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About BCF-SIB

The Bioinformatics Core Facility (BCF) is a research and service group within the

i i ioformati . Our core competence and activities reside in
the interface between biomedical sciences, statistics and computation,
particularly in the application of high-throughput omics technologies, such as
gene-expression microarray, to problems of clinical importance, such as
development of cancer biomarkers. The BCF offers consulting, teaching and
training, data analysis support and research collaborations for both academic and
industrial partners.

History
The BCF was initially founded in 2002 as a data analysis support group within the

NCCR Molecular Oncology, serving mostly biomedical research groups in
Lausanne, Switzerland, mainly at the Institute of Experimental Cancer Research
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Teaching and Training

Upcoming  Past

The BCF provides researchers with educational support and practical training in
the use of software and analysis methods. This includes the organization of
seminars, workshops, statistical software training courses, and teaching in the
regular curriculum at the University of Geneva, the University of Lausanne and
the EPFL.

The range of topics we have covered includes:

* Introduction to statistics in biomedical sciences
* R statistical software and BioConductor
* Transcriptomics analysis (microarray analysis, RNAseq and qPCR)

These courses are available at both introductory or advanced level. Most courses
are taught over a full week; some specialized workshops can be organized over
one day, including:

+ General statistics in biomedical sciences (for people who want to
understand statistics but won't use them directly)

« Multivariate Analysis

« Integration of data from several sources

+ Graphical representation of life science data

« Data analysis and reproducible research

We can also offer these courses "“in-house”, or develop custom courses tailored to
your needs and level, according to your requirements. Please contact stat@isb-
sib.ch if you have any question.

Upcoming

Our courses upcoming courses are announced on the SIB education web page.
You can also sign up to remain informed about the education activities at the SIB.

The organization of our courses depends strongly on the interest of potential
participants. If you have any question or suggestion, please contact stat@isb-
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Services

SIB Biostat Teaching Consulting Analysis Collaboration Embedding

SIB Biostatistics Support

The BCF provides a consulting service on biostatistics matters, on a mandate
from (and partially funded by) the SIB and the Swiss Confederation. This service
is aimed at all people active in life sciences in Switzerland. It includes training
and teaching, consulting, data analysis, and research collaboration, with a focus
on high-throughput technologies in genomics or proteomics.

The service can be provided on a collaborative basis or for a fee, depending on
the circumstances: among other factors, the origin and goals of the request
(academy or industry), the amount of work involved and our current workload
will be taken into account in determining the service provided. For academic
groups that require long-term support, we strongly advise to start a discussion at
the grant-submission step, and to include a request for a part-time
bioinformatician in the grant. By pooling such part-time positions, the BCF is able
to offer a longer-term dedicated support.

Consulting usually starts with a short meeting discussing the questions asked.
Often, this is enough to help the researcher solve the problem. In other cases, the
meeting allows us to define the different possibilities for a forthcoming
collaboration.

For more information, please contact us at stat@isb-sib.ch or by calling Frédéric
Schitz at +41 21 692 40 94 or Charlotte Soneson at +41 21 692 40 91.

Teaching and Training

We provide short courses and workshops. as well as longer but low-intensity
semester courses. More information about recent and upcoming courses is
available on the SIB education web page. The Teaching page holds information
about courses up to 2011. You can also sign up to remain informed about the
education activities at the SIB.

http://bcf.isb-sib.ch/Services.html




Machine learning ?

WIiKIPEDIA
The Free Encyclopedia

Main page

Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction

Help

About Wikipedia
Community portal
Recent changes
Contact page

Tools

What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Wikidata item
Cite this page

Print/export

Create a book
Download as PDF
Printable version

In other projects

Article Talk

& Not logged in Talk Contributions Create account Login

Machine learning

From Wikipedia, the free encyclopedia

For the journal, see Machine Learning (journal).

Machine learning is a field of computer science that gives computers
the ability to learn without being explicitly programmed.!1]

Arthur Samuel, an American pioneer in the field of computer gaming and
artificial intelligence, coined the term "Machine Learning" in 1959 while at
1BMI2], Evolved from the study of pattern recognition and computational
learning theory in artificial intelligence,!*! machine learning explores the
study and construction of algorithms that can learn from and make
predictions on datal*] - such algorithms overcome following strictly static
program instructions by making data-driven predictions or decisions, 512
through building a model from sample inputs. Machine learning is
employed in a range of computing tasks where designing and
programming explicit algorithms with good performance is difficult or
infeasible; example applications include email filtering, detection of
network intruders or malicious insiders working towards a data breach,[®!
optical character recognition (OCR),!7] learning to rank, and computer
vision.

Machine learning is closely related to (and often overlaps with)
computational statistics, which also focuses on prediction-making through
the use of computers. It has strong ties to mathematical optimization,
which delivers methods, theory and application domains to the field.
Machine learning is sometimes conflated with data mining,/®! where the
latter subfield focuses more on exploratory data analysis and is known as
unsupervised learning.!*}¥i9] Machine learning can also be
unsupervised!!®! and be used to learn and establish baseline behavioral
profiles for various entities!!1] and then used to find meaningful

anamaliac
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Machine learning and
data mining

Problems

Classification » Clustering - Regression -
Anomaly detection « Association rules -
Reinforcement learning -
Structured prediction - Feature engineering -
Feature learning + Online learning «
Semi-supervised leaming «
Unsupervised learning + Leaming to rank
Grammar induction

Supervised learning
(classification « regression)

Decision trees - Ensembles (Bagging,
Boosting, Random forest) « k-NN »
Linear regression  Naive Bayes «

Neural networks - Logistic regression -

Perceptron - Relevance vector machine (RVM)
+ Support vector machine (SVM)

Clustering
BIRCH « CURE - Hierarchical - k-means -

Expectation-maximization (EM) -
DBSCAN - OPTICS - Mean-shift

Dimensionality reduction




Machine learning is employed in a range of
computing tasks where designing and programming
explicit algorithms with good performance is difficult
or infeasible.

