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Linear models are relatively simple to describe, and have
advantages over other approaches in terms of interpretation

Moving Beyond Linearity

and inference

However, the linearity assumption is almost always an

approximation

Extending linear models to model the relationship between a

response Y and a single predictor X in a flexible way

Polynomial regression

Step functions

Splines

Local regression and generalized additive models (GAM)
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Polynomial Regression

* The standard way to extend linear models by adding
extra predictors, obtained by raising each of the
original predictors to a power

* For example
— A quadratic regression uses two variables: X and X?

— A cubic regression uses three variables: X, X2, and X3

* Generally speaking, unusual to use powers
greaterthan 3 or4

— for large powers, the polynomial can become overly
flexible and take on some strange shapes,
especially near the boundaries of X
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residuals

Polynomial degree 3
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Pointwise Standard Errors
f(l‘o) = Bo T 313?0 = 32563 c & Bsxg + 341‘3
 What is the variance of the fit?

* Least squares returns variance estimates for each of the fitted
coefficients, as well as the covariances between pairs of
coefficient estimates. We can use these to compute the
estimated variance of fitted values

If  is the 5 x 5 covariance matrix of the £, and if I = (1, xo, %2 %3, %o*), then Var [f(xo)] = [§ Cl,

* The estimated pointwise standard error is the square-root of
the variance

* This computation is repeated at each reference point x,, and
we plot the fitted curve, as well as twice the standard error on
either side of the fitted curve

— We plot twice the standard error because, for normally distributed
error terms, this quantity corresponds to an approximate 95 %
confidence interval 8
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Step Functions

e Using polynomials of the predictor imposes a global
structure on the non-linear function of X

* We can instead use step functions in order to avoid
imposing such a global structure

— We create cutpoints c;, c,, . . ., ¢ in the range of X, and
then construct K+1 new variables

C(](X) = I(X <Cl),

C1(X) = I(e1 £ X < ég), Where [ is an indicator

Ca(X) = I(c2 £ X < c3), function that returns a 1 if
the condition is true, and

CK—l(X) = I(CK—l & K CK), returns a 0 otherwise

Ce(X) = Ilcg<X),

— Notice that for any value of X, Cy(X)+C,(X)+...+C(X) = 1,
since X must be in exactly one of the K+ 1 intervals 11

Step Functions

* We then use least squares to fit a linear model using C,(X),
C,(X), . .., C(X) as predictors

yi = Bo + L1C1(xi) + B2C2(xi)+... +LkCk(x:) + €i

* For a given value of X, at most one of C,,...,C, can be non-zero

* Note that when X < c,, all of the predictors are zero, so B, can
be interpreted as the mean value of Y for X < c,

* By comparison, the above regression model predicts a
response of B,+B; for ¢; < X < ¢;,;, so B; represents the average
increase in the response for Xin ¢; < X < ¢;,, relative to X< ¢,
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Step Functions
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Clearly, unless there are natural breakpoints in the

predictors, piecewise-constant functions can miss the trends
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Regression Splines

* More flexible than polynomials and step functions, in

fact an extension of the two

* Instead of fitting a high-degree polynomial over the
entire range of X, piecewise polynomial regression

involves fitting separate low-degree polynomials over

different regions of X

— dividing the range of X into K distinct regions
— Within each region, a polynomial function is fit to the data

— The polynomials are constraint so that they join smoothly at the
region boundaries (aka knots)

* Provided that the interval is divided into enough
regions, this can produce an extremely flexible fit
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Regression Splines

For example, a piecewise cubic polynomial works by fitting a
cubic regression model of the form

yi = Po + Pixi +,82xi2 +,83xl-3 + &

Where the coefficients B, B;, B,, and B, differ in different
parts of the range of X

The points where the coefficients change are called knots

For example, a piecewise cubic polynomial with a single knot
at a point c takes the form

Bo1 + B11x; + Bo1x? + Ba1xs +¢€ ifx; <c
Boz + Bi2x; + Paox? + Psoxi + € if ;> c
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Regression Splines

