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Machine learning ?



Machine learning is a field of computer science that 
gives computers the ability to learn without being 
explicitly programmed. […]

Machine learning explores the study and construction 
of algorithms that can learn from and make 
predictions on data – such algorithms overcome 
following strictly static program instructions by 
making data-driven predictions or decisions, through 
building a model from sample inputs.

Machine learning is employed in a range of 
computing tasks where designing and programming 
explicit algorithms with good performance is difficult 
or infeasible.

https://www.wired.com/2008/06/pb-theory/



Today companies like Google, which have grown up 
in an era of massively abundant data, don't have to 
settle for wrong models. Indeed, they don't have to 
settle for models at all. […]

This is a world where massive amounts of data and 
applied mathematics replace every other tool that 
might be brought to bear. Out with every theory of 
human behavior, from linguistics to sociology. Forget 
taxonomy, ontology, and psychology. […]

With enough data, the numbers speak for 
themselves.

Scientists are trained to recognize that correlation is 
not causation, that no conclusions should be drawn 
simply on the basis of correlation between X and Y (it 
could just be a coincidence). Instead, you must 
understand the underlying mechanisms that connect 
the two. Once you have a model, you can connect 
the data sets with confidence. Data without a model 
is just noise.



But faced with massive data, this approach to 
science — hypothesize, model, test — is becoming 
obsolete.

Now biology is heading in the same direction. 

There is now a better way. Petabytes allow us to say: 
"Correlation is enough." We can stop looking for 
models. We can analyze the data without hypotheses 
about what it might show. We can throw the numbers 
into the biggest computing clusters the world has 
ever seen and let statistical algorithms find patterns 
where science cannot.

https://xkcd.com/1838/



“Models are opinions embedded in 
mathematics.”

– Cathy O'Neil, "Weapons of Math Destruction"

Machine learning is closely related to (and often 
overlaps with) computational statistics, which also 
focuses on prediction-making through the use of 
computers.

It has strong ties to mathematical optimization, which 
delivers methods, theory and application domains to 
the field.

Machine learning is sometimes conflated with data 
mining, where the latter subfield focuses more on 
exploratory data analysis and is known as 
unsupervised learning. Machine learning can also be 
unsupervised and be used to learn and establish 
baseline behavioral profiles for various entities and 
then used to find meaningful anomalies.



According to the Gartner hype cycle of 2016, 
machine learning is at its peak of inflated 
expectations.

Effective machine learning is difficult because finding 
patterns is hard and often not enough training data is 
available; as a result, machine-learning programs 
often fail to deliver.

What is a statistical model ? One definition
(from Terry Speed)

A statistical model is a set of equations involving random 
variables, with associated distributional assumptions, devised in 
the context of a question and a body of data concerning 
some phenomenon, with which tentative answers can be 
derived, along with measures of uncertainty concerning these 
answers.

questions + data answers + measures of uncertainty

model



Differents families of machine-learning algorithms

• Association rules learning

• Bagging

• Bayesian classifiers

• Bayesian networks

• Boosting

• Deep learning

• Decision trees

• Discriminant analysis

• Generalized linear models

• Genetic algorithms

• Logistic and multinomial 
regression

• Multiple adaptive regression 
splines

• Nearest-neighbours

• Neural networks

• Partial least squares and 
principal component regression

• Random forest

• Reinforcement learning

• Rule-based classifiers

• Stacking

• Support vector machines

• … 

Wikipedia + Journal of Machine Learning Research 15 (2014) 3133-318

Classifying
machine learning tasks



Supervised learning: the system is provided with 
existing inputs and the corresponding (expected) 
outputs, and must learn how to predict the correct 
output for new (future) inputs

Unsupervised learning: the system is provided 
with existing inputs, and it must learn from them in 
order to find structure in the data.

(At least) two different types of machine learning algorithms

Examples of unsupervised learning

• Hierarchical clustering

• K-Means

• Principal component analysis



Machine learning is sometimes conflated with data 
mining, where the latter subfield focuses more on 
exploratory data analysis and is known as 
unsupervised learning. Machine learning can also 
be unsupervised and be used to learn and establish 
baseline behavioral profiles for various entities and 
then used to find meaningful anomalies.

Two typical kind of outputs we want from a ML algorithm

Classification: the inputs belong to two or more 
classes, and the system must be able to assign new 
(future) inputs into one (or more) of these classes

Regression: the outputs are continuous instead of 
discrete.

