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Reproducible research



Reproducible research

“Research is reproducible if it can be reproduced by others”

Of course, rerunning an experiment will give different results—
an observation that gave rise to the development of statistics 
as a discipline.

Our focus here is “reproducible research” (RR) in the sense of 
reproducing conclusions from a single experiment based on 
the measurements from that experiment.

Amstat News, 1 January 2011

Definition of reproducible research

A complete description of the data and 
the analysis of that data — including 
computer programs — so the results can 
be exactly reproduced by others.

Amstat News, 1 January 2011

Reproducible
Research
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c=c(c="c")

c=c(c=c)

An introduction (or reminder) 
about R data structures



What are the main objects in R ?

Vectors

The most important objects in R are vectors

• Atomic vectors: an ordered collection of 
data of the same type

• Lists: an ordered collection of data that can
be of different types.



Attributes

> x <- rnorm(10)

> attributes(x)

NULL

> attr(x, "mylabel") <- "Random normal data"

> attr(x, "mylabel")

[1] "Random normal data"

> attributes(x)

$mylabel

[1] "Random normal data"

> attr(x, "class") <- "randomdata"

Attributes are arbitrary labels attached to the R objects.

Some important attributes in R

• names: allows naming of the component of 
an object

• class: a label attached to the object, which
indicates how actions can be performed on 
the object

• dim: the dimensions of the objects (e.g. for a 
matrix or an array)



> names(x) <- LETTERS[1:10]
> x

A           B           C           D           E           F 
-0.93205027 -0.16194958  0.26727310 -0.07427123  1.54048877 -0.63579513 

G           H           I           J 
0.27141749 -2.03039854 -2.52658864  1.02263626 
attr(,"mylabel")
[1] "Random normal data"
attr(,"class")
[1] "randomdata"

> attributes(x)
$mylabel
[1] "Random normal data"

$class
[1] "randomdata"

$names
[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J"

Types and modes 

All objects in R have a type, which describes
the type of data stored in the object.

Sometimes, we also talk about the mode, a 
simplified version of types. 



Type / Mode

The type can be (see typeof(object)) :

– logical

– integer (numeric)

– double (numeric)

– closure (function)

– builtin (function)

– special (function)

– complex

– character

– raw

– list

– (and a few others)

(in parenthesis: mode, as indicated by the mode() function)

Type / Mode

The type can be (see typeof(object)) :

– logical

– integer (numeric)

– double (numeric)

– closure (function)

> f <- function() {}
> f$a
Error in f$a : object of type 'closure' is not subsettable



Logical vs numeric

> as.numeric( c(FALSE, TRUE) )

[1] 0 1

> as.logical( c(0,1) )

[1] FALSE  TRUE

> c(FALSE, 0)

[1] 0 0

> c(FALSE, 0, TRUE)

[1] 0 0 1

Logical values (TRUE/FALSE) are very easy to convert to 
numeric value (0/1) and back, as in most programming 
languages:

Logical vs numeric

> data <- rnorm(10)

> data

[1] -0.61518461 -0.62574053  1.21586046 -1.42627945
[5]  0.06749257  0.59811401  0.25876230 -0.45936110
[9] -1.83171441  0.28693148

> data > 0

[1] FALSE FALSE TRUE FALSE  TRUE
[6]  TRUE  TRUE FALSE FALSE TRUE

> sum(data > 0)

[1] 5

> mean(data > 0)

[1] 0.5

This is very useful, for example for counting purposes.

In the example below: count how many elements of the 
vector data are larger than zero:



Difference between logical and numeric

> vector <- 1:10 

> vector[ c(0,1) ] 

[1] 1

> vector[ c(F,T) ] 

[1]  2  4  6  8 10

However, in contrast to other programming languages, they 
can not be freely exchanged:

Difference between logical and numeric

> vector <- 1:10 

> vector[ c(0,1) ] 

[1] 1

> vector[ c(F,T) ] 

[1]  2  4  6  8 10

This selects elements 0 (which does not exist) and 1 (=1)

This applies to each element in turn; since the logical vector 
is not long enough, it is recycled to cover the full vector. At 
the end, only elements at even positions are selected.



Storing data into R

> x <- c(1,2,3,4); x
[1] 1 2 3 4
> typeof(x); mode(x)
[1] "double"
[1] "numeric"

> x <- c(1,2,TRUE,3); x
[1] 1 2 1 3
> typeof(x)
[1] "double"

> x <- c(1,2,"true",4); x
[1] "1"    "2"    "true" "4"   
> typeof(x)
[1] "character"

The simplest way to store data into R is the vector, which 
contains an ordered collection of objects of the same type:

Arrays and matrices

> m <- matrix(1:30, ncol=6)

> m[11]; m[1,3]              # Equivalent

[1] 11

[1] 11

> dim(m)

[1] 5 6

> length(m)

[1] 30

Matrices (in 2D) and arrays (in 2D or more) are an extension 
of vectors, where two or more dimensions are specified. 



Arrays

> a <- 1:24
> array(a, dim=c(4,3,2))
, , 1

[,1] [,2] [,3]
[1,]    1    5    9
[2,]    2    6   10
[3,]    3    7   11
[4,]    4    8   12

, , 2

[,1] [,2] [,3]
[1,]   13   17   21
[2,]   14   18   22
[3,]   15   19   23
[4,]   16   20   24

Arrays are constructed in a similar way.

A matrix is a vector

> a <- 1:30

> attr(a, "dim") <- c(5,6)

> class(a) <- "matrix"

> a

[,1] [,2] [,3] [,4] [,5] [,6]

[1,]    1    6   11   16   21   26

[2,]    2    7   12   17   22   27

[3,]    3    8   13   18   23   28

[4,]    4    9   14   19   24   29

[5,]    5   10   15   20   25   30

In fact, a matrix (or array) is stored as a vector (column by 
column) with additional information about its dimensions.