2 MiIREeR The End of Theory: The Data Deluge Makes the Scientific Method Obsolete

SHARE THE END OF L
THEORY: THE MAGAZINE /o,
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https://lwww.wired.com/2008/06/pb-theory/




Today companies like Google, which have grown up
In an era of massively abundant data, don't have to
settle for wrong models. Indeed, they don't have to
settle for models at all. [...]

This is a world where massive amounts of data and
applied mathematics replace every other tool that
might be brought to bear. Out with every theory of
human behavior, from linguistics to sociology. Forget
taxonomy, ontology, and psychology. [...]

With enough data, the numbers speak for
themselves.

Scientists are trained to recognize that correlation is
not causation, that no conclusions should be drawn
simply on the basis of correlation between X and Y (it
could just be a coincidence). Instead, you must
understand the underlying mechanisms that connect
the two. Once you have a model, you can connect
the data sets with confidence. Data without a model
IS just noise.




But faced with massive data, this approach to
science — hypothesize, model, test — is becoming
obsolete.

Now biology is heading in the same direction.

There is now a better way. Petabytes allow us to say:
"Correlation is enough." We can stop looking for
models. We can analyze the data without hypotheses
about what it might show. We can throw the numbers
into the biggest computing clusters the world has
ever seen and let statistical algorithms find patterns
where science cannot.

THIS 1S YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE LIRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

https://xkcd.com/1838/




“Models are opinions embedded In
mathematics.”

— Cathy O'Neil, "Weapons of Math Destruction

Machine learning is closely related to (and often
overlaps with) computational statistics, which also
focuses on prediction-making through the use of
computers.

It has strong ties to mathematical optimization, which
delivers methods, theory and application domains to
the field.

Machine learning is sometimes conflated with data
mining, where the latter subfield focuses more on
exploratory data analysis and is known as
unsupervised learning. Machine learning can also be
unsupervised and be used to learn and establish
baseline behavioral profiles for various entities and
then used to find meaningful anomalies.




According to the Gartner hype cycle of 2016,
machine learning is at its peak of inflated
expectations.

Effective machine learning is difficult because finding
patterns is hard and often not enough training data is
available; as a result, machine-learning programs
often fail to deliver.

What is a statistical model ? One definition
(from Terry Speed)

A statistical model is a set of equations involving random
variables, with associated distributional assumptions, devised in
the context of a question and a body of data concerning
some phenomenon, with which can be

derived, along with measures of uncertainty concerning these
answers.

questions + data —— + measures of uncertainty
model




Differents families of machine-learning algorithms

Association rules learning
Bagging

Bayesian classifiers
Bayesian networks
Boosting

Deep learning

Decision trees
Discriminant analysis
Generalized linear models
Genetic algorithms

Logistic and multinomial
regression

Wikipedia + Journal of Machine Learning Research 15 (2014) 3133-318

Multiple adaptive regression
splines

Nearest-neighbours

Neural networks

Partial least squares and
principal component regression

Random forest
Reinforcement learning
Rule-based classifiers
Stacking

Support vector machines

Classifying
machine learning tasks




(At least) two different types of machine learning algorithms

Supervised learning: the system is provided with
existing inputs and the corresponding (expected)
outputs, and must learn how to predict the correct
output for new (future) inputs

Unsupervised learning: the system is provided
with existing inputs, and it must learn from them in
order to find structure in the data.

Examples of unsupervised learning

» Hierarchical clustering
 K-Means
* Principal component analysis




Machine learning is sometimes conflated with data
mining, where the latter subfield focuses more on
exploratory data analysis and is known as
unsupervised learning. Machine learning can also
be unsupervised and be used to learn and establish
baseline behavioral profiles for various entities and
then used to find meaningful anomalies.

Two typical kind of outputs we want from a ML algorithm

Classification: the inputs belong to two or more
classes, and the system must be able to assign new
(future) inputs into one (or more) of these classes

Regression: the outputs are continuous instead of
discrete.

(regression: a measure of the relation between the mean of a
variable and the values of other variables)




Classification

Classification

Historically, objects are classified into groups

— periodic table of the elements (chemistry)
— taxonomy (zoology, botany)

Why classify?
— organizational convenience, convenient summary
— prediction
— explanation

Note: these aims do not necessarily lead to the
same classification; e.g. SIZE of object in hardware
store vs. TYPE/USE of object




Example of classification

Periodic Table of Elements

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). hitp:/fwww.ptable.com/
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Typical questions in statistics

Class comparison

« Which measurements are significantly different
between the two (or more) experimental conditions ?»

Class discovery

(unsupervised learning)

« Can | identify homogeneous subgroups of samples
which are characterized by similar measurements

profiles ?»
Class prediction

(supervised learning)

« Can | find a rule to classify my samples in known
groups using my measurements » ?

Class discovery vs class prediction

Example: patients from which we obtained measurements (e.g. gene expression)

Class discovery Class prediction
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Find natural groups in the data (e.g. sets t(;’]'ven previous lineasuren:jentsdfglr which
of patients with similar gene expression) e grouping is known (red and blue),

can we predict the group to which a new
observation belong ?




Examples of class prediction questions in biology and medicine

Does a patient have a predisposition for a given disease ?
What is the prognosis for this patient ?

What will be the response of this patient to a given drug ?
Is this tumour benign or malign ?

What type is this tumour ?

Which treatment should we use ?

Does this new organism look like anything known already ?