(regression: a measure of the relation between the mean of a 
variable and the values of other variables)



Classification

Classification

Historically, objects are classified into groups
– periodic table of the elements (chemistry)
– taxonomy (zoology, botany)

Why classify?
– organizational convenience, convenient summary
– prediction
– explanation

Note:  these aims do not necessarily lead to the 
same classification; e.g. SIZE of object in hardware 
store vs. TYPE/USE of object



Example of classification

Example of classification



Typical questions in statistics

Class comparison
« Which measurements are significantly different

between the two (or more) experimental conditions ?» 

Class discovery
(unsupervised learning)

« Can I identify homogeneous subgroups of samples
which are characterized by similar measurements
profiles ?»

Class prediction
(supervised learning)

« Can I find a rule to classify my samples in known
groups using my measurements » ?

Example: patients from which we obtained measurements (e.g. gene expression)

Class discovery

Gene 1

G
en

e 
2

Find natural groups in the data (e.g. sets
of patients with similar gene expression)

Class prediction

Given previous measurements for which
the grouping is known (red and blue),
can we predict the group to which a new
observation belong ?

Gene 1

G
en

e 
2 ?

Class discovery vs class prediction



Examples of class prediction questions in biology and medicine

• Does a patient have a predisposition for a given disease ?

• What is the prognosis for this patient ?

• What will be the response of this patient to a given drug ?

• Is this tumour benign or malign ?

• What type is this tumour ?

• Which treatment should we use ?

• Does this new organism look like anything known already ?



Machine learning and R



CRAN: R packages and task views



Bioconductor

Bioconductor: classification software



Some classification methods and R packages)

• Classification And REgression Training caret

• K-nearest neighbours class

• Linear Discriminant Analysis (LDA) MASS, sda

• Quadratic Discriminant Analysis (QDA) MASS

• Classification trees rpart

• Support Vector Machines (SVM) e1071

• Random Forest randomForest

etc.

Our program

Introduction

Examples of machine-learning algorithms

Nearest-neighbors

Linear discriminant analysis

Assessing the performance of machine-learning 
algorithms

Some more machine learning algorithms

Random Forests

Support Vector Machines



Regression vs Classification

Many classification tools are based on regression
models with a suitable threshold:

Test Result

Call these patients “negative” Call these patients “positive”

Gene 1

G
en

e 
2

Classify everything
on this side as “red”

Classify everything
on this side as “blue”

Threshold

Class prediction: easy case

?



Gene 1

G
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2

Classify everything
on this side as “red”

Classify everything
on this side as “blue”

Threshold

Class prediction: easy case



Gene 1

G
en

e 
2

Class prediction: in practice



Class prediction: in practice

• The two groups are not perfectly separated (and 
the example was still a pretty good case…)

• One variable (gene) is not sufficient to assign 
patients to groups

• With high throughput methods, we may be talking 
about 10’000 measurements instead of 2

Pierre Farmer et al. Identification of molecular apocrine breast
tumours by microarray analysis. Oncogene (2005) 24, 4660–4671 

Blue points represent “oestrogen receptor (ER) status positive” determined
by immunohistochemistry.

Example: classifying breast tumours



Pierre Farmer et al. Identification of molecular apocrine breast
tumours by microarray analysis. Oncogene (2005) 24, 4660–4671 

Blue points represent “oestrogen receptor (ER) status positive” determined
by immunohistochemistry.

Example: classifying breast tumours

?

The k-nearest neighbors algorithm
(k-NN)



Gene 1

G
en

e 
2

Red or blue ?

Example: 3-nearest neighbors

Gene 1

G
en

e 
2

2 red vs 1 blue: the point is assigned to “red”

The 3 nearest neighbors vote



k-nearest neighbors algorithm (k-NN)

1. Choose a value for k

2. Find the k observations in the learning set that are 
closest to the new observation

3. Predict the class by a majority vote

k-nearest neighbors (k-NN)

• Typical values for k: 3 or 5
• Usually determined from the learning data (value 

that produces the "best" result)

• Very simple method, with surprisingly good 
performance

• Also usable for regression (average values instead 
of voting)



Example

1-NN



3-NN

5-NN



7-NN

9-NN



51-NN

Linear discriminant analysis



Linear Discriminant Analysis

• Suggested by R.A. Fisher in 1935

• Procedure to find a linear combination of the 
observed variables that best separates 
(discriminates) two classes of objects.

