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Advanced statistics:
Statistical modeling

Linda Dib, Sina Nassari and Frédéric Schütz

Statistical models



What is a statistical model ?

A statistical model is a set of equations involving 
random variables, with associated distributional 
assumptions, devised in the context of a question
and a body of data concerning some 
phenomenon, with which tentative answers can be 
derived, along with measures of uncertainty 
concerning these answers.

questions + data answers + measures 
model of uncertainty

(from Terry Speed)

Want to capture important features of the 
relationship between a (set of) variable(s) and 
one or more response(s)

Many models are of the form

g(Y) = f(x) + error

with differences in the form of g, f and 
distributional assumptions about the error term.

Modeling Overview



A word of caution !

Modelling is not about just finding the right type of equation to describe 
the data, and finding the right algorithm to estimate the parameters of 
this equation !

In other words, we should not consider that the modeling problem 
consists only of simple pairs of data points (e.g. response and 
explanatory variables).

Other information of interest include for example how the data was 
collected, how it is structured, what we expect from the model 
(description ? Prediction ?), and what other variables were not
observed.

We will not discuss this in detail, but we will touch on it briefly in some 
places.

Essentially, all models are wrong, but some are useful. 

Georges Box

Model formulas in R

A simple model formula in R looks something like:

yvar ~ xvar1 + xvar2 + xvar3

Can read  ~ as “described (or modeled) by”.

We could write this model (algebraically) as

Y = b0 + b1 x1 + b2 x2 + b3 x3



Model formulas in R

By default, an intercept is included in the model – you 
don’t have to include a term in the model formula

If you want to leave the intercept out:

yvar ~ -1 + xvar1 + xvar2 + xvar3

More on model formulas

The generic form is response ~ predictors

The predictors can be numeric or factor

Other symbols to create formulas with combinations 
of variables (e.g. interactions)

+ to add more variables

- to leave out variables

: to introduce interactions between two terms

* to include both interactions and the terms

(a*b is the same as a + b + a:b)

^n adds all terms including interactions up to order n

I() treats what’s in () as a mathematical expression



Linear models
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Can we predict the height of a 
teenager using his age ?

Example: scatterplot of age vs height in teenagers



(Simple) Linear Regression

Simple linear regression refers to drawing a (particular, 
special) line through a scatterplot

It is used for 2 broad purposes: explanation and 
prediction.

The equation for a line to predict y knowing x (in slope-
intercept form) looks like

y = a + b x

where a is called the intercept and b is the slope.

Linear regression

What is the “best” line which fits this data ?
Can we use it to summarise the relation between x and y ?

y = 1 – 0.6x

y = 0.8 + 0x

y = 0.9 – 0.3x

y = 1.1 – 0.9x

y = 0.5 – 1.2x

y = 0.9 + 0.6x
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Linear regression: least-squares fitting
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The least-squares procedure finds the straight line with the
smallest sum of squares of vertical errors.

Linear models (simple case)
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Over all possible straight lines, y= 1 - 0.6x is the “best” 
possible line according to this criterion.

y = 1 – 0.6x

y = 0.8 + 0x

y = 0.9 – 0.3x

y = 1.1 – 0.9x

y = 0.5 – 1.2x

y = 0.9 + 0.6x

The regression line has two parameters:  the slope and 
the intercept

The regression slope is the average change in Y when 
X increases by 1 unit

The intercept is the predicted value for Y when X = 0

If the slope = 0, then X does not help in predicting Y
(linearly)

Interpretation of parameters



There is an error in making a regression prediction:

error = observed Y – predicted Y

= y – (a + b x)

These errors are called residuals

The regression equation is calculated so that the sum (and 
mean) of the residuals is 0 (« in average, the model is 
correct »).

Ideally, we want the regression to include all the predictable 
variance, so that the distribution of the residuals is random 
and does not depend on X or on the predicted X.