Using more knots leads to a more flexible piecewise
polynomial

In general, if we place K different knots throughout
the range of X, then we will end up fitting K+ 1
different polynomials

— Since each cubic polynomial has four parameters, for a piecewise
cubic polynomial with a single knot we are using a total of eight
degrees of freedom

Note that we do not need to use a cubic polynomial
— For example, we can instead fit piecewise linear functions

— In fact, piecewise constant functions (step functions) are
piecewise polynomials of degree 0

16
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Regression Splines

Piecewise linear fit with 1 knot &
continuity constraint

Piecewise linear fit with 1 knot
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Regression Splines

Piecewise cubic fit with 1 knot & continuity constraint
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Constrains & Splines

How to address discontinuity and lack of smoothness?

By adding two additional constraints on the model

— i.e. we require that both the first and second derivatives of the piecewise
polynomials to be continuous at the knots

— Remember from calculus that continuity of the second derivative imposes the
right- and left-hand-side derivatives to be equal, which in return leads to
smoothness of the fit at the knot

Each constraint that we impose on the piecewise polynomials frees up one
degree of freedom, by reducing the complexity of the resulting piecewise
polynomial fit

— In general, a cubic spline with K knots uses a total of 4 + K degrees of freedom

We may impose additional constrain on the behavior of model fit beyond
boundaries

— A natural spline is a regression spline that is required to be linear at the
boundary
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Constrains & Splines

Linear splines with 1 internal knot Linear splines with 2 internal knots
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The Spline Basis Representation

The regression splines that we just saw in the
previous section may have seemed somewhat
complex

How can we fit a piecewise degree-d polynomial
under the constraint that it (and possibly its first d -
1 derivatives) be continuous?

It turns out for an appropriate choice of basis
functions b,,b,,...,b,,3, we can use the basis model to
represent a regression spline.
— A cubic spline with K knots can be modeled as

Vi = Bo + Bibi(x) + Baba(x)) + -+ + Pr 4 3bk3(x) + &

h.(;IT, f) = (;{; — E}J} — { (.‘L‘ = 5)3 if o f

0 otherwise 1

The Spline Basis Representation

The most direct way to represent a cubic spline using is to
start off with a basis for a cubic polynomial—namely,
X,x2,x3—and then add one truncated power basis function

per kno # ]
B _J (-8 Ha>E
h(z,§) = (z — E)i - { 0 otherwise

In other words, in order to fit a cubic spline to a data set with
K knots, we perform least squares regression with an
intercept and 3 + K predictors, of the form

X, X5,X3,h(X,&,),h(X,5,),...,h(X,§), where §,,...,§ are the knots

This amounts to estimating a total of K + 4 regression
coefficients; for this reason, fitting a cubic spline with K knots
uses K+4 degrees of freedom

Choosing the number and locations of the knots remains
challengsing
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Smoothing Splines

Similar to regression splines but result from
minimizing a residual sum of squares criterion
subject to a smoothness penalty

In the last section we discussed regression splines,
which we create by specifying a set of knots,
producing a sequence of basis functions, and then
using least squares to estimate the spline coefficients

We now introduce a somewhat different approach
that also produces a spline
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Smoothing Splines

Similar to regression splines but result from
minimizing a residual sum of squares criterion
subject to a smoothness penalty
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The function g(x) that minimizes the above can be
shown to have some spe- cial properties: itis a
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Smoothing Splines

noisy observations

B

C
A0

1 “oversmooth”

min (Z{ys —u(t)}¥ + 2 f(#")z)

. . .. O<A<A optimal
- . -+ true signal TR
,,.,,{'f. o .._\,{.N\'.' ,’({-' Pl Ay n"*-'.
~ " . N,
. K < . "_i.\.
. 1 “undersmooth” .
D
:7 A optimal ADoo

25

Local Regression

* Similar to splines, but differs in that the regions are
allowed to overlap, indeed in a very smooth way
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If you have follow-up questions, need help with
your future analyses, or simply want to stay in
touch, feel free to contact me at:

sina.nassiri@sib.swiss
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