VOLUME 30 - NUMBER 12 - APRIL 20 2012

Identification of a Poor-Prognosis BRAF-Mutant-Like
Population of Patients With Colon Cancer

Vlad Popovici, Eva Budinska, Sabine Tejpar, Scott Weinrich, Heather Estrella, Graeme Hodgson,
Eric Van Cutsem, Tao Xie, Fred T. Bosman, Amaud D. Roth, and Mauro Delorenzi
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Purpose
Our purpose was development and assessment of a BRAF-mutant gene expression signature for
colon cancer (CC) and the study of its prognostic implications.

Materials and Methods

A set of 668 stage Il and lll CC samples from the PETACC-3 (Pan-European Trails in Alimentary Tract
Cancers) clinical trial were used to assess differential gene expression between ¢.1799T>A (p.V600E)
BRAF mutant and non-BRAF, non-KRAS mutant cancers (double wild type) and to construct a gene
expression-based classifier for detecting BRAF mutant samples with high sensitivity. The classifier was
validated in independent data sets, and survival rates were compared between classifier positive and
negative tumors.

Results
A 64 gene-based classifier was developed with 96% sensitivity and 86% specificity for detecting

BRAF mutant tumors in PETACC-3 and independent samples. A subpopulation of BRAF wild-type
patients (30% of KRAS mutants, 13% of double wild type) showed a gene expression pattern and
had poor overall survival and survival after relapse, similar to those observed in BRAF-mutant
patients. Thus they form a distinct prognostic subgroup within their mutation class.

Conclusion
A characteristic pattern of gene expression is associated with and accurately predicts BRAF

mutation status and, in addition, identifies a population of BRAF mutated-like KRAS mutants and
double wild-type patients with similarly poor prognosis. This suggests a common biology between
these tumors and provides a novel classification tool for cancers, adding prognostic and biologic
information that is not captured by the mutation status alone. These results may guide therapeutic
strategies for this patient segment and may help in population stratification for clinical trials.

Machine learning and R




CRAN: R packages and task views

[@ cran.r-project.org V{E‘] [V Q] o ﬁ.
CRAN Task Views X

Bayesian Bayesian Inference

ChemPhys Chemometrics and Computational Physics

ClinicalTrials Clinical Trial Design, Monitoring, and Analysis
CRAN Cluster Cluster Analysis & Finite Mixture Models
Mirrors DifferentialEquations Differential Equations
What's new? Distributions Probability Distributions
Task Views on i Computational Econometrics
sgarch Environmetrics Analysis of Ecological and Environmental Data
About R ExperimentalDesign Design of Experiments (DoE) & Analysis of
R Homepage Experimental Data
The R Journal Finance Empirical Finance
Software Genetics Statistical Genetics
R Sources Graphics Graphic Displays & Dynamic Graphics & Graphic
R Binaries Devices & Visualization

m:! ] HighPerformanceComputing High-Performance and Parallel Computing with R

Machinel.earning Machine Learning & Statistical Learning

Documentation Medicallmaging Medical Image Analysis

Manuals e S

FAQ Multivariate Multivariate Statistics

Contributed Naturall.anguageProcessing Natural Language Processing
OfficialStatistics Official Statistics & Survey Methodology
Optimization Optimization and Mathematical Programming
Pharmacokinetics Analysis of Pharmacokinetic Data
Phylogenetics Phylogenetics, Especially Comparative Methods

l@ cran.r-project.org/web/views/MachineLearning. html v \Sj] [V Q] EEI :ﬁ.

CRAN Task View: Machine Learning & Statistical Learning

Maintainer: Torsten Hothorn

Contact: Torsten.Hothorn at R-project.org N

Version: 2012-10-30 )

Several add-on packages implement ideas and methods developed at the borderline between

computer science and statistics - this field of research is usually referred to as machine learning.
The packages can be roughly structured into the following topics:

e Neural Networks : Single-hidden-layer neural network are implemented in package nnet
(shipped with base R). Package RSNNS offers an interface to the Stuttgart Neural Network
Simulator (SNNS).

» Recursive Partitioning : Tree-structured models for regression, classification and survival
analysis, following the ideas in the CART book, are implemented in rpart (shipped with base R)
and free. Package rpart is recommended for computing CART-like trees. A rich toolbox of
partitioning algorithms is available in Weka , package RWeka provides an interface to this
implementation, including the J4.8-variant of C4.5 and M5. The Cubist package fits rule-based
models (similar to trees) with linear regression models in the terminal leaves, instance-based
corrections and boosting. The C50 package can fit C5.0 classification trees, rule-based
models, and boosted versions of these.

Two recursive partitioning algorithms with unbiased variable selection and statistical
stopping criterion are implemented in package party. Function ctree() is based on
non-parametrical conditional inference procedures for testing independence between
response and each input variable whereas mob() can be used to partition parametric models.
Extensible tools for visualizing binary trees and node distributions of the response are
available in package party as well.




Bioconductor

L [ﬁ www bioconductor.org
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Bioconductor

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

About
Bioconductor

Bioconductor provides tools for the
analysis and comprehension of
high-throughput genomic data.
Bioconductor uses the R statistical
programming language, and is open source
and open development. k has two releases
each year, 510 software packages, and an

Home Install

Use Bioconductor for...

< Microarays
Import Attymetrix, llumina, Mimblegen, Agilent, and
other platforms. Perform quality assessment,

differential expression, clustering,

classification, gene set envict genetical
9 and other workflows for ion,
exon, copy number, SNP, methylation and other
assays. Access GEO, ArrayExpress, Biomart,
UCSC, and other community resources.