Residuals

Linear models (general case)
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Linear models (matrix form)
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Linear models (parameter estimation)

Least-square estimation of regression coefficients
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Linearity in linear models
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A concrete example in R

Using the CLASS dataset, from the program SAS
(units have been modified from imperial to metric)

data <- read.table("http://lausanne.isb-sib.ch/~schutz/data/class.txt")



Exercise

Use statistical models to answer the question:

"Can we predict the height of a teenager, using 
his age, sex and weight ?"

data <- read.table("http://lausanne.isb-sib.ch/~schutz/data/class.txt")

The CLASS dataset from SAS

> data
Name Gender Age  Height  Weight

1    JOYCE      F  11 130.302 22.8765
2   THOMAS      M  11 146.050 38.5050
3    JAMES      M  12 145.542 37.5990
4     JANE      F  12 151.892 38.2785
5     JOHN      M  12 149.860 45.0735
6   LOUISE      F  12 143.002 34.8810
7   ROBERT      M  12 164.592 57.9840
8    ALICE      F  13 143.510 38.0520
9  BARBARA      F  13 165.862 44.3940
10 JEFFREY      M  13 158.750 38.0520
11   CAROL      F  14 159.512 46.4325
12   HENRY      M  14 161.290 46.4325
13  ALFRED      M  14 175.260 50.9625
14    JUDY      F  14 163.322 40.7700
15   JANET      F  15 158.750 50.9625
16    MARY      F  15 168.910 50.7360
17  RONALD      M  15 170.180 60.2490
18 WILLIAM      M  15 168.910 50.7360
19  PHILIP      M  16 182.880 67.9500



The CLASS dataset from SAS

> summary(data[,-1])

Gender      Age            Height          Weight     
F: 9   Min.   :11.00   Min.   :130.3   Min.   :22.88  
M:10   1st Qu.:12.00   1st Qu.:148.0   1st Qu.:38.17  

Median :13.00   Median :159.5   Median :45.07  
Mean   :13.32   Mean   :158.3   Mean   :45.31  
3rd Qu.:14.50   3rd Qu.:167.4   3rd Qu.:50.85  
Max.   :16.00   Max.   :182.9   Max.   :67.95  

> pairs(data[,-1])



Fitting the linear model in R

Model:   Height = 64.07  +  7.08 x Age

> model <- lm( Height ~ Age )
> model

Call:
lm(formula = Height ~ Age)

Coefficients:
(Intercept)          Age  

64.07         7.08  

> plot( Age, Height )
> abline(model, col="red", lwd=2)



plot( Age, Height, xlim=range(0,Age), ylim=range(coef(model)[1], Height) )
abline(model, col="red", lwd=2)

Example of summary results of the lm command in R

> summary( lm( Height ~ Age) )

Call:
lm(formula = Height ~ Age)

Residuals:
Min        1Q    Median        3Q       Max 

-12.59000  -3.57300  -0.07867   3.49000  15.57133 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)   64.069     16.565   3.868  0.00124 ** 
Age            7.079      1.237   5.724 2.48e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 7.832 on 17 degrees of freedom
Multiple R-squared: 0.6584,     Adjusted R-squared: 0.6383 
F-statistic: 32.77 on 1 and 17 DF,  p-value: 2.48e-05 



Function call

> model <- lm( Height ~ Age )
…
> summary( model )

Call:
lm(formula = Height ~ Age)

Distribution of the residuals

Residuals:
Min        1Q    Median        3Q       Max 

-12.59000  -3.57300  -0.07867   3.49000  15.57133 

Five-number summary of the residuals (but no mean – why ?), equivalent to

> fivenum( residuals( model ) )

8      11      17       4       7 

-12.590  -3.573  -0.078   3.490  15.571

or, graphically, using a boxplot:

> boxplot( residuals ( model), horizontal=T)



Coefficients

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)   64.069     16.565   3.868  0.00124 ** 
Age            7.079      1.237   5.724 2.48e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

These statistical tests tell us if the parameters are significantly different
from 0. It is not interesting for the intercept, but usually interesting for 
the slope.