• Using the “new variable”, objects from the same 
class are close together, and objects from a 
different class are further away.

• Straightforward to calculate

• Can easily be extended to more than two classes

• Similar idea to Principal Component Analysis 
(PCA) (unsupervised method)

• Often forgotten in favour of PCA

Gene 1

G
en

e 
2

Classify everything
on this side as “red”
High value of
the discriminant

Classify everything
on this side as “blue”

Low value of
the discriminant

Threshold

Discriminant = Gene 1

Back to the easy case



Gene 1
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Linear Discriminant Analysis: Example

The two groups are well separated

Neither Gene1 nor Gene2 are able to discriminate between the 
two categories

Linear Discriminant Analysis: Example

However, the linear combination   L = Gene1 + Gene2
discriminates well between the two groups:

• Blue points tend to have smaller L values
• Red points tend to have bigger L values

Gene 1

G
en

e 
2



Linear Discriminant Analysis: Example

A threshold is set in between the mean of the two groups:
• Points with a value L above the threshold are classified as red
• Points with a value L below the threshold are classified as blue 

Threshold
Gene 1

G
en

e 
2

What does LDA do ?



Back to our earlier dataset

Univariate summary: density plots



Linear Discriminant analysis using MASS

> library(MASS)

> class <- lda( group ~ x1 + x2)

> class

Call:

lda(group ~ x1 + x2)

Prior probabilities of groups:

1     2 

0.524 0.476 

Group means:

x1        x2

1 0.6346950 0.6808438

2 0.3628336 0.3359276

Coefficients of linear discriminants:

LD1

x1 -3.647709

x2 -4.507556

Linear Discriminant analysis using MASS

> library(MASS)

> class <- lda( group ~ x1 + x2)

> class

Call:

lda(group ~ x1 + x2)

Prior probabilities of groups:

1     2 

0.524 0.476 

Group means:

x1        x2

1 0.6346950 0.6808438

2 0.3628336 0.3359276

Coefficients of linear discriminants:

LD1

x1 -3.647709

x2 -4.507556



Linear Discriminant analysis using MASS

> library(MASS)

> class <- lda( group ~ x1 + x2)

> class

Call:

lda(group ~ x1 + x2)

Prior probabilities of groups:

1     2 

0.524 0.476 

Group means:

x1        x2

1 0.6346950 0.6808438

2 0.3628336 0.3359276

Coefficients of linear discriminants:

LD1

x1 -3.647709

x2 -4.507556

Linear Discriminant analysis using MASS

> library(MASS)

> class <- lda( group ~ x1 + x2)

> class

Call:

lda(group ~ x1 + x2)

Prior probabilities of groups:

1     2 

0.524 0.476 

Group means:

x1        x2

1 0.6346950 0.6808438

2 0.3628336 0.3359276

Coefficients of linear discriminants:

LD1

x1 -3.647709

x2 -4.507556



Assessing performance



Cancer No Total

Cancer 50 0 50

No cancer 3 63 66

Total 53 63 116
T
ru
th

Prediction

Results

Predicted class

Cancer Healthy Total

True
class

Cancer 50 0 50

Healthy 3 63 66

Total 53 63 116



Confusion matrix

Predicted class

Cancer Healthy

True
class

Cancer 50 0

Healthy 3 63

Confusion matrix

Predicted class

Cancer Healthy

True
class

Cancer 50 0

Healthy 3 63



Confusion matrix: what we want to optimize

Predicted class

Cancer Healthy

True
class

Cancer 50 0

Healthy 3 63

Total number of errors: 3 + 0 = 3

Cancer No Total

Cancer 50 0 50

No cancer 3 63 66

Total 53 63 116

T
ru
th

Prediction



Different types of errors

Predicted class

Cancer Healthy

True
class

Cancer 50 0

Healthy 3 63

False negativeTrue positive

False positive True negative

Different types of errors: true and false positive rates

Predicted class

Cancer Healthy

True
class

Cancer 50 0

Healthy 3 63

FNTP

FP TN

True positive rate:             TP 
(sensitivity)                    TP + FN

False positive rate: FP 
(1 – specificity)              FP + TN



Different types of errors: true and false positive rates

Predicted class

Cancer Healthy

True
class

Cancer 50 0

Healthy 3 63

FNTP

FP TN

True positive rate:             TP         = 100%
(sensitivity)                    TP + FN