O

Developers

Sequence Data

Import fasta, fastq, ELAND, MAQ, BWA, Bowtie,
BAM, gif, bed, wig, and other sequence formats,
Trim, transform, align, and manipulate sequences.
Perform quality ChiP-seq, diff
expression, RNA-seq, and other workflows.
Access the Sequence Read Archive.

Transcription Factors
Find candidate binding sites for known

active user community. Bloconductor is < Variants transcription factors via sequence matching.
also as an Amazon Machine Read and write VCF files. Identify structural
Image (AMI). lecation of variants and compute amino acid
coding changes for non-synonymous variants.
, Use SFT and PolyPhen database packages to
predict consequence of amino acid coding
changes.
@ Mailing Lists » Evenls a News
Hext Generation Data Analysis Worksho, Bioconductor 2.11 released
Bioconductor: classification software
L) www.bioconductor.org/packages/release/BiocViews. htmi#___Classification L J“ 3 v biocviews Q‘ @ X

Bioconductor

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

Developers

Home » BiocViews
All Packages
Bioconductor version 2.11 (Release) Packages
7 Sotiware (608) Package Maintainer Titde
- Annotation (82) BioSegClass LiHong Classification for Biological Sequences
- AssayDomains (236) D and val of tests from high
Daniel Kosztyla gy
~ AssayTechnologies (357) e data
7 Bioinformatics (394) Clonality Irina Ostrovnaya Clonality testing
Classification (33) clst Noah Hotfman Classification by local similarity threshold
Clustering (52) clstutils Moah Hotfman Tools for performing taxonomic assignment.
= Enrichment (14) CMA Christoph Bernau  Synthesis of microarray-based classification
MutipleComparisons (44 ¢ Fai
i “9) CRimage ';'::“ Falmez0er,  Crumage a package to classify celis and calculate tumour cellarky
Preprocessing (91) clc Antoine Lucas Cluster and Tree Conversion.
QualityControl (54) Dirichlethultinomial Martin Morgan [Dirichiet- Mixture Model Machine Learning for Microbiome Data.
- Sequencehlatching (14) eisa Gabor Csardi o data wia the kerative Signature
TimeCourse (17) ExpressionView Gabor Csardi Visualize biclusters identified in gene expression data
= Visualization (102) lastgeq Guenter Klambauer  fastseg - a fast segmentation algorithm
» BiologicalDomains (80) | flowPhyto David W. Schruth  Methods for Continuous Flow Cytometry
& Infrastructire (1671 b f of KEGG pathway ¥p for individual genes based on InterPro
genelpathway  Holger Froehlich domain signatures




Some classification methods and R packages)

« Classification And REgression Training caret
» K-nearest neighbours class
* Linear Discriminant Analysis (LDA) MASS, sda
» Quadratic Discriminant Analysis (QDA) MASS
» Classification trees rpart
» Support Vector Machines (SVM) el071
 Random Forest randomForest
etc.

Our program

Introduction

Examples of machine-learning algorithms
Nearest-neighbors
Linear discriminant analysis

Assessing the performance of machine-learning
algorithms

Some more machine learning algorithms
Random Forests

Support Vector Machines




Regression vs Classification

Many classification tools are based on regression
models with a suitable threshold:

Call these patients “negative” Call these patients “positive”

Test Result

Class prediction: easy case

Classify everything * > Classify everything

on this side as “blue” on this side as “red”
Threshold
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Class prediction: easy case
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Class prediction: in practice
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Class prediction: in practice

* The two groups are not perfectly separated (and
the example was still a pretty good case...)

« One variable (gene) is not sufficient to assign
patients to groups

« With high throughput methods, we may be talking
about 10’000 measurements instead of 2

Example: classifying breast tumours
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Blue points represent “oestrogen receptor (ER) status positive” determined
by immunohistochemistry.

Pierre Farmer et al. Identification of molecular apocrine breast
tumours by microarray analysis. Oncogene (2005) 24, 4660-4671




Example: classifying breast tumours
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Blue points represent “oestrogen receptor (ER) status positive” determined
by immunohistochemistry.

Pierre Farmer et al. Identification of molecular apocrine breast
tumours by microarray analysis. Oncogene (2005) 24, 4660-4671

The k-nearest neighbors algorithm
(K-NN)




Example: 3-nearest neighbors

Gene 2
[ )
[ )
[ ]
[ )
(]

Red or blue ?

The 3 nearest neighbors vote

Gene 2
[ ]
[ ]
([ ]
[ )
]
()
@

° o... ... /
o..o..:.o.. ° ’

Gene 1

2 red vs 1 blue: the point is assigned to “red”




k-nearest neighbors algorithm (k-NN)

. Choose a value for k

. Find the k observations in the learning set that are
closest to the new observation

. Predict the class by a majority vote

k-nearest neighbors (k-NN)

Typical values for k: 3 or5

Usually determined from the learning data (value
that produces the "best" result)

Very simple method, with surprisingly good
performance

Also usable for regression (average values instead
of voting)




Example
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3-NN

5-NN




7-NN

9-NN




51-NN

Linear discriminant analysis




Linear Discriminant Analysis

» Suggested by R.A. Fisher in 1935

 Procedure to find a linear combination of the
observed variables that best separates
(discriminates) two classes of objects.

 Using the “new variable”, objects from the same
class are close together, and objects from a
different class are further away.

« Straightforward to calculate
» Can easily be extended to more than two classes

« Similar idea to Principal Component Analysis
(PCA) (unsupervised method)

» Often forgotten in favour of PCA

Back to the easy case
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Classify everything * : > Classify everything
on this side as “blue” on this side as “red”
Low value of Threshold High value of
the discriminant the discriminant

Discriminant = Gene 1




Linear Discriminant Analysis: Example

Gene 2
°
°

The two groups are well separated

Neither Genel nor Gene2 are able to discriminate between the
two categories

Linear Discriminant Analysis: Example
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However, the linear combination L = Genel + Gene?2

discriminates well between the two groups:

« Blue points tend to have smaller L values
* Red points tend to have bigger L values




Linear Discriminant Analysis: Example
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Threshold

Athreshold is set in between the mean of the two groups:
* Points with a value L above the threshold are classified as red
* Points with a value L below the threshold are classified as blue

What does LDA do ?