Estimate and Std. Error are obtained from the matrices of the model.

T-value = Estimate / Std. Error

This assumes that the residuals follow a normal distribution !

RSE (Residual Standard Error) and degrees of freedom

The number of degrees of freedom indicates the number of 
independant pieces of data that are available to estimate the error

While we have 19 residuals here, they are not all independent: for 
example, the last one is constrained because the sum of all residuals
must be 0.

The number of DF is

total observations – number of parameters estimated

Two parameters are estimated (intercept + coefficient), so 19-2 = 17

Residual standard error: 7.832 on 17 degrees of freedom



RSE (Residual Standard Error) and degrees of freedom

The residual standard error is the standard deviation of the residuals (which we
would usually like to be small)

It is not exactly equal to what the sd command would return:

> sd(residuals(model))
[1] 7.611075
> sqrt(sum(residuals(model)^2)/18)

[1] 7.611075

Here, we must divide by the number of degrees of freedom to get the same
number:

> sqrt(sum(residuals(model)^2)/17)

[1] 7.831732

Residual standard error: 7.832 on 17 degrees of freedom

Multiple and adjusted R-squared

Multiple R-squared: 0.6584,     Adjusted R-squared: 0.6383 

R2 is the proportion of the total variance in the response data that is
explained by the model (if R2=1, the data fits perfectly on a straight line, 
and the model explains all the variance).

In the case of simple regression, it is equal to the square of the 
correlation coefficient between the two variables:

> summary(model)$r.squared

[1] 0.6584257
> cor(Age, Height)^2
[1] 0.6584257

The Adjusted R-squared is similar to R-squared, but it takes into
account the number of variables in the model (we will come back to this
later).



F-test for significance of regression

F-statistic: 32.77 on 1 and 17 DF,  p-value: 2.48e-05 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)   64.069     16.565   3.868  0.00124 ** 
Age            7.079      1.237   5.724 2.48e-05 ***

The F-statistic allows us to test if the whole regression (adding all 
variables vs having only the intercept in) is significant.

With only one variable, it provides exactly the same result as the t-test 
for the significance of the coefficient of this variable.

Multiple regression: 
assessing the effect of several variables together



Two separate simple regressions

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)   64.069     16.565   3.868  0.00124 ** 
Age            7.079      1.237   5.724 2.48e-05 ***

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 108.12816    6.80692  15.885 1.24e-11 ***
Weight        0.50194    0.06644   7.555 7.89e-07 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Can we say anything about what would happen
if both variables were included the same model ?

One multiple regression with two variables

Call:
lm(formula = Height ~ Age + Weight)

Residuals:
Min       1Q   Median       3Q      Max 

-9.20695 -3.30604 -0.04478  2.11432 10.41880 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 81.77355   12.90896   6.335 9.92e-06 ***
Age          3.11575    1.34668   2.314  0.03431 *  
Weight       0.35064    0.08827   3.973  0.00109 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 5.728 on 16 degrees of freedom
Multiple R-squared: 0.828,      Adjusted R-squared: 0.8065 
F-statistic: 38.52 on 2 and 16 DF,  p-value: 7.646e-07 

This model allows us to determine the respective

contribution of each variable separately !



Coefficients

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 81.77355   12.90896   6.335 9.92e-06 ***
Age          3.11575    1.34668   2.314  0.03431 *  
Weight       0.35064    0.08827   3.973  0.00109 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

This is similar to the simple regression case.

Each test is conducted assuming that the tested
parameter is the last one entering the model:

« If weight is already in the model, is the 
coefficient for age significantly different from 0 ? »

Two single regressions vs one multiple regression

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  81.77355   12.90896   6.335 9.92e-06 ***
Age           3.11575    1.34668   2.314  0.03431 *  
Weight        0.35064    0.08827   3.973  0.00109 ** 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)    64.069     16.565   3.868  0.00124 ** 
Age             7.079      1.237   5.724 2.48e-05 ***

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 108.12816    6.80692  15.885 1.24e-11 ***
Weight        0.50194    0.06644   7.555 7.89e-07 ***

While both age and weight seem significant by themselves, age is much
less significant when weight is already included (see also the R2)

It is likely that a lot of the information provided by the age is also provided
by the weight, so that there may be little need to have both terms in the 
model.