False positive rate: FP         =  4.6%
(1 – specificity)              FP + TN

Different types of errors: PPV and NPV

Predicted class

Cancer Healthy

True
class

Cancer 50 0

Healthy 3 63

FNTP

FP TN

Positive predictive value:       TP       
(PPV, precision)                   TP + FP

Negative predictive value:     TN        
(NPV)                                    TN + FN



Different types of errors: PPV and NPV

Predicted class

Cancer Healthy

True
class

Cancer 50 0

Healthy 3 63

FNTP

FP TN

Positive predictive value:       TP         =   94%
(PPV, precision)                   TP + FP

Negative predictive value:     TN         = 100%
(NPV)                                    TN + FN

Back to the 1-NN classifier



Results: 1-NN

Predicted class

Blue Red

True
class

Blue 131 0

Red 0 119

Results: 3-NN and 5-NN

Predicted class

Blue Red

True
class

Blue 127 4

Red 4 115



Results: 7-NN

Predicted class

Blue Red

True
class

Blue 127 6

Red 4 113

Results: 9-NN

Predicted class

Blue Red

True
class

Blue 127 9

Red 4 110



Results: 51-NN

Predicted class

Blue Red

True
class

Blue 121 3

Red 10 116

Some rules for assessment

Each observation can either be used for fitting the 
model or assessing it (but not both !)

You can use an observation as many times as you 
like for exploration/learning, but you can only use it 
once for confirmation. If you use it more than once, 
you are learning again (and not assessing).

To assess a model, you must use data independent 
of the data you used to train the model – otherwise 
you will be over-optimistic.

Inspired from "R for Data Science", Garrett Grolemund and Hadley Wickham.
http://r4ds.had.co.nz/model-intro.html



Confirmation data

Ideally: a independent dataset

Confirmation data

More realistically: randomly split your data in two 
pieces before you begin using it:

50% will be used to train the model (learning set or
training set) 

50% will be used to test the model (testing set)



An even better approach (suggested by H. Wickham)

Split your data into three pieces before you begin the 
analysis:

• 60% of your data goes into a training set. You're 
allowed to do anything you like with this data.

• 20% goes into a query set. You can use this data 
to compare models by hand, but you're not allowed 
to use it as part of an automated process.

• 20% is held back for a test set. You can only use 
this data ONCE, to test your final model.

An even better approach (suggested by H. Wickham)

This partitioning allows you to explore the training 
data, occasionally generating candidate hypotheses 
that you check with the query set. When you are 
confident you have the right model, you can check it 
once with the test data.



Bias-variance trade-off

Model complexity

Error

Variance

Bias

Total

Bias: model misses important features of the underlying model (underfitting)
Variance: model is sensitive to noise in the data (overfitting)

Cancer No Total

Cancer 50 0 50

No cancer 3 63 66

Total 53 63 116

T
ru
th

Prediction



Processing trumps biology

Slide courtesy of Keith Baggerly



Two peaks that allow correct classification of all samples

Two NOISE peaks that allow correct classification of all samples



Gene 1

G
en
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2

Classify everything in this
region as red

Caveats: Overfitting

Perfect classifier for this data

But probably not so good with any new data

Caveats: Overfitting

• It is easy to create classifiers which fits the training data 
perfectly

• It is harder to find classifiers which still works as well when 
validated on new data

• A classifier must ALWAYS be tested on data independent 
from the one used to actually train the classifier.

• This is particularly important in cases where we have

– Few samples

– Many different measurements

• If not careful, it is always possible to find a classifier that 
works well for your training data !



Training

A zebra ! A giraffe !Labels :

Discrimination

Test : A zebra or giraffe?

I predict a giraffePredicted Label :

Training

A zebra A giraffeLabels:

Discrimination



Discrimination: example of overfitting (and confounding factor)

Training

A zebra ! A giraffe !Labels :

Test : A zebra or giraffe?

I predict a zebra !Predicted Label :

How to avoid overfitting ?

Build your classifier using a dataset.

Use a second, independent, dataset to 
assess the performance of your classifier.

(either a really independent dataset or a 
training/learning split)

But if your dataset is too small to be 
partitioned, you have a problem…



3-fold Cross validation

Learning Learning Testing

Learning Testing Learning

Testing Learning Learning

Error

Error

Error

Average error

Cross-validation: «V-fold cross validation» (CV)

The learning set is divided randomly into V subsets of 
(nearly) equal size.