Creating a matrix row by row

> m <- matrix(1:30, ncol=6, byrow=TRUE); m

[,1] [,2] [,3] [,4] [,5] [,6]
[1,]    1    2    3    4    5    6
[2,]    7    8    9   10   11   12
[3,]   13   14   15   16   17   18
[4,]   19   20   21   22   23   24
[5,]   25   26   27   28   29   30

> as.vector(m)

[1]  1  7 13 19 25  2  8 14 20 26  3  9 15 21 27 
[16]  4 10 16 22 28  5 11 17 23 29  6 12 18 24 30

A matrix can also be created row by row, using the byrow
parameter.

However, it will still be stored column by column.

Type of elements in a matrix

> typeof(a)
[1] "integer"
> a[3,3] <- "a"
> a

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] "1"  "6"  "11" "16" "21" "26"
[2,] "2"  "7"  "12" "17" "22" "27"
[3,] "3"  "8"  "a"  "18" "23" "28"
[4,] "4"  "9"  "14" "19" "24" "29"
[5,] "5"  "10" "15" "20" "25" "30"
> typeof(a)
[1] "character"

As for a vector, all elements of a matrix must be of the same 
type:



Lists

> mylist <- list(ages=c(21, 32, 41, 45),
height=c(180, 176, 156, 165),
sex=c("M", "M", "F", "M") )

> mylist
$ages
[1] 21 32 41 45

$height
[1] 180 176 156 165

$sex
[1] "M" "M" "F" "M"
> class(mylist); typeof(mylist)
[1] "list"
[1] "list"

Lists allow the storage of several objects (with different 
types) in a single R object.

Lists

> mylist[1]
$ages
[1] 21 32 41 45
> typeof(mylist[1])
[1] "list"

> mylist[[1]]
[1] 21 32 41 45
> typeof(mylist[[1]])
[1] "double"

> mylist$height
[1] 180 176 156 165

The objects can be accessed either using their rank, or by 
their name.

[x] returns part (one element) of the list

[[x]]returns what is inside this element



Data frames

> data <- as.data.frame( mylist )
> data

ages height sex
1   21    180   M
2   32    176   M
3   41    156   F
4   45    165   M
> class(data); typeof(data)
[1] "data.frame"
[1] "list"

Data frames are usually the preferred method for working 
with datasets that consists of several observations (rows) on 
several variables (columns).

Data frames are an «easier to use» version of lists (where 
all elements of the list have the same length), and a more 
flexible version of matrices: they allow columns of differents 
types, while still making them easy to access.

Data frames vs lists

> class(mylist) <- "data.frame"
> mylist
[1] ages   height sex   
<0 rows> (or 0-length row.names)
> row.names(mylist) <- 1:length(mylist[[1]])
> mylist

ages height sex
1   21    180   M
2   32    176   M
3   41    156   F
4   45    165   M

Lists and data frames are similar: to convert the former into
the latter, one only needs to:
• change the class to data.frame

• give (unique) names to the rows by setting the 
row.names attribute



Data frames

> data
ages height sex

1   21    180   M
2   32    176   M
3   41    156   F
4   45    165   M

> data[1]
ages

1   21
2   32
3   41
4   45

> data[[1]]
[1] 21 32 41 45

Data frames: accessing columns by names

> data$height

[1] 180 176 156 165

> data[, "height"]

[1] 180 176 156 165

> data$h

[1] 180 176 156 165

When accessing a column by name, you can shorten the 
name as long as there is no ambiguity – although this is not 
recommended (the code may break if your script is used on 
a dataset that includes a new columns which causes an 
ambiguity).



Getting information about R objects

> summary(mylist)

Length Class  Mode     

ages   4      -none- numeric  

height 4      -none- numeric  

sex    4      -none- character

The summary() command gives some brief information 
about an R object; its output depends on the type of object:

Getting information about R objects

> str(mylist)

List of 3

$ ages  : num [1:4] 21 32 41 45

$ height: num [1:4] 180 176 156 165

$ sex   : chr [1:4] "M" "M" "F" "M"

# Try this one if you don’t believe the word "detailed" above

> model <- lm( runif(10) ~ rnorm(10) )

> str(model)

The str() command gives detailed information about the 
structure of an R object:



# Simulate data for 3 groups

set.seed(1)

groups <- rep( 1:3, each=10 )

measure <- vector(length=30)

measure[ groups==1 ] <- 5

measure[ groups==2 ] <- 1

measure[ groups==3 ] <- 5

measure <- measure + rnorm(30)

# Perform a one-way ANOVA on this data

boxplot( measure ~ groups )

summary(aov( measure ~ groups ) )

# Perform a one-way ANOVA on this data

> boxplot( measure ~ groups )

> summary(aov( measure ~ groups ) )

Df Sum Sq Mean Sq F value Pr(>F)

groups       1   0.09   0.088   0.018  0.893

Residuals   28 134.85   4.816 



Factors

Factors

Factors represent categorical variables in R.

They are vectors that can contain only values from a 
(finite) predefined set.



Example

> hair <- factor(c("blond", "brown", "red", "blond"))

> hair
[1] blond brown red   blond
Levels: blond brown red

> hair[2] <- "blond"
> hair[2] <- "grey"
Warning message:
In `[<-.factor`(`*tmp*`, 2, value = "grey") :
invalid factor level, NAs generated

> hair
[1] blond <NA>  red   blond
Levels: blond brown red

> class(hair)
[1] "factor"
> typeof(hair); mode(hair)
[1] "integer"
[1] "numeric"

> as.numeric(hair)
[1]  1 NA  3  1
> as.character(hair)
[1] "blond" NA      "red"   "blond"

Internally, R stores factors as integer numbers, along with 
the correspondance between number and labels
(1=blond, 2=brown, 3=red).