Multiple and adjusted R-squared

Multiple R-squared: 0.828,      Adjusted R-squared: 0.8065

As before, R2 is the proportion of the total variance in the 
response data that is explained by the model.

Adding a new variable in the model will always increase R2, 
up to 1 when there the number of degrees of freedom is 0 
(number of parameters to estimate = number of 
observations).

Multiple and adjusted R-squared

The adjusted R-squared adjusts for the number of variables 
in the model, and does not necessarily increase when the 
number of variables increase; it can even be negative.

It is always equal or below R2.

Multiple R-squared: 0.828, Adjusted R-squared: 0.8065 



Example

y <- rnorm(10)

x1 <- rnorm(10); x2 <- rnorm(10); … ; x9 <- rnorm(10)

summary(lm(y ~ x1)); summary(lm(y ~ x1+x2)); …

1: Multiple R-squared: 0.1419,     Adjusted R-squared: 0.03464
2: Multiple R-squared: 0.5173,     Adjusted R-squared: 0.3794
3: Multiple R-squared: 0.557,      Adjusted R-squared: 0.3355 
4: Multiple R-squared: 0.5577,     Adjusted R-squared: 0.2039 
5: Multiple R-squared: 0.7953,     Adjusted R-squared: 0.5395 
6: Multiple R-squared: 0.8321,     Adjusted R-squared: 0.4962  
7: Multiple R-squared: 0.984,      Adjusted R-squared: 0.9281 
8: Multiple R-squared: 0.9851,     Adjusted R-squared: 0.866 
9: Multiple R-squared:     1,      Adjusted R-squared:   NaN 

The last regression from the example

Call:
lm(formula = y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9)

Residuals:
ALL 10 residuals are 0: no residual degrees of freedom!

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.02693         NA      NA       NA
x1           0.53886         NA      NA       NA
x2          -0.52227         NA      NA       NA
x3           0.51881         NA      NA       NA
x4           0.74757         NA      NA       NA
x5           0.14394         NA      NA       NA
x6          -0.65387         NA      NA       NA
x7          -0.48271         NA      NA       NA
x8          -0.62487         NA      NA       NA
x9           0.23759         NA      NA       NA

Residual standard error: NaN on 0 degrees of freedom
Multiple R-squared:     1,      Adjusted R-squared:   NaN 
F-statistic:   NaN on 9 and 0 DF,  p-value: NA 



F-statistic for significance of regression

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 81.77355   12.90896   6.335 9.92e-06 ***
Age          3.11575    1.34668   2.314  0.03431 *  
Weight       0.35064    0.08827   3.973  0.00109 ** 

F-statistic: 38.52 on 2 and 16 DF,  p-value: 7.646e-07 

Again, the F-statistic allows us to test if the whole regression (adding all 
variables vs having only the intercept in) is significant.

If any of the tests for the individual variables is significant, the F-test will
generally be significant as well.

However, even if no individual variable is significant (e.g. p < 0.05), the 
F-test can still be significant.

Categorical variables,
dummy variables and contrasts



Categorical variables

We’d like to use categorical variables in a linear model, as in:

Height = b0 + b1 Age + b2 « Gender » + error

Intuitively, we want to estimate a « Male » and a « Female » effect.

In practice, categorical variables (factors in R) are turned (by default, 
based on alphabetical order) into dummy variables of the form
•

• Gender = 

and the model can be interpreted as follows:

– b0 is the baseline for height among women
– b2 represent the increase/decrease of this baseline for men.

