R} &= s - (m_r + k) B_R \ \dot{R} &= m_r B_R - kR \end{aligned}$$



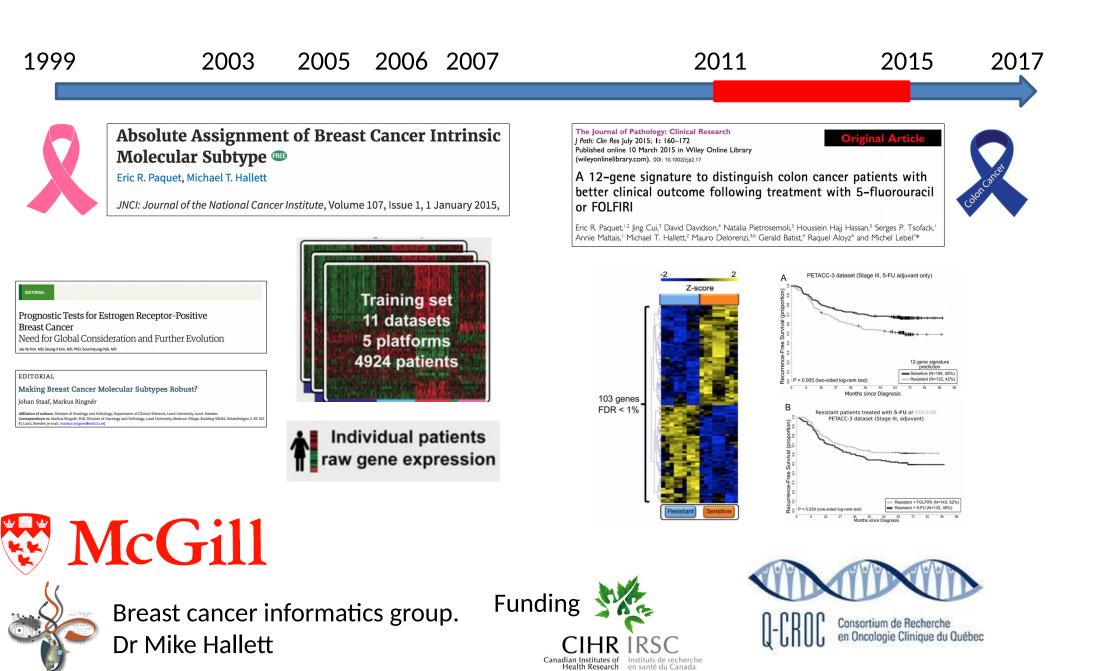
Director of Bioinformatics



Director of bioinformatics



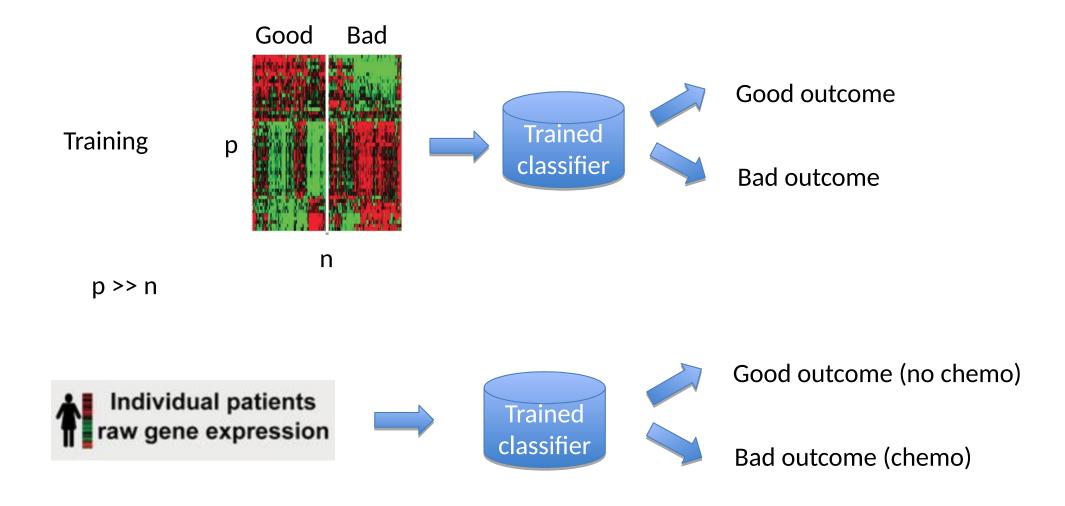
Ph.D. Personalized medicine



Plan

- List of pitfalls
 - Bad experimental design
 - Inadequate statistics
 - Missing background distribution
 - Not knowing what you are doing
- Applied machine learning with examples in systems biology
 - -QC
 - Important plots
 - Clustering and Heatmaps
 - Boxplots
 - PCA
 - Pre-processing
 - Imputation
 - Class imbalance
 - Features selection in P >> N [mostly genomics]
 - Regularization
 - Kernel trick
 - Boosting
 - Personalized medicine and MAQC-II
 - Image analysis : features extraction