Concatenating factors

> c(hair, hair)
[1] 1 2 3 1 1 2 3 1

# Workaround #1
> factor( as.character(hair), as.character(hair2))

# Workaround #2
> unlist( list( hair, hair) )

Simply concatenating factors will create a vector 
made out of the numeric values, which is almost 
certainly not what you want.

Ordered factors

> time <- factor(c(1,2,3,2,2,1), levels=c(1,2,3), 
labels=c("never", "sometimes", "always"), 
ordered=TRUE)

> time

[1] never     sometimes always    sometimes
[5] sometimes never    

Levels: never < sometimes < always

Use the ordered=TRUE option for ordinal (ordered) values:



Comparisons work as expected:

Some statistical modelling or plotting functions can adapt
their parameters for ordered factors.

Some R functions respect ordered factors

> time

[1] never     sometimes always    sometimes
[5] sometimes never    

Levels: never < sometimes < always

> time[2] < time[3]

[1] TRUE

> "sometimes" < "always"

[1] FALSE

# Perform a one-way ANOVA on this data
> boxplot( measure ~ groups )
> summary(aov( measure ~ groups ) )

Df Sum Sq Mean Sq F value Pr(>F)
groups       1 0.09   0.088   0.018  0.893
Residuals   28 134.85   4.816

> groups <- as.factor(groups)
> groups
[1] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3
Levels: 1 2 3
> summary(aov( measure ~ groups ) )

Df Sum Sq Mean Sq F value   Pr(>F)    
groups       2 94.12   47.06   52.95 4.53e-10 ***
Residuals   27  24.00    0.89                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 



By default, data.frame() and read.table() convert all 
non-numerical values into factors.

This can be useful, or (more often…) it can be annoying. 

Options to change this behaviour:
– stringsAsFactors=FALSE, or

– as.is=TRUE (for read.table only)

It can also be set by default using

options(stringsAsFactors=FALSE)

But this is not recommended, as your code may not work
anymore if someone else uses it without specifying the same
default option.

Factors and memory size

> f1 <- sample( c("Homo Sapiens", "Mus Musculus"), 10000,
replace=TRUE)

> summary(f1)
Length     Class      Mode 
10000 character character

> table(f1)
f1
Homo Sapiens         Mus Musculus

4945                 5055 
> f2 <- factor(f1)
> object.size(f1)
80168 bytes
> object.size(f2)
40544 bytes

In previous versions of R, using factors for long vectors 
could save memory :



Factors and memory size

> f1 <- sample( c("Homo Sapiens", "Mus Musculus"), 10000,
replace=TRUE)

> summary(f1)
Length     Class      Mode 
10000 character character

> table(f1)
f1
Homo Sapiens         Mus Musculus

4945                 5055 
> f2 <- factor(f1)
> object.size(f1)
40104 bytes
> object.size(f2)
40312 bytes

In recent versions of R (2.6+) it is not the case anymore, as 
R stores only once each occurrence of a string in a vector:

What we are not going to talk 
about…



Reading data into R

• read.table(), scan(), read.csv(), etc…

did you know that these functions can directly access URLs ?
data <- read.table(

"http://lausanne.isb-sib.ch/~schutz/data/class.txt")

• Reading zip, gzip or other compressed files

• Access other files (e.g. Excel files)

• Read/write to SQL databases

Reproducible
Research

Reminder: getting information about R objects

> summary(mylist)

Length Class  Mode     

ages   4      -none- numeric  

height 4      -none- numeric  

sex    4      -none- character

The summary() command gives some brief information 
about an R object; its output depends on the type of object:

> summary(aov( measure ~ groups ) )

Df Sum Sq Mean Sq F value Pr(>F)

groups       1 0.09   0.088   0.018  0.893

Residuals   28 134.85   4.816



Reminder: getting information about R objects

> summary(mylist)

Length Class  Mode     

ages   4      -none- numeric  

height 4      -none- numeric  

sex    4      -none- character

How does "summary()" know
what to print for different objects ?

> summary(aov( measure ~ groups ) )

Df Sum Sq Mean Sq F value Pr(>F)

groups       1 0.09   0.088   0.018  0.893

Residuals   28 134.85   4.816

Object-oriented programming in R



Fundamentals of object-oriented programming

Object: mechanism (usually data structure) that stores data and provides 
controlled access to it

Class: specification of the data and access mechanisms that a specific 
type of object supplies (blueprint)

Attribute: a piece of data owned by an object (or by a class)

Method: subroutine that provides some kind of access to an object's (or 
class's) data

Inheritance: reuse of attribute and method specifications from an existing 
class

Polymorphism: redefinition of behaviour of inherited methods

Adapted from Damian Conway, «Introductory Object-Oriented Perl»

Two frameworks for Object-oriented programming in R

S3 («old-style»)
– Informal, exists since the beginning

– Widely used, in particular in the base packages

S4 («formal classes»)
– More formal and rigorous, but less interactive

– Since R 1.7

– Used systematically in some contexts, e.g. Bioconductor



The S3 system

Every object has a class label attached to it, either

- explicitely set (using the class() function)

- matrix or array

- integer
- or the same as the mode of the object ( mode() )

Examples of classes

> a <- c(1,1,2,3); class(a)

[1] "numeric"

> M <- matrix(1:4, ncol=2); class(M)

[1] "matrix"