Back to our earlier dataset
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Linear Discriminant analysis using MASS

> library(MASS)

> class <- Ida( group ~ x1 + x2)
> class

Call:

Ida(group ~ x1 + x2)

Prior probabilities of groups:
1 2
0.524 0.476

Group means:

x1 X2
1 0.6346950 0.6808438
2 0.3628336 0.3359276

Coefficients of linear discriminants:
LD1

x1 -3.647709

X2 -4.507556

Linear Discriminant analysis using MASS

> library(MASS)

> class <- lda( group ~ x1 + x2)
> class

call: '
Ida(group ~ x1 + x2)

e @
Prior probabilities of groups: °
1 2 °
0.524 0.476 .
e 0
o o
L]

Group means:

x1 X2
1 0.6346950 0.6808438 -
2 0.3628336 0.3359276

Coefficients of linear discriminants:
LD1

x1 -3.647709

X2 -4.507556




Linear Discriminant analysis using MASS

> library(MASS)

> class <- lda( group ~ x1 + x2)
> class

Call:

Ida(group ~ x1 + x2)

Prior probabilities of groups:
1 2
0.524 0.476

Group means:

x1 X2
1 0.6346950 0.6808438
2 0.3628336 0.3359276
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Coefficients of linear discriminants:

LD1
x1 -3.647709
X2 -4.507556

Linear Discriminant analysis using MASS

> library(MASS)

> class <- lda( group ~ x1 + x2)
> class

Call:

Ida(group ~ x1 + x2)

Prior probabilities of groups:
1 2
0.524 0.476

Group means:

x1 X2
1 0.6346950 0.6808438
2 0.3628336 0.3359276

Coefficients of linear discriminants:

LD1
x1 -3.647709
x2 -4.507556




Assessing performance

MECHANISMS OF DISEASE

Mechanisms of disease |

(3 Use of proteomic patterns in serum to identify ovarian cancer

Emanuel F Petricoin Ill, Ali M Ardekani, Ben A Hitt, Peter J Levine, Vincent A Fusaro, Seth M Steinberg, Gordon B Mills,

Charles Simone, David A Fishman, Elise C Kohn, Lance A Liotta

572

Methods Proteomic spectra were generated by mass
spectroscopy (surface-enhanced laser desorption and
lonisation). A preliminary “training” set of spectra derived
from analysis of serum from 50 unaffected women and
50 patients with ovarlan cancer were analysed by an
iterative searching algorithm that Identified a proteomic
pattern that completely discriminated cancer from non-
cancer. The discovered pattern was then used to classify
an independent set of 116 masked serum samples: 50
from women with ovarian cancer, and 66 from unaffected
women or those with non-malignant disorders.

Findings The algorithm identified a cluster pattern that, in
the tralnlng set, completely segregaled cancer from non-
cancer. The dlscrlmlnatory pauem COF[&CUy identified all
50 ovarian cancer cases in the masked set, Includlng all
18 stage | cases. Of the 66 cases of non-mallgnant
disease, 63 were recognlsed as not cancer. This resuit
ylelded a sensitivity of 100% (95% CI 93-100), specificity
of 95% (87-99), and positive predictive value of 94%
(84-99).
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Methods Proteomic spectra were generated by mass

spectroscopy (surface-enhanced laser desorption and

ionisation). A preliminary “training” set of spectra derived

from analysis of serum from 50 unaffected women and

50 patients with ovarian cancer were analysed by an

iterative searching algorithm that Identified a proteomic

pattern that completely discriminated cancer from non- ..
cancer. The discovered pattern was then used to classify Prediction
an independent set of 116 masked serum samples: 50

from women with ovarian cancer, and 66 from unaffected

women or those with non-malignant disorders. Cancer | No | Total
Findings The algorithm identified a cluster pattern that, in = Cancer 50 0 50
the training set, completely segregated cancer from non- *5'
cancer. The discriminatory pattern correctly identified all <
50 ovarian cancer cases In the masked set, Including all = |No cancer 3 63 66

18 stage | cases. Of the 66 cases of norn-malignant
disease, 63 were recognised as not cancer. This result Total 53 63 116
ylelded a sensitivity of 100% (95% Cl| 93-100), specificity

of 95% (87-99), and positive predictive value of 94%
(84-99).

Results

Predicted class

Cancer | Healthy | Total

Cancer 50 0 50
True

class

Healthy 3 63 66

Total 53 63 116




Predicted class

Cancer | Healthy
Cancer 50 0
True
class
Healthy 3 63
Confusion matrix
Predicted class
Cancer | Healthy
Cancer 50 0
True
class
Healthy 3 63

Confusion matrix




Confusion matrix: what we want to optimize

Predicted class

Cancer | Healthy

Cancer 50

True
class

Healthy 63

Total number of errors: 3+0=3
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Methods Proteomic spectra were generated by mass

spectroscopy (surface-enhanced laser desorption and

ionisation). A preliminary “training” set of spectra derived

from analysis of serum from 50 unaffected women and

50 patients with ovarian cancer were analysed by an

iterative searching algorithm that Identified a proteomic

pattern that completely discriminated cancer from non- ..
cancer. The discovered pattern was then used to classify Prediction
an independent set of 116 masked serum samples: 50

from women with ovarian cancer, and 66 from unaffected

women or those with non-malignant disorders. Cancer | No | Total
Findings The algorithm identified a cluster pattern that, in = Cancer 50 0 50
the training set, completely segregated cancer from non- *5'
cancer. The discriminatory pattern correctly identified all <
50 ovarian cancer cases In the masked set, Including all = |No cancer 3 63 66

18 stage | cases. Of the 66 cases of norn-malignant

disease, 63 were recognised as not cancer. This result Total 53 63 116
ylelded a sensitivity of 100% (95% Cl| 93-100), specificity

of 95% (87-99), and positive predictive value of 94%
(84-99).