Prototype : Breast cancer personalized medicine

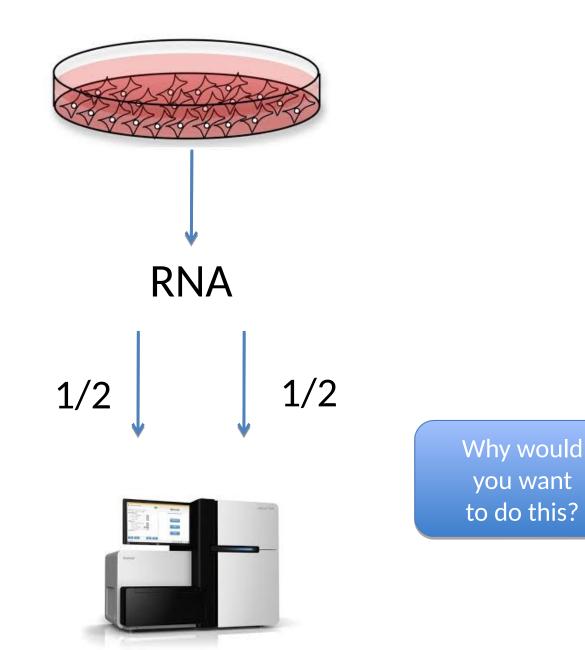


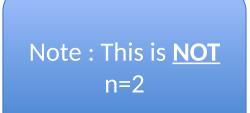
PITFALL #1 BAD EXPERIMENTAL DESIGN

Experimental design

- Different type of replicates :
 - Technical
 - Biological
- Batch effect

Different type of replicates (technical)

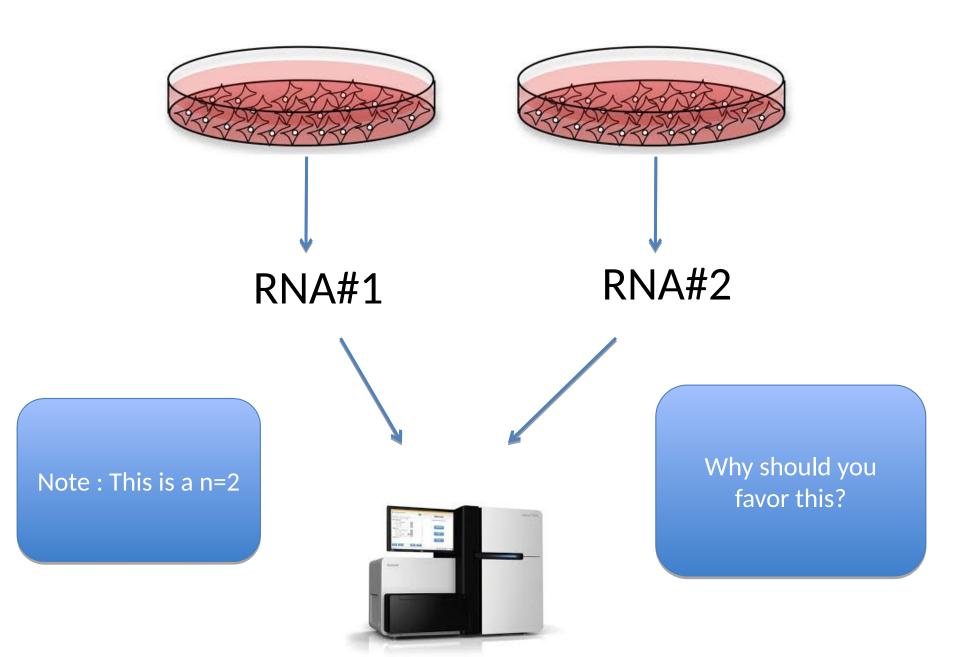




Comments of technical repeats

- Generally useless EXCEPT if :
 - You are developing a new protocol or a new technology and you want to show reproducibility.
 - In most cases (ie when biological replicates are not too expensive) you want to favor biological replicates.
- Technical replicates are not N = 2.
 - Negligible statistical utility.
 - Always favor biological replicates.