> model <- lm( y ~ x ); class(model)

[1] "lm"

> f <- factor(a); class(f)

[1] "factor"



Getting a summary() of each of these variables

> summary(a)
Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
1.00    1.00    1.50    1.75    2.25    3.00

> summary(M)
V1             V2      

Min.   :1.00   Min.   :3.00  
1st Qu.:1.25   1st Qu.:3.25  
Median :1.50   Median :3.50  
Mean   :1.50   Mean   :3.50  
3rd Qu.:1.75   3rd Qu.:3.75  
Max.   :2.00   Max.   :4.00 

> summary(model)

Call:
lm(formula = y ~ x)

[…]

Residual standard error: 0.1297 on 8 degrees of freedom
Multiple R-squared: 0.997, Adjusted R-squared: 0.9967 
F-statistic:  2695 on 1 and 8 DF,  p-value: 2.102e-11 

> summary(f)
1 2 3 
2 1 1 

Method dispatch: How does R creates the right summary ?

The summary() function is defined as a generic function:

> summary

function (object, ...) 

UseMethod("summary")

<environment: namespace:base>

If object sheldon is of class bazinga, when calling 
summary(sheldon), R will search for a function called  
summary.bazinga, and will call 

summary.bazinga(sheldon)

If summary.bazinga does not exist, R will call 
summary.default(sheldon) .



• Previous slide: should be 2 slides

Method dispatch

> methods("summary")

[1] summary.aov             summary.aovlist       summary.aspell*

[4] summary.connection      summary.data.frame    summary.Date

[7] summary.default         summary.ecdf*         summary.factor

[10] summary.glm             summary.infl          summary.lm

[13] summary.loess*          summary.manova        summary.matrix

[16] summary.mlm             summary.nls*          summary.packageStatus* 

[19] summary.PDF_Dictionary* summary.PDF_Stream*   summary.POSIXct        

[22] summary.POSIXlt         summary.ppr*          summary.prcomp*        

[25] summary.princomp*       summary.srcfile       summary.srcref         

[28] summary.stepfun         summary.stl*          summary.table          

[31] summary.tukeysmooth*   

Non-visible functions are asterisked

Note: to see the body of a non-visible function in R:

getS3method("summary", "princomp")
getAnywhere("summary.princomp")



Method dispatch

> methods(class="lm")

[1] add1.lm*           alias.lm*          anova.lm           

[4] case.names.lm*     confint.lm*        cooks.distance.lm* 

[7] deviance.lm*       dfbeta.lm*         dfbetas.lm*

[10] drop1.lm*          dummy.coef.lm*     effects.lm*

[13] extractAIC.lm*     family.lm*         formula.lm*

[16] hatvalues.lm       influence.lm*      kappa.lm          

[19] labels.lm*         logLik.lm*         model.frame.lm

[22] model.matrix.lm    nobs.lm*           plot.lm           

[25] predict.lm         print.lm         proj.lm*

[28] qr.lm*             residuals.lm       rstandard.lm 

[31] rstudent.lm        simulate.lm*       summary.lm         

[34] variable.names.lm* vcov.lm*          

• What about coef() ?



The print() method

> model

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept)            x  
-0.001372     2.014997 

> class(model)
[1] "lm"
> print(model)   # Equivalent to print.lm(model)

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept)            x  
-0.001372     2.014997

# See print.lm for the details of how this information is printed

How to create an S3 object ?
Example: the mygsea2 package



1) Create a list(*) containing all the attributes your object need

mygsea2 <- function(small.list, big.list) {

…

z <- list(ks.pos=res$resks[1],  ks.neg=res$resks[2],
p.pos=res$resperm[1], p.neg=res$resperm[2])

z$nperms     <- n.perm
z$weights    <- weights
z$small.list <- small.list
z$big.list   <- big.list

z

}

(*) Any R object could be used, but lists are almost always used

2) Label it with the correct class

mygsea2 <- function(small.list, big.list) {

…

z <- list(ks.pos=res$resks[1],  ks.neg=res$resks[2],
p.pos=res$resperm[1], p.neg=res$resperm[2])

z$nperms     <- n.perm
z$weights    <- weights
z$small.list <- small.list
z$big.list   <- big.list

class(z) <- "gsea"
z

}



3) Create the methods the user of the class/object will need

print.gsea <- function(object) {

if (! any( class(object)=="gsea"))

stop("Error: object is not a gsea object.")

cat("GSEA analysis (", object$nperms," perms.)\n\n", sep="")

cat("Small list: ", length(object$small.list),"\n",

"  Big list: ", length(object$big.list),"\n\n", sep="")

coefs <- cbind( c(object$ks.pos, object$ks.neg),

c(object$p.pos, object$p.neg) )

colnames(coefs) <- c("Ks stat","P-value")

rownames(coefs) <- c("+", "-")

printCoefmat(coefs, P.values=TRUE, has.Pvalue=TRUE)

}

• Show examples (list methods, show results 
before/after)



4) If needed, create a new generic method

reduce.gsea <- function(object) {

if (! any( class(object)=="gsea"))

stop("Error: object is not a gsea object.")

# Do something with the object

...

}

reduce <- function(object) UseMethod("reduce")

Shortcomings of this informal system

> class(model)

[1] "lm"

> names(model)

[1] "coefficients"  "residuals"     "effects"      "rank"         

[5] "fitted.values" "assign"        "qr"           "df.residual"  

[9] "xlevels"       "call"          "terms"        "model" 

> coef(model)               # Recommended way

(Intercept)            x 

-0.001371868  2.014997472 

> model$coefficients        # Not recommended

(Intercept)            x 

-0.001371868  2.014997472 

The user can easily access the attributes directly (although
he/she should not !), as with any other R object:

Reproducible
Research



Shortcomings of this informal system

> class(model)

[1] "lm"

> model$coefficients <- c(0,0)

> model

Call:

lm(formula = y ~ x)

Coefficients:

[1]  0  0

> a <- 1:10; class(a) <- "lm"

> summary(a)

Error: $ operator is invalid for atomic vectors

The user can easily modify an attribute or the class itself, 
and R will not complain, unless you call a method that does
not work anymore.