Different types of errors

Predicted class

Healthy | False negative

True positive | Cancer
Cancer 50 0
True
class
Healthy 3 63

False positive

True negative

Different types of errors: true and false positive rates

True positive rate:

(sensitivity)

False positive rate:

(1 — specificity)

Predicted class
TP Cancer | Healthy FN
True Cancer 50 0
class | eattny | 3 63
FP TN
TP
TP + FN
FP
FP+TN




Different types of errors: true and false positive rates

Predicted class
TP Cancer | Healthy FN
True Cancer 50 0
class | Leatthy | 3 63
FP TN
True positive rate: TP = 100%
(sensitivity) TP + FN
False positive rate: FP = 4.6%
(1 — specificity) FP + TN

Different types of errors: PPV and NPV

Positive predictive value:

(PPV, precision)

Negative predictive value:

(NPV)

Predicted class
TP Cancer | Healthy
Cancer 50 0
True
class | eaity | 3 63
| |
FP
I L
TP + FP
_IN
TN + FN

FN

TN




Different types of errors: PPV and NPV

Predicted class
TP Cancer | Healthy FN
Trve Cancer 50 0
class Healthy 3 63
FP N
Positive predictive value: TP = 94%
(PPV, precision) TP + FP

100%

Negative predictive value: TN
(NPV) TN + FN

Back to the 1-NN classifier




Predicted class

Blue Red
Blue 131 0
True
class
Red 0 119
Results: 3-NN and 5-NN
Predicted class
Blue Red
Blue 127 4
True
class
Red 4 115

Results: 1-NN




Predicted class

Results: 7-NN

Blue Red
Blue 127 6
True
class
Red 4 113
Results: 9-NN
Predicted class
Blue Red
Blue 127 9
True
class
Red 4 110




Results: 51-NN

Predicted class

Blue Red
Blue 121 3
True
class
Red 10 116

Some rules for assessment

Each observation can either be used for fitting the
model or assessing it (but not both !)

You can use an observation as many times as you
like for exploration/learning, but you can only use it
once for confirmation. If you use it more than once,
you are learning again (and not assessing).

To assess a model, you must use data independent
of the data you used to train the model — otherwise
you will be over-optimistic.

Inspired from "R for Data Science", Garrett Grolemund and Hadley Wickham.
http://r4ds.had.co.nz/model-intro.html




Confirmation data

|deally: a independent dataset

Confirmation data

More realistically: randomly split your data in two
pieces before you begin using it:

50% will be used to train the model (learning set or
training set)
50% will be used to test the model (testing set)




An even better approach (suggested by H. Wickham)

Split your data into three pieces before you begin the
analysis:

* 60% of your data goes into a training set. You're
allowed to do anything you like with this data.

« 20% goes into a query set. You can use this data
to compare models by hand, but you're not allowed
to use it as part of an automated process.

 20% is held back for a test set. You can only use
this data ONCE, to test your final model.

An even better approach (suggested by H. Wickham)

This partitioning allows you to explore the training
data, occasionally generating candidate hypotheses
that you check with the query set. When you are
confident you have the right model, you can check it
once with the test data.




Bias-variance trade-off

Error Total

Variance

Bias

Model complexity

Bias: model misses important features of the underlying model (underfitting)
Variance:  model is sensitive to noise in the data (overfitting)
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50 patients with ovarlan cancer were analysed by an
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cancer. The discovered pattern was then used to classify Prediction
an independent set of 116 masked serum samples: 50

from women with ovarian cancer, and 66 from unaffected

women or those with non-malignant disorders. Cancer | No | Total
Findings The algorithm identified a cluster pattern that, in = Cancer 50 0 50
the training set, completely segregated cancer from non- *5'
cancer. The discriminatory pattern correctly identified all <
50 ovarian cancer cases In the masked set, Including all = |No cancer 3 63 66

18 stage | cases. Of the 66 cases of norn-malignant
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of 95% (87-99), and positive predictive value of 94%
(84-99).
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&

experiments

ABSTRACT

Motivation: There has been much interest in using patterns
derived from surface-enhanced laser desorption and ioniza-
tion (SELDI) protein mass spectra from serum to differentiate
samples from patients both with and without disease. Such
patterns have been used without identification of the underly-
ing proteins responsible. However, there are questions as to
the stability of this procedure over multiple experiments.