Biological replicates

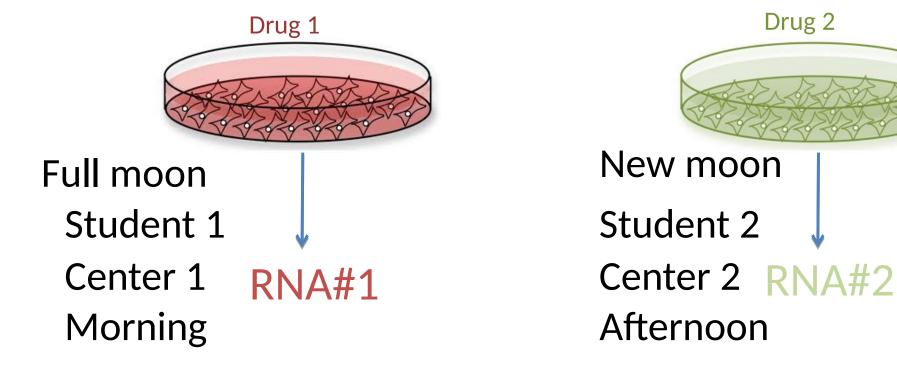


Comments on replicates

• Favor biological replicates when affordable.

BATCH EFFECT

What is a batch?



Why should we take into account the batch in our experiment?

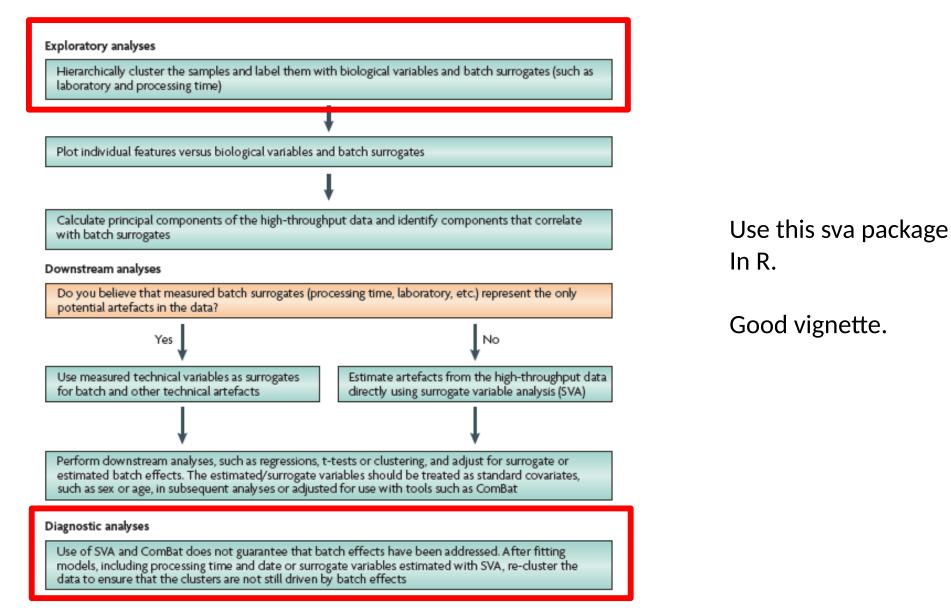
Is it frequent? Yes! It is too frequent!

Widespead batch effect in the litterature

Note 1 - men errere eren fet a tange er nigh an engigen teennetegiet									
Study description*	Known variable used as a surrogate			Principal components used as a surrogate			Association	Refs	
	Surrogate‡	Confounding (%) [§]	Susceptible features (%)∥	Principal components rank of surrogate (correlation) [¶]	Principal components rank of outcome (correlation) [#]	Susceptible features (%)**	with outcome Significant features (%) ^{##}		
Data set 1: gene expression microarray, Affymetrix (N _p = 22,283)	Date	29.7	50.5	1 (0.570)	1 (0.649)	91.6	71.9	9	Cancer research
Data set 2: gene expression, Affymetrix $(N_p = 4167)$	Date	77.6	73.7	1 (0.922)	1 (0.668)	98.5	62.2	2	Nature genetics
Data set 3: mass spectrometry (N _p = 15,154)	Processing group	100	51.7	2 (0.344)	2 (0.344)	99.7	51.7	3	The Lancet
Data set 4: copy number variation, Affymetrix (N _p = 945,806)	Date	29.2	99.5	2 (0.921)	3 (0.485)	99.8	98.8	16	Nature
Data set 5: copy number variation, Affymetrix (N _p = 945,806)	Date	12.2	83.8	1 (0.553)	1 (0.137)	99.8	74.1	17	Am. J. Hum. Genet
Data set 6: gene expression, Affymetrix $(N_p = 22,277)$	Processing group	NA	83.8	5 (0.369)	NA	97.1	NA	18	Nature
Data set 7: gene expression, Agilent $(N_p = 17.594)$	Date	NA	62.8	2 (0.248)	NA	96.7	NA	18	Nature
Data set 8: DNA methylation, Agilent $(N_p = 27,578)$	Processing group	NA	78.6	3 (0.381)	NA	99.8	NA	18	Nature
Data set 9: DNA sequencing, Solexa $(N_p = 2,886)$	Date	24.2	32.1	2 (0.846)	2 (0.213)	72.7	16.9 C	1000 Genomes Project	