The S4 model

• The S4 model is based on the same ideas 
(«method dispatch») than S3

• It is however implemented in a much formal and 
stricter way.

• It also allows for «multiple dispatch»



Defining a class

setClass("GSEA",
representation( nperms="numeric", weights="numeric",

small.list="character",
big.list="character"),

contains="genelist",
validity=function(object) {
length(object@weights)==length(object@big.list)

}
)

Properties of a class include:
• A name

• A representation: list of attributes (slots) that the object contains

• Inheritance

• A prototype that specifies default values

• A validation function
• etc (see ?setClass )

Creating an object

> gsea <- new("GSEA", nperms=10000, weights=1:10,
small.list=c("a", "b", "c"),
big.list=LETTERS[1:10])

> gsea <- new("GSEA", nperms="a", weights=1:10,
small.list=c("a", "b", "c"),
big.list=LETTERS[1:10])

Error in validObject(.Object) : 
invalid class “GSEA” object: invalid object for slot "nperms" 

in class "GSEA": got class "character", should be or extend 
class "numeric"

> gsea <- new("GSEA", nperms=10000, weights=1:10,
small.list=c("a", "b", "c"),
big.list="a")

Error in validObject(.Object) : invalid class “GSEA” object: 
FALSE



Displaying an object: default output

> gsea
An object of class "GSEA"
Slot "nperms":
[1] 10000

Slot "weights":
[1]  1  2  3  4  5  6  7  8  9 10

Slot "small.list":
[1] "a" "b" "c"

Slot "big.list":
[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J"

The «show» method (equivalent to «print» in S3)

setMethod("show", "GSEA",

function(object) {

cat("GSEA with", object@nperms,"permutations.\n")

}

)

> gsea

GSEA with 10000 permutations.



Slots

> slotNames(gsea)
[1] "nperms" "weights"    "small.list" "big.list" 

> gsea@nperms
[1] 10000

> gsea$nperms
Error in gsea$nperms : $ operator not defined for this S4 class

Attributes in S4 objects are stored in slots.

They are similar to the components of a list for a S3 object, 
but well separated:

Note that you can still access and modify an object’s content 
directly using the slots and the @ operator (and bypass any 
validation !), as with S3 objects, but you really, really should 
not (please ?)

How to list available methods

> showMethods("show")
Function: show (package methods)
object="ANY"
object="classGeneratorFunction"
object="classRepresentation"
object="envRefClass"
object="genericFunction"
object="genericFunctionWithTrace"
object="MethodDefinition"
object="MethodDefinitionWithTrace"
object="MethodSelectionReport"
...
> showMethods( class="GSEA")
Function: initialize (package methods)
.Object="GSEA"

(inherited from: .Object="ANY")

Function: show (package methods)
object="GSEA"



Which system should I use ?

1) «While in Rome, Do as the Romans Do»:
e.g. If your code fits with Bioconductor, use S4

2) Use S4 is there is a strong technical reason for doing so
e.g. if you want to use objects directly in C++ code

3) Generally, use S3 objects and methods.

4) In any case, avoid mixing S3 and S4

Adapted from Google's R Style Guide:

https://google.github.io/styleguide/Rguide.xml

How to access some information in an unknown object ?

1) Look at class(object)  (works with S3 and S4)

2) Look at its documentation

3) Find if the object is S3 or S4:
– names(object) (empty for an S4 object)

– isS4(object) (TRUE for an S4 object)

4) Look at the methods available for the object:
– methods(class="class") for an S3 object

– showMethods(class="class") for an S4 object

and check whether one does what you need

5) Otherwise, look at its attributes (S3, $) or slots (S4, @)

6) If needed, look at a method to see how it handles the attributes:
– method.class for an S3 object

– getMethods( "method", "class") for an S4 object



RC: another  framework for object-oriented development in R

• Introduced in R 2.12.0

• See: ?ReferenceClasses

For more information…

• Thomas Lumley. “Programmer's Niche: A Simple Class, in 
S3 and S4” in R News 4/1, 2004, p. 33-36
http://cran.r-project.org/doc/Rnews/Rnews_2004-1.pdf

• https://github.com/hadley/devtools/wiki



Is there any practical difference between these two loops ?

set.seed(1)
n <- 5000; m <- 5000 
a <- matrix( runif(n*m), ncol=n)

# Loop 1
for (i in 1:nrow(a)) {

for (j in 1:ncol(a)) {
b <- a[i,j]

}
}

# Loop 2
for (i in 1:ncol(a)) {

for (j in 1:nrow(a)) {
b <- a[j,i]

}
}

Efficient programming in R



Why care ?

Techniques used in other languages are often
inefficient in R

In particular, they tend not to scale when the size of 
data increases.

R itself is not the fastest possible language

Finding which method is efficient or not is far from
obvious (in R or any programming language).

Measuring the time used by an expression (I)

Use the commands:

library(microbenchmark)
microbenchmark(expression1, expression2, ...)

which runs the expressions 100 times (by default) and returns a 
summary of the running time.



Which one is fastest ?