0 if Female
1 if Male

Example of summary results of the lm command in R

Call:
lm(formula = Height ~ Age + Gender)

Residuals:
Min      1Q  Median      3Q     Max 

-8.8462 -4.8523 -0.8102  3.3677 13.5058 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)   62.291     14.957   4.165  0.00073 ***
Age            6.928      1.117   6.202 1.27e-05 ***
GenderM        7.204      3.251   2.216  0.04152 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 7.061 on 16 degrees of freedom
Multiple R-squared: 0.7387,     Adjusted R-squared: 0.706 
F-statistic: 22.61 on 2 and 16 DF,  p-value: 2.176e-05 



Example of summary results of the lm command in R

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)   62.291     14.957   4.165  0.00073 ***
Age            6.928      1.117   6.202 1.27e-05 ***
GenderM        7.204      3.251   2.216  0.04152 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The model considers that the value for « Females » is the 
baseline.

The factor GenderM corresponds to the difference in 
baseline for Males compared to females.

Graphical interpretation

The model specifies 2 straight lines, with the same slope but different
y-intercepts:

For women: Height = 62.3 + 6.9  Age (in black)

For men: Height = 69.4 + 6.9  Age (in red)

7.20



What if we don’t use a linear model ?

We could also compute the difference in means between
males and females directly:

> means <- tapply( data$Height, data$Gender, FUN=mean )

> means

F        M 

153.8958 162.3314 

> diff(means)

M 

8.435622

This result is slightly different from the 7.20 cm difference
found with the linear model.

Where does the difference come from ?

Interactions

So far, we have assumed a difference between the lines, but the same
slope; that is, for both men and women, the effect of age is the same.

If this assumption is incorrect, it means that there is an interaction
between the factors « age » and « gender », that is, the effect of age is
different depending on the gender.

Interactions are modeled in R in the following way:

lm(formula = Height ~ Age + Gender + Age:Gender)

which is equivalent to 

lm(formula = Height ~ Age * Gender)



Coefficients with an interaction

The coefficients can be interpreted as follows:

According to the model, the height is equal to

56.26 (the intercept)
plus 17.13, but only for males
plus 7.38 times the person’s age
minus 0.75 times the person’s age, but only for males.

Call:
lm(formula = Height ~ Age * Gender)

Coefficients:
Estimate Std. Error t value Pr(>|t|)   

(Intercept)  56.2610    24.4880   2.297  0.03640 * 
Age           7.3841     1.8429   4.007  0.00114 **
GenderM      17.1304    31.5238   0.543  0.59483   
Age:GenderM  -0.7468     2.3583  -0.317  0.75585   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Different slopes

No interaction With interaction



What if Males were the baseline ?

The two models are 
exactly the same; only 
the way we look at the 
coefficient changes.

Call:
lm(formula = Height ~ Age + Gender)

Residuals:
Min      1Q  Median      3Q     Max 

-8.8462 -4.8523 -0.8102  3.3677 13.5058 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)   62.291     14.957   4.165  0.00073 ***
Age            6.928      1.117   6.202 1.27e-05 ***
GenderM        7.204      3.251   2.216  0.04152 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 7.061 on 16 degrees of freedom
Multiple R-squared: 0.7387,     Adjusted R-squared: 0.706 
F-statistic: 22.61 on 2 and 16 DF,  p-value: 2.176e-05 

Call:
lm(formula = Height ~ Age + Gender1)

Residuals:
Min      1Q  Median      3Q     Max 

-8.8462 -4.8523 -0.8102  3.3677 13.5058 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)   69.495     15.135   4.592 0.000301 ***
Age            6.928      1.117   6.202 1.27e-05 ***
Gender1F      -7.204      3.251  -2.216 0.041517 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 7.061 on 16 degrees of freedom
Multiple R-squared: 0.7387,     Adjusted R-squared: 0.706 
F-statistic: 22.61 on 2 and 16 DF,  p-value: 2.176e-05 Gender1 <- relevel(Gender, ref="M")

What if my variable has more than 2 levels ?

The interpretation was straightforward with two levels: one 
was the baseline, and we estimated the difference between
the second one and the baseline.