Nat Rev Genet. 2010 Oct;11(10):733-9.

How to detect and correct for batch effect



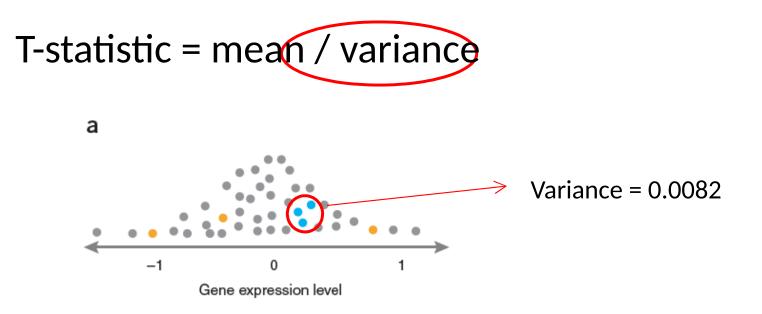
Nat Rev Genet. 2010 Oct;11(10):733-9.

Summary batch effect

- When planning an experiment, think about all the possible variables and confoundings.
- It is important because this could introduce a lot of bias
- If the batch effect is not too strong this could be corrected using tools like combat in the R sva package.

PITFALL # 2. INADEQUATE STATISTICS

« standard » statistics and p >> n problem



What happen when the variance $\rightarrow 0$?

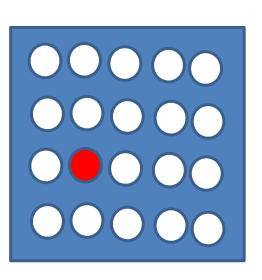
P-value \rightarrow 0 !!! We need to correct for this.

Methods R packages : SAM, <u>limma</u>, Ebayes

Nature Biotechnology 2010; 28(4):337-40

Multiple hypothesis testing

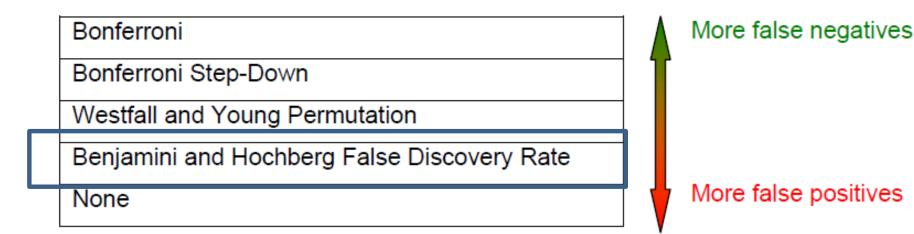
- What is the chance of picking up the red ball with one draw?
- What is the chance of picking up the red ball with 20 draws? ~ 64% 100 times = 99,4%



- Testing 20 000 times the same statistical hypothesis with a 0.05 level of significance
- False positive (balle rouge)
 picked = 20 000 * 0.05 = 1000

How to correct for this

- A compromise between false positive [picking up the red ball] et false negative [not picking a real gene]
- Different approaches (use p.adjust in R)



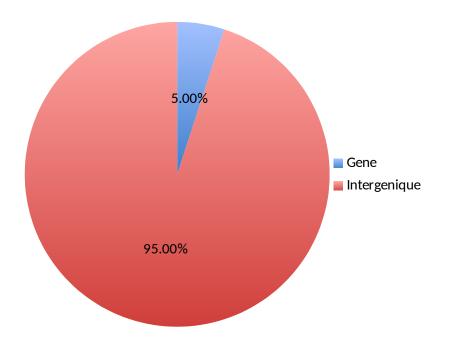
Take home message

- Some statistics are designed for genomic or systems biology (p >> n) SAM, limma, etc.
- Pay a special attention when testing more than one time a statistical hypothesis (big p).
 Need to correct the p-values