> set.seed(1); x <- runif(100)

> sqrt(x)

> x^0.5

> microbenchmark( sqrt(x), x^0.5 )

Unit: microseconds

expr    min      lq     mean  median     uq    max neval cld

sqrt(x)  1.314  1.3720  1.80951  1.4190  1.460 33.621   100  a 

x^0.5 13.105 13.1805 13.48578 13.2405 13.328 31.875   100   b

Note: The last column (cld for "compact letter display") is only 
displayed if the multcomp package is installed.
It provides ranks for the different times, allowing for ties.

Measuring the time used by an expression (II)

Another command:

system.time(expression)

which returns three numbers:

user: the time used to execute the expression itself

system: the time used by the system while executing the 
expression (e.g. time spent reading files)

elapsed: the total time spent
(the one we are usually interested in)



Comparing codes: version 1

n <- 100000

m <- 100

results <- NULL

for (i in 1:n) {

result <- mean( runif( m ) )

results <- c(results, result)

}

Comparing code: version 2

n <- 100000

m <- 100

results <- vector("numeric", n)

for (i in 1:n) {

result <- mean( runif( m ) )

results[i] <- result

}



Comparing the two versions

system.time( 

for (i in 1:n) {

result <- mean( runif( m ) )

...

} )

user  system elapsed 

results <- c(results, result) 21.433   1.264  22.778

results[i] <- result 1.780   0.000   1.782 

One possible improvement: removing a temporary variable

n <- 100000

m <- 100

results <- vector("numeric", n)

for (i in 1:n) {

results[i] <- mean( runif( m ) )

}



Comparing the three versions

system.time( 

for (i in 1:n) {

result <- mean( runif( m ) )

} )

user  system elapsed 

results <- c(results, result) 21.433   1.264  22.778

results[i] <- result 1.780   0.000   1.782 

results[i] <- mean( runif( m ) )   1.832   0.000   1.836 

Is there any practical difference between these two loops ?

set.seed(1)
n <- 5000; m <- 5000 
a <- matrix( runif(n*m), ncol=n)

system.time(
for (i in 1:nrow(a)) {

for (j in 1:ncol(a)) {
b <- a[i,j]

}
}
)

system.time(
for (i in 1:ncol(a)) {

for (j in 1:nrow(a)) {
b <- a[j,i]

}
}
)



“The plural of anectodes is not data”

system.time(
for (i in 1:nrow(a)) {

for (j in 1:ncol(a)) {
b <- a[i,j]

}
}
)
user  system elapsed
18.389   0.000  18.420 

system.time(
for (i in 1:ncol(a)) {

for (j in 1:nrow(a)) {
b <- a[j,i]

}
}
)
user  system elapsed 
16.281   0.000  16.308 

After repeating the test several times under different circumstances

seconds



Profiling

Profiling is a tool that allows the user to know how 
much time was spent on each part of his code.

It works by gathering information about what the 
code is doing at regular intervals (by default: every 
20 ms, or 50 times per second) and saves it into the 
file.

Analyzing this file allows the user to find out which 
parts were slowest and may have to be rethought.

Example

Rprof()
pvalues <- NULL

for (i in 1:10000) {
a <- runif(6)
ttest <- t.test( a[1:3], a[4:6])
pval <- ttest$p.value

pvalues <- c(pvalues, pval)
}
Rprof(NULL)



Displaying the results of the profiling

summaryRprof()
> summaryRprof()
$by.self

self.time self.pct total.time total.pct
"deparse"             0.44    15.94       1.06     38.41
"t.test.default"      0.42    15.22       2.48     89.86
".deparseOpts"        0.24     8.70       0.30     10.87
"match"               0.20     7.25       0.64     23.19
"mean"                0.18     6.52       0.24      8.70
"var"                 0.16     5.80       0.44     15.94
"stopifnot"           0.12     4.35       0.18      6.52
"pmatch"              0.12     4.35       0.12      4.35
"t.test"              0.10     3.62       2.60     94.20
"paste"               0.08     2.90       0.92     33.33
"mode"                0.08     2.90       0.54     19.57
"c"                   0.08     2.90       0.08      2.90
"pt"                  0.08     2.90       0.08      2.90
"match.arg"           0.06     2.17       0.38     13.77
...

What we are not going to talk 
about…



• Markus Schmidberger, Martin Morgan, Dirk Eddelbuettel, Hao 
Yu, Luke Tierney, Ulrich Mansmann. “State of the Art in 
Parallel Computing with R”. Journal of Statistical Software 
2009: JSS

• The CRAN Task View: High-Performance and Parallel 
Computing with R

Parallelizing code in R

Data manipulation/aggregation



Mapping a function to a matrix : apply()

> m

[,1] [,2] [,3] [,4] [,5] [,6]
[1,]    1    6   11   16   21   26
[2,]    2    7   12   17   22   27
[3,]    3    8   13   18   23   28
[4,]    4    9   14   19   24   29
[5,]    5   10   15   20   25   30

> apply(m, MAR=1, FUN=sum, na.rm=TRUE)
[1]  81  87  93  99 105

> rowSums(m)
[1]  81  87  93  99 105

apply() is generally faster than looping over all rows/columns.

More specialized functions (e.g. rowSums) may be faster still.

Mapping a function to a matrix : apply()

> m

[,1] [,2] [,3] [,4] [,5] [,6]
[1,]    1    6   11   16   21   26
[2,]    2    7   12   17   22   27
[3,]    3    8   13   18   23   28
[4,]    4    9   14   19   24   29
[5,]    5   10   15   20   25   30

> apply(m, MAR=2, FUN=function(x) { c(mean(x), median(x) ) } )

[,1] [,2] [,3] [,4] [,5] [,6]
[1,]    3    8   13   18   23   28
[2,]    3    8   13   18   23   28

If the function returns more than one value for each row or 
column, apply will automatically create a matrix instead of a 
vector.