With more than two levels, there are different ways, termed
contrasts, of looking at the coefficients. The most common
one is called treatment contrasts, and corresponds to 
taking the first level as the baseline/intercept (as a control), 
and all the other coefficients correspond to differences of 
each level with the control (« treatments).

For more information on this, see e.g. Venables and Ripley, 
section 6.2.



Reminder: Linear models (matrix form)

iippiii XXXY    1122110 

Matrix form of linear models























































































npnpnn

p

p

n XXX

XXX

XXX

Y

Y

Y






















2

1

1

1

0

121

122221

111211

2

1

1

1

1

1

εXβY or

is equivalent to

Continuous vs dummy predictors

ijX can be used to encode

• Drug dose
• Temperature
• Time

• KO (vs wt)
• Gender
• Treatment vs non-treatment

Continuous quantities 

Discrete conditions

X is the design matrix; a column of

(dummy predictor)

Discrete conditions require “zeros and ones” coding.

Reference condition coded as zero, alternative coded as one.
Discrete conditions with N levels require N-1 columns with 0/1.



Design matrix in R

> model.matrix( Height ~ Age + Gender )
(Intercept) Age GenderM

1            1  11       0
2            1  11       1
3            1  12       1
4            1  12       0
5            1  12       1
6            1  12       0
7            1  12       1
8            1  13       0
9            1  13       0
10           1  13       1
11           1  14       0
12           1  14       1
13           1  14       1
14           1  14       0
15           1  15       0
16           1  15       0
17           1  15       1
18           1  15       1
19           1  16       1
attr(,"assign")
[1] 0 1 2
attr(,"contrasts")
attr(,"contrasts")$Gender
[1] "contr.treatment"

Diagnostic tools



It is always possible to fit a linear model and find a slope 
and intercept
… but it does not mean that the model is meaningful !

Examination of residuals: (which should show no obvious 
trend, since any systematic effect in the residuals should 
ideally be captured by the model):

– Normality
– Time effects
– Nonconstant variance
– Curvature

Detection of influential observations
– Hat matrix

Basic model checking

plot( Age, residuals(model) )

Residuals

Works only for simple regression
(only one variable on x axis)

plot( fitted(model), residuals(model) )

Works also for multiple regression



High leverage (‘influential’) points are far from the 
center, and have potentially greater influence

One way to assess points is through the hat values
(obtained from the hat matrix H):

ŷ = Xb = X(X’X)-1X’y = Hy

hi = Σjhij
2

Average value of h = number of coefficients/n 
(including the intercept) = p/n

Cutoff typically 2p/n or 3p/n

Hat values

hat <- lm.influence( model )
plot( hat$hat )
abline(h=c(c(2,3)*2/19),lty=c(2,3),col=c("blue","red") )

Hat values Actual fit



Confidence bands

Narrow bands: describe the uncertainty about the regression line
Wide bands: describe where most (95% by default) predictions would fall,

assuming normality and constant variance.

In R: ?predict.lm

What if the data is not linear ?



What if the data is not linear ?

Use a polynomial regression

y = b0 + b1 x + b2 x2

This is still linear for bi; it is as if we had added a new 
variable.

What if the data is not linear ?

Consider transforming the data (log)

log(y) = a + b x

y  = a + b log(x)



Example: predicting cell concentration

The hellung dataset

" Diameter and concentration of Tetrahymena
cells with and without glucose added to growth 

medium."

> library(ISwR); data(hellung)

Can we predict the 
concentration of cells using 

the diameter and the 
presence/absence of glucose ?



The Hellung data in R

> hellung

glucose   conc diameter

1        1 631000     21.2

2        1 592000     21.5

3        1 563000     21.3

4        1 475000     21.0

5        1 461000     21.5

[...]