PITFALL #3 : MISSING THE BACKGROUND DISTRIBUTION

Example #1

• ChIP-seq of a transcription factor (TF) on the human genome

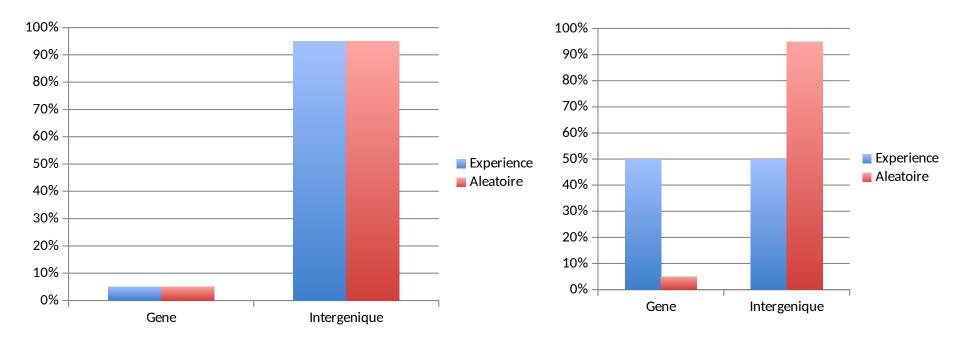


What is the background distribution?

5% of the genome code for genes the remaining is intergenic or intronic regions...

Consequently this TF follows exactly the background distribution! No enrichment

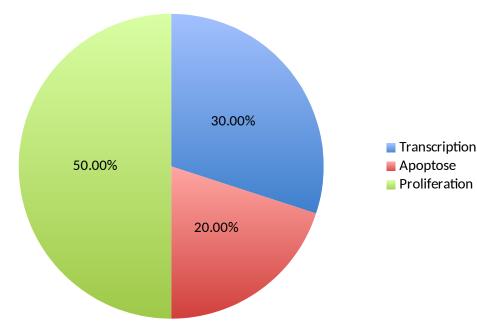
Example #1 corrected



You should favor dual band barplots to piecharts. This way you could present the background distribution (test significance using a chisq.test or a fisher.test).

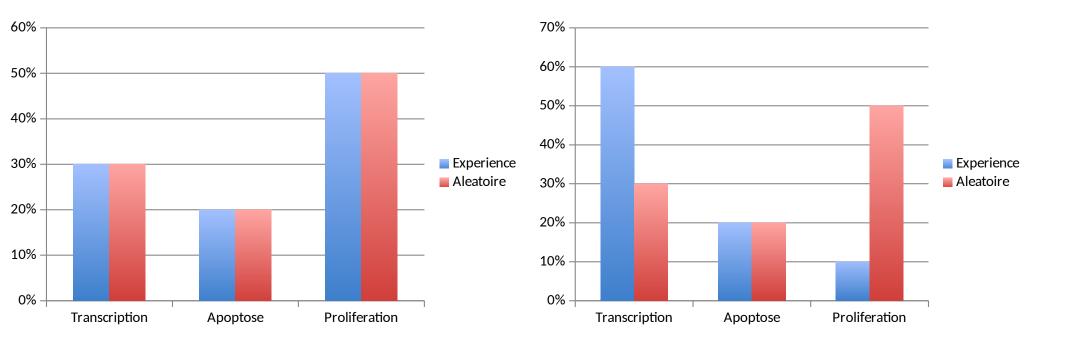
Example #2

• RNA-seq experiment. You obtained 100 genes significantly modulated (human). What are the enriched biological processes in the list of 100 genes?



What is the random distribution? *ie* what is the fraction of genes in the human genome implicated in Transcription, apoptosis or Proliferation?

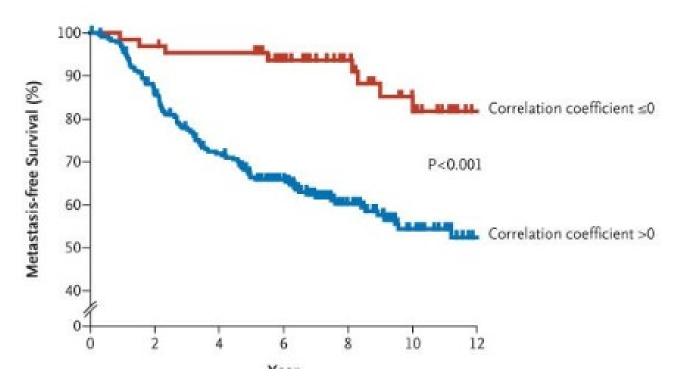
Example #2 corrected



You should favor dual band barplots to piecharts. This way you could present the background distribution (test significance using a chisq.test or a fisher.test).

Example #3

• You just found a gene signature associated with outcome in breast cancer.