Mapping a function to a list : lapply()

> n <- as.list(as.data.frame(m)); n
$V1
[1] 1 2 3 4 5

$V2
[1]  6  7  8  9 10
...
> lapply(n, FUN=sum )
$V1
[1] 15

$V2
[1] 40
...

> sapply(n, FUN=sum )
V1  V2  V3  V4  V5  V6 
15  40  65  90 115 140 

lapply() and sapply() both map a function to each 
element of a list; the first one returns a list, the other returns 
a vector or an array

How can we map a function to different groups ?

> head(data)

sex height

1   M    183

2   M    183

3   M    182

4   M    175

5   M    158

6   M    179



Mapping a function to groups

> head(data)

sex height

1   M    183

2   M    183

3   M    182

4   M    175

5   M    158

6   M    179

> tapply(data$height, data$sex, FUN=mean)

F        M 

166.1739 178.2500 

Returns a vector or a list, depending on the output 
of the function (scalar or more complex object)

Mapping a function to groups given by several factors

> head(data)

sex height   smoking

1   M    183 nonsmoker

2   M    183 nonsmoker

3   M    182 nonsmoker

4   M    175 nonsmoker

5   M    158 nonsmoker

6   M    179    smoker

> tapply(data$height, list(data$sex, data$smoking), FUN=mean)

nonsmoker smoker

F  166.3500    165

M  178.8421    176



Splitting data according to groups information

> split(data[,"taille"], data[,"sexe"])

$F

[1] 172 165 165 156 172 168 166 176 159 164 150 163 169 160

[15] 165 170 173 165 159 175 170 168 172

$M

[1] 183 183 182 175 158 179 185 177 186 178 183 178 183 177

[15] 180 174 184 168 169 181 170 180 184 181

Splits a vector (or rows of a data.frame) into separate 
elements of a list, ready for further processing.

A typical format for storing data



What R needs to perform any modelling

> data
> values        ind
1      79 treatment1
2      59 treatment1
3      60 treatment1
4      77 treatment1
5      34 treatment1
6      22 treatment2
7       7 treatment2
8      48 treatment2
9      45 treatment2
...
> summary(aov( values ~ ind, data=data) )

How can we convert from one format to another ?

Reproducible
Research

stack and unstack

> data
treatment1 treatment2 treatment3 treatment4 treatment5 treatment6

1         79         22         81         30          2         93
2         59          7         85         68         43         62
3         60         48          9          4         39         78
4         77         45         18         84         16         88
5         34         34         53         15         10         15
> stack(data)

values        ind
1      79 treatment1
2      59 treatment1
3      60 treatment1
4      77 treatment1
5      34 treatment1
6      22 treatment2
7       7 treatment2
...

For more complicated cases, the reshape function 
is efficient (but not easy to use !)



The aggregate() function

aggregate(  x,  by,  FUN  )

Data frame List Function

aggregate() works in a similar way to tapply(), but
• It works on whole data frames (multiple columns)
• It can only produce scalar summaries

The aggregate() function

> data(iris)

> head(iris, 3)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1          5.1         3.5          1.4         0.2  setosa

2          4.9         3.0          1.4         0.2  setosa

3          4.7         3.2          1.3         0.2  setosa

> aggregate( iris[, 1:4], iris[5], FUN=mean )

Species Sepal.Length Sepal.Width Petal.Length Petal.Width

1     setosa        5.006       3.428        1.462       0.246

2 versicolor        5.936       2.770        4.260       1.326

3  virginica        6.588       2.974        5.552       2.026

Note that the by argument is iris[5] (a list, or a data 
frame column) and not iris[,5] (a vector or factor)



Merge: combining two data frames

> clindata
patient age weight

1     i04  30     96
2     i06  35     98
3     i27  43     87
4     i32  57     85
5     i52  28     62
> genedata

patient ESR1expr BRCA1expr
1     i04 7.411949  11.99540
2     i08 7.353114  12.43524
3     i27 8.374046  12.98381
4     i32 7.768207  11.76007
5     i52 8.539683  12.55489

> merge(clindata, genedata)
patient age weight ESR1expr BRCA1expr

1     i04  30     96 7.411949  11.99540
2     i27  43     87 8.374046  12.98381
3     i32  57     85 7.768207  11.76007
4     i52  28     62 8.539683  12.55489

Merge: combining two data frames

> merge( clindata, genedata, all=TRUE )

patient age weight ESR1expr BRCA1expr

1     i04  30     96 7.411949  11.99540

2     i06  35     98       NA        NA

3     i27  43     87 8.374046  12.98381

4     i32  57     85 7.768207  11.76007

5     i52  28     62 8.539683  12.55489

6     i08  NA     NA 7.353114  12.43524



Match: a general way for finding common values

> newlist <- c("GUCA1A", "LINC00152", "RFC2", "PAX8", "PAX8", 

"WFDC2", "MAPK1", "MAPK1", "ADAM32")

> reflist <- c("RFC2", "HSPA6", "PAX8", "PAX8", "GUCA1A",

"WFDC2", "MAPK1", "ADAM32" ) 

> match(newlist, reflist)

[1]  5 NA  1  3  3  6  7  7  8

> newlist %in% reflist

[1]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE

GUCA1A
LINC00152
RFC2
PAX8
PAX8
WFDC2
MAPK1
MAPK1
ADAM32

1. RFC2
2. HSPA6
3. PAX8
4. PAX8
5. GUCA1A
6. WFDC2
7. MAPK1
8. ADAM32

5
NA

1
3
3
6
7
7
8

Character manipulations



Basic functions for character manipulation in R

> string <- paste("This", "is", "a", "string")