Reproducibility of SELDI-TOF protein patterns in
serum: comparing datasets from different

Keith A. Baggerly*, Jeffrey S. Morris and Kevin R. Coombes

Results: We compared SELDI proteomic spectra from serum
from three experiments by the same group on separating
ovarian cancer from normal tissue. These spectra are available
on the web at http://clinicalproteomics.steem.com. In general,
the results were not reproducible across experiments. Baseline
correction prevents reproduction of the results for two of the
experiments. in one experiment, there is evidence of a major
shift in protocol mid-experiment which could bias the results.
In another, structure in the noise regions of the spectra aliows
us to distinguish normal from cancer, suggesting that the nor-
mals and cancers were processed differently. Sets of features
found to discriminate well in one experiment do not gener-
alize to other experiments. Finally, the mass calibration in all
three experiments appears suspect. Taken together, these and
other concerns suggest that much of the structure uncovered
in these experiments could be due to artifacts of sample pro-
cessing, not to the underlying biology of cancer. We provide
some guidelines for design and analysis in experiments like
these to ensure better reproducible, biologically meaningfully
results.
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Slide courtesy of Keith Baggerly




Two peaks that allow correct classification of all samples
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Cancer (blue)vs Normal (red), Two Low Peaks

« @
< & s 4 . "
o -
- - > a‘
- o« o* e 4 .
i 00 * .
- - -
Yy & ’ a*
- .. “ &
Yas, ot
- o “‘ 4
L " - o
- -
a W
- . .. .
- ” s
- 4 .
‘C‘. ¢
a a - . -
. o ? ey
at *
- 3 ‘ .‘
- - -
& . -
Ll s
« 4 3 ‘g e, “T e &
0»y
- -
‘ °. « 1a
- - +
4 ‘reﬂ‘ - ad 4
il o
. 1.
4 .4

4.1

42 43 44 45 46
Intensity at M/Z 2.7921

47

48

Two NOISE peaks that allow correct classification of all samples
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Caveats: Overfitting

Gene 2 X

Classify everything in this
region as red

Gene 1 '

Perfect classifier for this data
But probably not so good with any new data

Caveats: Overfitting

» Itis easy to create classifiers which fits the training data
perfectly

e |tis harder to find classifiers which still works as well when
validated on new data

* A classifier must ALWAYS be tested on data independent
from the one used to actually train the classifier.

» This is particularly important in cases where we have
— Few samples
— Many different measurements

» If not careful, it is always possible to find a classifier that
works well for your training data !




Discrimination

Training

Labels :

Test : A zebra or giraffe?

Predicted Label :

| predict a giraffe

Discrimination

Training

Labels: A zebra A giraffe




Discrimination: example of overfitting (and confounding factor)

Training

Labels : A giraffe !

Test . A zebra or giraffe?

Predicted Label : | predict a zebra !

How to avoid overfitting ?

Build your classifier using a dataset.

Use a second, independent, dataset to
assess the performance of your classifier.

(either a really independent dataset or a
training/learning split)

But if your dataset is too small to be
partitioned, you have a problem...




3-fold Cross validation

Learning

Learning Error

Learning Learning Error

Learning Learning Error

Average error

Cross-validation: «V-fold cross validation» (CV)

The learning set is divided randomly into V subsets of
(nearly) equal size.

V Classifiers are built leaving each set out in turn; the
test set error rate is computed on the set left out, and
averaged.

Special case: «leave-one-out cross-validation»: the
test set consists of only one sample.




Limitation of cross-validation

Cross validation does not provide a single model
Each step produces a different model

Cross-validation allows you to assess the
performance of a method for building a classifier
rather than a single model

Very useful for testing parameters

Example: how many neighbours in the kNN
algorithm ?

What does it mean when our
classification depends on a
continuous score ?




Back to our LDA example
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The two distributions overlap, so that it is impossible to use this score to
perfectly discriminate between positive and negative results.




Specific Example

Patients without Patients with
the disease the disease
Test Result
Threshold
Call these patients “negative” Call these patients “positive”

NN

Test Result




Some definitions ...

Call these patients “negative” Call these patients “positive”

True Positives

Test Result
without the disease with the disease

Call these patients “negative” Call these patients “positive”

e

False
Test Result Positives

without the disease with the disease




Call these patients “negative” Call these patients “positive”

True
negatives

Test Result
without the disease with the disease

Call these patients “negative” Call these patients “positive”

False
negatives

Test Result
without the disease with the disease




Moving the Threshold: right

H+11

Test Result
without the disease with the disease

Moving the Threshold: left

H+11

Test Result
without the disease with the disease




Receilver Operating
Characteristic (ROC) curves

ROC curves

Started in electronic signal detection theory
(1940s - 1950s)

Has become very popular in biomedical
applications, particularly radiology and
Imaging

Also used in machine learning applications
to assess classifiers

Can be used to compare tests/procedures




ROC curve
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Best Test
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The distributions don’t
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Area under ROC curve (AUC)

e Overall measure of test performance

« Comparisons between two tests based on
differences between (estimated) AUC

» For continuous data, AUC equivalent to Mann-
Whitney U-statistic (nonparametric test of
difference in location between two populations)

Problems with AUC

* No clinically relevant meaning

« Alot of the area is coming from the range of large
false positive values, no one cares what's going
on in that region (need to examine restricted
regions)

* The curves might cross, so that there might be a
meaningful difference in performance that is not
picked up by AUC




Examples using ROC analysis

Threshold selection for ‘tuning’ an already trained
classifier (e.g. neural nets)

Defining signal thresholds in DNA microarrays
(Bilban et al.)

Comparing test statistics for identifying differentially
expressed genes in replicated microarray data
(Lonnstedt and Speed)

Assessing performance of different protein
prediction algorithms (Tang et al.)

Inferring protein homology (Karwath and King)

Example: Homology Induction ROC

Maximum ROC curves for PSI-BLAST and the two HI methods
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Identification of a Poor-Prognosis BRAF-Mutant-Like
Population of Patients With Colon Cancer

Vlad Popovici, Eva Budinska, Sabine Tejpar, Scott Weinrich, Heather Estrella, Graeme Hodgson,
Eric Van Cutsem, Tao Xie, Fred T. Bosman, Amaud D. Roth, and Mauro Delorenzi

For signature generation, an adapted version of the top scoring pairs
algorithm® (multiple top scoring pairs [mTSP]; Data Supplement) was used,
resulting in gene pairs deemed as the most informative in the process of
classifier construction. The final classification model consisted of two groups
of genes (G1 and G2),and the prediction was made comparing the averages of
these groups: If, for a given sample, the average of G1 was smaller than the
average of G2, then the sample was predicted to be BRAFm, otherwise WT?2.