33       2 630000     19.2

34       2 501000     19.5

35       2 332000     19.8

36       2 285000     21.0

37       2 201000     21.0

Hellung dataset:  Diameter vs Concentration

> plot(hellung$diameter, hellung$conc,
xlab="Diameter", ylab="Concentration")



Can we predict the concentration given the diameter of the cells ?

Linear model predicting Concentration from Diameter

> model <- lm( conc ~ diameter, data=hellung )

> abline(model)

Conc =  2019576 –
80663  Diameter

R2 = 0.61
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> qqnorm(residuals(model))
> qqline(residuals(model))

Do the residuals follow a normal distribution ?
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Transforming the data to improve the fit

logconc <- log(hellung$conc)
plot(hellung$diameter, logconc,

xlab="Diameter", ylab="log(concentration)" )

Linear model predicting log(Concentration) from Diameter

log(conc) =  25.7 – 0.62  Diameter

R2 = 0.78

modellog <- lm(logconc ~ diameter, data=hellung)
abline(modellog)



Details of the linear model

log(concentration) = 25.7 – 0.63  diameter 

summary(modellog)

Call:
lm(formula = logconc ~ diameter)

Residuals:
Min        1Q    Median        3Q       Max 

-1.227992 -0.388761  0.003015  0.424183  1.215852 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 25.72239    1.09418   23.51   <2e-16 ***
diameter    -0.62815    0.04743  -13.24   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.6105 on 49 degrees of freedom
Multiple R-squared: 0.7817,     Adjusted R-squared: 0.7772 
F-statistic: 175.4 on 1 and 49 DF,  p-value: < 2.2e-16 
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Predicting Concentration from diameter

Concentration =
148  109  e -0.63  Diameter



What we have done so far

We have a linear model for predicting the log of the 
concentration:

log(concentration) = 25.7 – 0.63  diameter

We have a function that links this prediction to our value of 
interest (concentration):

log / exponential

This allows us to make predictions for the concentration:

Concentration =   148  109  e -0.63   Diameter

The Hellung data in R

> hellung

glucose   conc diameter

1        1 631000     21.2

2        1 592000     21.5

3        1 563000     21.3

4        1 475000     21.0

5        1 461000     21.5

[...]

33       2 630000     19.2

34       2 501000     19.5

35       2 332000     19.8

36       2 285000     21.0

37       2 201000     21.0



R help for the Hellung data

hellung                  package:ISwR                  R Documentation

Growth of Tetrahymena cells

Description:

The ‘hellung’ data frame has 51 rows and 3 columns.  diameter and

concentration of _Tetrahymena_ cells with and without glucose

added to growth medium.

Format:

This data frame contains the following columns:

‘glucose’ a numeric vector code, 1: yes, 2: no.

‘conc’ a numeric vector, cell concentration (counts/ml).

‘diameter’ a numeric vector, cell diameter (micrometre).

Source:

D. Kronborg and L.T. Skovgaard (1990), _Regressionsanalyse_, Table

1.1, FADLs Forlag (in Danish).
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Format:

This data frame contains the following columns:

‘glucose’ a numeric vector code, 1: yes, 2: no.

‘conc’ a numeric vector, cell concentration (counts/ml).

‘diameter’ a numeric vector, cell diameter (micrometre).

Source:

D. Kronborg and L.T. Skovgaard (1990), _Regressionsanalyse_, Table

1.1, FADLs Forlag (in Danish).



Concentration according to Diameter and Glucose

Glucose

No glucose

Reminder: using categorical variables as explanatory variables

We would like to use categorical variables in a linear 
model, as in:

Concentration  = b0 + b1 Diameter + b2 « Glucose » + error

Intuitively, we want to estimate a « No glucose » and a 
« Glucose » effect.



Log(concentration) according to diameter and glucose

Prediction of log Concentration according to Diameter and Glucose

R=0.92



Prediction of Concentration according to Diameter and Glucose

Pitfalls in regression



Pitfalls in regression: Extrapolation

We don’t know what the relationship between X and Y 
looks like outside the range of the data.

Extrapolating the model outside of this range is likely to 
give meaningless results.