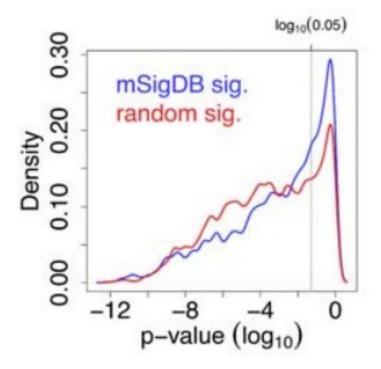


What is the likelihood of this type of signature?

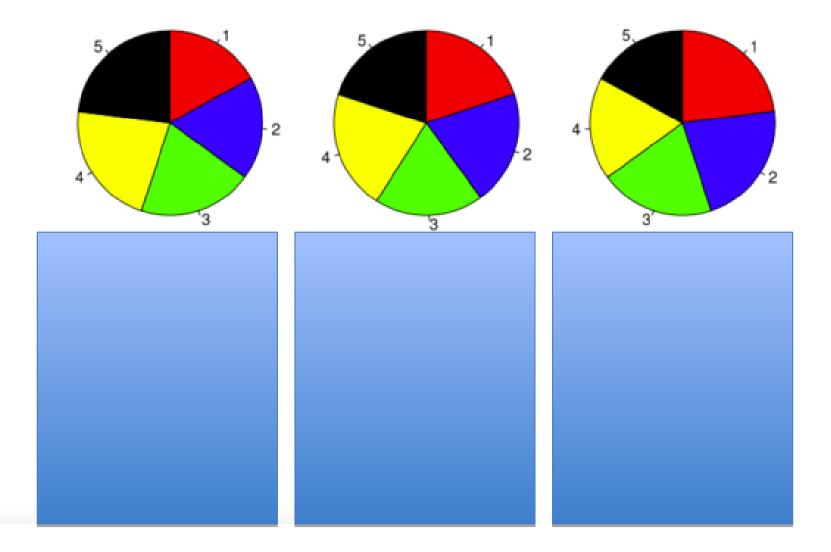
Most Random Gene Expression Signatures Are Significantly Associated with Breast Cancer Outcome

David Venet¹, Jacques E. Dumont², Vincent Detours^{2,3}*

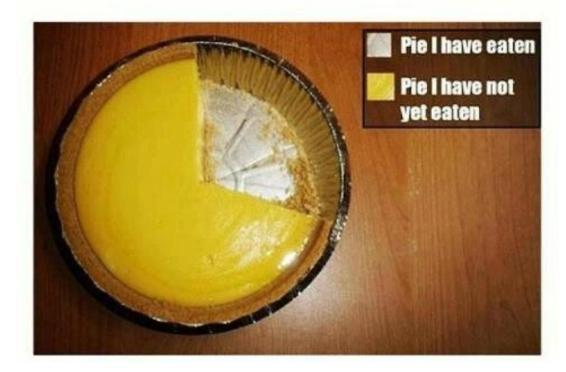
1 IRIDIA-CoDE, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium, 2 IRIBHM, Université Libre de Bruxelles (U.L.B.), Campus Erasme, Brussels, Belgium, 3 WELBIO, Université Libre de Bruxelles (U.L.B.), Campus Erasme, Brussels, Belgium



Quiz pie-chart



World's Most Accurate Pie Chart



Take home message

- Always compare to the background distribution
- Use pie-charts moderately ie you need to also show the background distribution right?
- Favor barplots (to show the background distribution).

PITFALL #4 : NOT KNOWING WHAT YOU ARE DOING

Richard Simon

Dr. Richard Simon

Associate Director, Division of Cancer Treatment and Diagnosis

Director, Biometric Research Program

Chief, Computational & Systems Biology Branch

Critical Review of Published Microarray Studies for Cancer Outcome and Guidelines on Statistical Analysis and Reporting @

Alain Dupuy ➡, Richard M. Simon

JNCI: Journal of the National Cancer Institute, Volume 99, Issue 2, 17 January 2007, Pages 147–157, https://doi.org/10.1093/jnci/djk018
Published: 17 January 2007 Article history •