We also defined a BRAF score (BS) as the difference between the average
expression of G2 genes and the average expression of G1 genes (from the
mTSP model) and used it to analyze the stratification for different threshold
values (a threshold of 0 leading to the original dedision rule). An alternative
threshold for the BRAF score was obtained as the value that maximized
Matthews correlation coefficient™ on the PETACC-3 data set.

The performance of the dassifier was estimated by repeated (10 times)
stratified five-fold cross-validation, following the MAQC-II guidelines,** and
measured in terms of sensitivity, specificity, and error rate. The final BRAF
classifier was built from all BRAFm and WT2 samples in the PETACC-3 data
set and then applied to the full PETACC-3 data set (induding KRASm) and
independent validation sets for the analysis of stratification of the population
(Data Supplement). Because the stage Il subgroup of PETACC-3 is smaller and
not fully representative, the analysis of the prognostic value of the signature is
focused on stage III subgroup. However, results for both stages are given
(Data Supplement).




Quadratic discriminant
analysis




Random Forests

No Yes

Yes

BMI > 25
0] Y

Decision trees

es




library(rpart)
fit = rpart(as.factor(group) ~ x1 + x2)

> fit
n= 250

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 250 119 1 (0.52400000 0.47600000)
2) x2>=0.6112646 99 10 1 (0.89898990 0.10101010)
4) x2>=0.7299728 71 1 1 (0.98591549 0.01408451) *
5) x2< 0.7299728 28 9 1 (0.67857143 0.32142857)
10) x1>=0.4927158 14 0 1 (1.00000000 O.00000000) *
11) x1< 0.4927158 14 5 2 (0.35714286 0.64285714) *
3) x2< 0.6112646 151 42 2 (0.27814570 0.72185430)
6) x1>=0.7148586 40 3 1 (0.92500000 0.07500000) *
7) x1< 0.7148586 111 5 2 (0.04504505 0.95495495) *




Random forest

o

Vote
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SKYNET:
Courier Detection via Machine Learning
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Given a handful of courier selectors, can we find others
that “behave similarly” by analyzing GSM metadata?

It's worth noting that:

+ we are looking for
different people using
phones in similar ways

without using any call

chaining techniques
from known selectors

by scanning through
all selectors seen in
Pakistan that have not
left Af/Pak (~55M)

TOP SECRET/COMINT/REL TO USA, FVEY




TOP SECRET/COMINTVREL TO USA, FVEY
Statistical algorithms are able to find the couriers at very
low false alarm rates, if we’re allowed to miss half of them

Random Forest
Classifier

« 7 MSISDN/IMSI pairs
« Hold each pair out and

then try to find them after
learning how to distinguish

remaining couriers fron

other Pakistanis

(using 100k random selectors here)

+ Assume that random
draws of Pakistani

selectors are nontargets

+ 0.18% False Alarm Rate at
50% Miss Rate

20 40 60 80 95
| —

miss prodability (%)

0.01 01

1e-04

Centroid(All Raw Features)

Centroid(All Normalized Features)
Centroid(Outgoing Raw Features)
Centroid(Outgoing Normalized Features)
Random Forest{All Raw Features)
Random Forest{Outgoing Raw Features)
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We’ve been experimenting with several error
metrics on both small and large test sets

100k Test Selectors 55M Test Selectors
False Alarm Mean Tasked Tasked
Rate at 50% | Reciprocal | Selectorsin | Selectors in
Training Data| _Classifier Features Miss Rate Rank Top 500 Top 100
1/23k 0.64 0.13
o Random Ko e (simulated) | (active/Pak) | (active/Pak)
Kn Centroid — e
i 43% 1/27k
Couriers
. 0.18% 1/9.9 5 1
anch Random Outgoing
b Forest
Selectors

Random Forest:

0.18% false alarm rate at 50% miss rate

7x improvement over random performance when
evaluating its tasked precision at 100
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Conclusion:
which algorithm to use ?

Differents families of machine-learning algorithms

We evaluate 179 classifiers arising from 17 families (discriminant analysis, Bayesian,
neural networks, support vector machines, decision trees, rule-based classifiers, boosting,
bagging, stacking, random forests and other ensembles, generalized linear models, nearest-
neighbors, partial least squares and principal component regression, logistic and multino-
mial regression, multiple adaptive regression splines and other methods), implemented in
Weka, R (with and without the caret package), C and Matlab, including all the relevant
classifiers available today. We use 121 data sets, which represent the whole UCI data
base (excluding the large-scale problems) and other own real problems, in order to achieve
significant conclusions about the classifier behavior, not dependent on the data set col-
lection. The classifiers most likely to be the bests are the random forest (RF)
versions, the best of which (implemented in R and accessed via caret) achieves 94.1% of
the maximum accuracy overcoming 90% in the 84.3% of the data sets. However, the dif-
ference is not statistically significant with the second best, the SVM with Gaussian kernel
implemented in C using LibSVM, which achieves 92.3% of the maximum accuracy. A few
models are clearly better than the remaining ones: random forest, SVM with Gaussian
and polynomial kernels, extreme learning machine with Gaussian kernel, C5.0 and avNNet
(a committee of multi-layer perceptrons implemented in R with the caret package). The
random forest is clearly the best family of classifiers (3 out of 5 bests classifiers are RF),
followed by SVM (4 classifiers in the top-10), neural networks and boosting ensembles (5
and 3 members in the top-20, respectively).

Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?
Fernandez-Delgado et al, Journal of Machine Learning Research 15 (2014) 3133-318