V Classifiers are built leaving each set out in turn; the 
test set error rate is computed on the set left out, and 
averaged.

Special case: «leave-one-out cross-validation»: the 
test set consists of only one sample.



Limitation of cross-validation

• Cross validation does not provide a single model

• Each step produces a different model

• Cross-validation allows you to assess the 
performance of a method for building a classifier 
rather than a single model

• Very useful for testing parameters

• Example: how many neighbours in the kNN 
algorithm ?

What does it mean when our
classification depends on a 

continuous score ?



Back to our LDA example

Graphical representation

Distribution of scores for
negative results Distribution of scores for

positive results

The two distributions overlap, so that it is impossible to use this score to
perfectly discriminate between positive and negative results.

Score

TPTN

FN FP
Chosen

threshold

Observations classified
as “positive”

Observations classified
as “negative”



Specific Example

Test Result

Patients with 
the disease

Patients without 
the disease

Test Result

Call these patients “negative” Call these patients “positive”

Threshold



Test Result

Call these patients “negative” Call these patients “positive”

without the disease with the disease

True Positives

Some definitions ...

Test Result

Call these patients “negative” Call these patients “positive”

False 
PositivesTest Result

without the disease with the disease



Test Result

Call these patients “negative” Call these patients “positive”

True 
negatives

Test Result
without the disease with the disease

Test Result

Call these patients “negative” Call these patients “positive”

False 
negatives

Test Result
without the disease with the disease



Test Result

‘‘-’’ ‘‘+’’

Moving the Threshold: right

Test Result
without the disease with the disease

Moving the Threshold: left

Test Result

‘‘+’’‘‘-’’

Test Result
without the disease with the disease



Receiver Operating 
Characteristic (ROC) curves

ROC curves

• Started in electronic signal detection theory 
(1940s - 1950s)

• Has become very popular in biomedical 
applications, particularly radiology and 
imaging

• Also used in machine learning applications 
to assess classifiers

• Can be used to compare tests/procedures
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Best Test Worst test
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The distributions overlap 
completely

ROC curve extremes
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AUC for ROC curves



Area under ROC curve (AUC) 

• Overall measure of test performance

• Comparisons between two tests based on 
differences between (estimated) AUC

• For continuous data, AUC equivalent to Mann-
Whitney U-statistic (nonparametric test of 
difference in location between two populations)

Problems with AUC

• No clinically relevant meaning

• A lot of the area is coming from the range of large 
false positive values, no one cares what’s going 
on in that region (need to examine restricted 
regions)

• The curves might cross, so that there might be a 
meaningful difference in performance that is not 
picked up by AUC



Examples using ROC analysis

• Threshold selection for ‘tuning’ an already trained 
classifier (e.g. neural nets)

• Defining signal thresholds in DNA microarrays 
(Bilban et al.)

• Comparing test statistics for identifying differentially 
expressed genes in replicated microarray data 
(Lönnstedt and Speed)

• Assessing performance of different protein 
prediction algorithms (Tang et al.)

• Inferring protein homology (Karwath and King)

Example: Homology Induction ROC





Quadratic discriminant 
analysis



Random Forests

Decision trees

Age > 50

No Yes

Smoker

No Yes

SNP 13 = A

No

+ ‐ ‐ BMI > 25

Yes

No

+ ‐

Yes



library(rpart)

fit = rpart(as.factor(group) ~ x1 + x2)

> fit

n= 250 

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 250 119 1 (0.52400000 0.47600000)  

2) x2>=0.6112646 99  10 1 (0.89898990 0.10101010)  

4) x2>=0.7299728 71   1 1 (0.98591549 0.01408451) *

5) x2< 0.7299728 28   9 1 (0.67857143 0.32142857)  

10) x1>=0.4927158 14   0 1 (1.00000000 0.00000000) *

11) x1< 0.4927158 14   5 2 (0.35714286 0.64285714) *

3) x2< 0.6112646 151  42 2 (0.27814570 0.72185430)  

6) x1>=0.7148586 40   3 1 (0.92500000 0.07500000) *

7) x1< 0.7148586 111   5 2 (0.04504505 0.95495495) *



Random forest
Data

…

Tree 1 Tree 2 Tree n

Vote







Conclusion:
which algorithm to use ?

Differents families of machine-learning algorithms

Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?
Fernandez-Delgado et al, Journal of Machine Learning Research 15 (2014) 3133-318