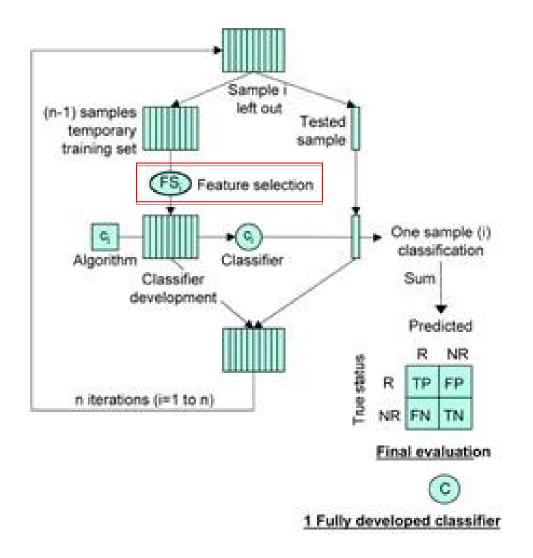
Major Flaws Found in 40 Studies Published in 2004

- Inadequate control of multiple comparisons in gene finding
 - 9/23 studies had unclear or inadequate methods to deal with false positives
 - 10,000 genes x .05 significance level = 500 false positives
- Misleading report of prediction accuracy
 - 12/28 reports based on incomplete cross-validation
- Misleading use of cluster analysis
 - 13/28 studies invalidly claimed that expression clusters based on differentially expressed genes could help distinguish clinical outcomes
- 50% of studies contained one or more major flaws

One of the major flaw (can you spot it?)

```
require(caret)
require (qplots)
## This is important
set.seed(1234)
data <- matrix(rnorm(6000*50), nrow=50, ncol=6000)</pre>
colnames(data) <- as.character(1:6000)</pre>
cl <- c(rep(1,25), rep(2,25)) ## 1 = normal, 2 = cancer
## Select genes
pv.feat <- apply(data, 2, function(x) {</pre>
                                                                       P >> n problem
    t.test(x[cl==1], x[cl==2])$p.value
})
top.20 <- order(pv.feat)[1:20]</pre>
heatmap.2(data[,top.20],trace="none",
RowSideColors=as.character(cl),
col=colorpanel(50, "blue", "white", "red"))
## LOOCV
preds <- c()</pre>
for (looi in 1:nrow(data)) {
    cur.t <- train(data[-looi,top.20],factor(cl[-looi]),method="knn")</pre>
    preds <- c(preds, predict(cur.t, data[looi, top.20, drop=F]))</pre>
}
table(preds, cl)
```

Example with leave-one-out cross-validation



Even if it is time consuming feature selection should be done within the cross-validation

B. Leave-one-out cross-validation procedure

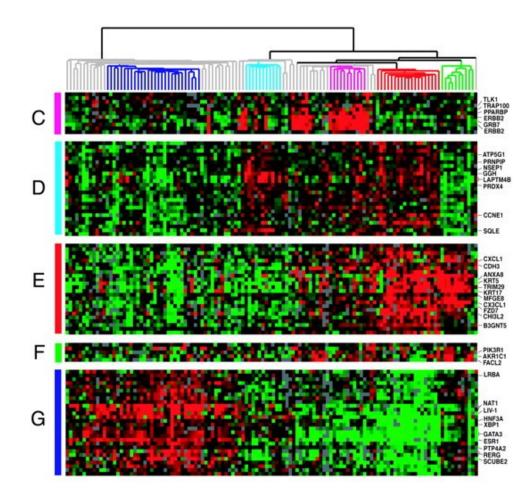
Democratization of machine learning via simple to use GUI interfaces ?

Take home message

- Know what you are doing
- The entire training process should be performed inside cross validation. DO NOT :
 - Select features
 - Normalized
 - Outside cross-validation

Clustering

Hierarchical clustering



Dependent on two things: -Distance metrics -Euclidean -correlation -etc -Agglomeration -complete -mean -ward

How to perform clustering?

Step	Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 5	Cycle 6
Distance matrix	OTUS A B C D E B 2 C 4 4 D 6 6 6 E 6 6 6 4 F 8 8 8 8 8	OTUS AB C D E C 4 D 6 6 E 6 6 4 F 8 8 8 8	OTUS AB C DE C 4 DE 6 6 DE 8 8 8	OTUs ABC DE DE 6 F 8 8	OTUs ABCDE F 8	No new matrix
ldentify smallest D	$A \leftrightarrow B = 2$	$\begin{array}{l} AB \leftrightarrow C = 4 \\ D \leftrightarrow E = 4 \end{array}$	$AB \leftrightarrow DE = 6$ $C \leftrightarrow DE = 6$	ABC↔DE	ABCDE↔F	
Taxa joined	A and B	D and E	AB and C	ABC and DE	ABCDE and F	
Subtree	1 A B	2 D 2 E	1 1 A 2 C	1 1 A 2 C 1 2 D E	1 1 A 1 2 C 1 2 D 4 F	Root 1 2 4
Comments on tree drawing	The distance between A and B is 2 units. A sub- tree is drawn with the branch point halfway between the two. Thus, each branch is 1 unit in length.	Branching done as in Step 1. Because the distance from AB to C is also 4, that pair could have been selected as well.	First a subtree is drawn with AB and C: 2 AB C The the AB subtree is attached to the AB branch at a point equal to the length of the A and B branches.	The tree is first done as in Step 3 with the ABC and DE subtrees replacing the branches.	The tree is now complete but unrooted.	The tree can then be rooted using midpoi rooting which tries t balance all the tips t reach the same end point. Note this is th tree that we started with to build the distance matrix.

Need two things : a distance metric + an agglomerative function. Need to mention both in publications.

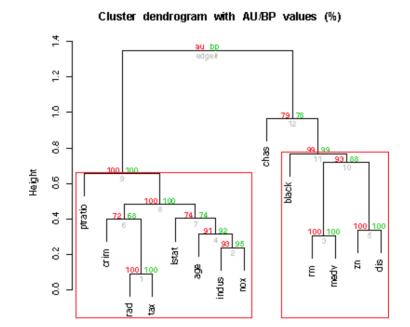
Know how to read it?



deficient models) subtypes. None of these genetically engineered mouse models were representative of ER⁺ breast cancer. Furthermore, the tumours from MMTV-Neu GEM were more similar to human luminal tumours than to the human ERBB2⁺ tumours. DMBA, 7,12-dimethylbenz(a) anthracene. Image reproduced from Ref. 107.

> Modelling breast cancer: one size does not fit all. Tracy Vargo-Gogola and Jeffrey M. Rosen. Nat Rev Cancer. 2007 Sep;7(9):659-72

Need to test the stability of your clustering otherwise it is meaningless



n = 58 5 clusters C_j j: n_j | ave_{i∈Cj} s_i 1: 15 | 0.06 2: 12 | 0.65 3: 10 | 0.33 4: 15 | -0.03 5: 6 | 0.41 -0.5 0.0 0.5 1.0 Silhouette width s_i

Silhouette plot of pam(x = as.dist(1 - cor(cell.data.scale)), k =

Average silhouette width: 0.24

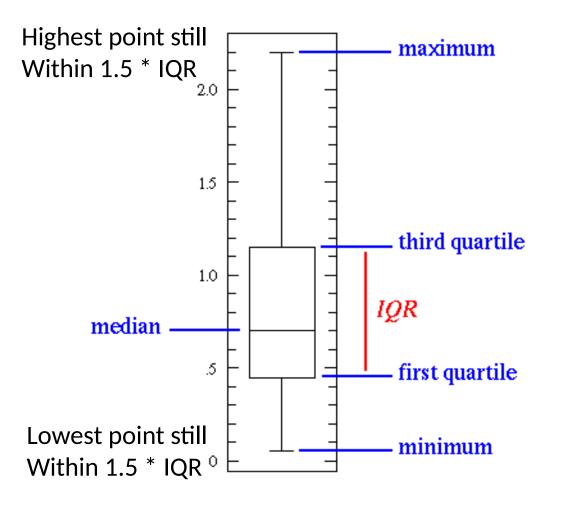
Bootstrapping approach Pvclust How reproducible is the clustering if you repeat it multiple time on boostrapped data?

How similar is a sample compare to members of its own cluster versus members of the closest cluster.

 $s(i)=rac{b(i)-a(i)}{\max\{a(i),b(i)\}}$

Boxplots

Useful to look rapidly at the distribution of your data



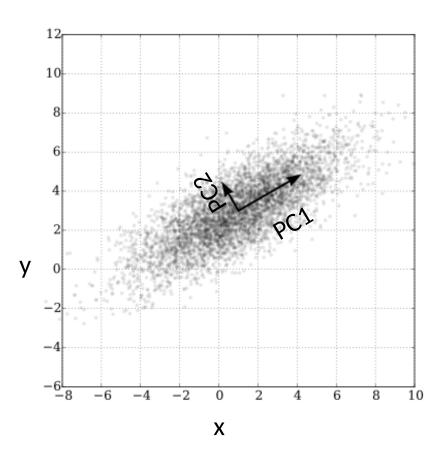
boxplot(data ~ class)

Usually nonparametric stats :

wilcox.test(...) 2 samples
kruskal.test(...) > 2 samples
dunn.test(...) posthic

Principal component analysis (PCA)

Principent component analysis



Transform the data in a way so

the first component get the largest variance

and the second othogonal to the first get the second largest variance, etc

prcomp() in R

You can use PCA to look at your data and also to reduce the dimensionality of your dataset.