> string

[1] "This is a string"

> paste("This", "is", "a", "string", sep="-")

[1] "This-is-a-string"

> nchar(string)

16

> substring(string, 6, 7)

[1] "is"

> paste( "chr", c(1:22,"X", "Y"), sep="")

[1]  "chr1"  "chr2"  "chr3"  "chr4"  "chr5"  "chr6"  "chr7"

[8]  "chr8"  "chr9" "chr10" "chr11" "chr12" "chr13" "chr14"

[15] "chr15" "chr16" "chr17" "chr18" "chr19" "chr20" "chr21"

[22] "chr22"  "chrX"  "chrY"

> paste0( "chr", c(1:22,"X", "Y"))  # Same result

strsplit(): splitting a string according to presence of a substring

> transcript <-

"NST00000293272(14),ENST00000366113(14),NM_002985(14)" 

> strsplit(transcript, ",")

[[1]]

[1] "NST00000293272(14)"  "ENST00000366113(14)" "NM_002985(14)" 



strsplit(): splitting a string according to presence of a substring

# From Affymetrix annotations:

> genesymbols <- "LOC441259 /// POLR2J2 /// POLR2J3 /// UPK3BL"

> strsplit(genesymbols, " /// ")

[[1]]

[1] "LOC441259" "POLR2J2"   "POLR2J3"   "UPK3BL" 

> genesymbols <- "LOC441259"

> strsplit(genesymbols, " /// ")

[[1]]

[1] "LOC441259"

Splitting a string at all possible positions

> sequence <- "ATGCTCTCTGAAAACGTT"
> strsplit(sequence, "")              # We split on the empty string
[[1]]
[1] "A" "T" "G" "C" "T" "C" "T" "C" "T" "G" "A" "A" "A" "A" "C" "G" "T" "T"

> strsplit(sequence, "")[[1]]
[1] "A" "T" "G" "C" "T" "C" "T" "C" "T" "G" "A" "A" "A" "A" "C" "G" "T" "T"
> table( strsplit(sequence, "")[[1]] )

A C G T 
5 4 3 6 



Regular expressions

R includes several functions for matching strings 
using regular expressions :

• grep() : find if a string contains a given
pattern (see also regexpr() )

• sub() : find a pattern in a string and replace it
(see also gsub() )

Regular expressions: matching column names 

> genedata
patient exprESR1 exprBRCA1

1     i04 7.411949  11.99540
2     i08 7.353114  12.43524
3     i27 8.374046  12.98381
4     i32 7.768207  11.76007
5     i52 8.539683  12.55489
> grep( "^expr", names(genedata) )
[1] 2  3
> genedata[ , grep( "^expr", names(genedata) ) ]

exprESR1 exprBRCA1
1 7.411949  11.99540
2 7.353114  12.43524
3 8.374046  12.98381
4 7.768207  11.76007
5 8.539683  12.55489



Substitutions

> locations <- c("chr6p21.3", "chr7q11.23", "chr1q23",

"chr2q13",   "chr6p21.1", "chr3p21",

"chr17q11.2-q12", "chr10q24.3-qter")

> sub("^chr([0-9]+).+", "\\1", locations )

[1] "6" "7" "1" "2" "6" "3" "17" "10"

> locations <- c("chr6p21.3", "chr7q11.23", "chr1q23",

"chr2q13", "chr6p21.1", "chr3p21",

"chr17q11.2-q12", "chrXq26.3")

> sub("^chr([0-9]).+", "\\1", locations )

[1] "6"         "7"         "1"         "2"         "6"

[6] "3"        "17" "chrXq26.3"

Assign and retrieve variables «on the fly»

> assign("x" , mean(runif(10)) )

> get("x")

[1] 0.330505

> patientid <- "10"

> assign( paste("treatment", patientid, sep=""), 

sample( c("control", "treatment"), 1) )

> treatment10

[1] "treatment"



Use eval to create R commands «on the fly»

for (i in 1:12) {
eval( parse(text=paste("temp.",i," <- c(",i,",",i,")",

sep="")))
}

> ls()
[1] "i"       "temp.1"  "temp.10" "temp.11" "temp.12"
[6] "temp.2"  "temp.3" "temp.4"  "temp.5"  "temp.6“
[11] "temp.7"  "temp.8"  "temp.9" 
> temp.1
[1] 1 1
> temp.10
[1] 10 10

Namespaces



What happens when several
packages define the same

function?

Example: the Hmisc package

> library(Hmisc)

Loading required package: lattice

Loading required package: survival

Loading required package: Formula

Loading required package: ggplot2

Attaching package: ‘Hmisc’

The following objects are masked from ‘package:base’:

format.pval, round.POSIXt, trunc.POSIXt, units



Namespaces

Each R package has its own namespace

Hmisc

format.pval

units

stats

var

median

base

summary

is.factor
…

… …
format.pval

mean

Search path

> search()

[1] ".GlobalEnv"        "package:Hmisc"     "package:ggplot2"  

[4] "package:Formula"   "package:survival"  "package:lattice"  

[7] "package:stats"     "package:graphics"  "package:grDevices"

[10] "package:utils"     "package:datasets"  "package:methods"  

[13] "Autoloads"         "package:base" 

When looking for a function, R follows a search 
path through the namespaces until it finds the first 
occurrence of the function it is looking for:



Namespaces

> Hmisc::format.pval(0.05)

[1] "0.05"

> base::format.pval(0.05)

[1] "0.05"

Several packages can provide the same function, 
without any interference.

Functions from different packages can be 
differentiated using ::

Namespaces

# My own summary

summary.default <- function( data ) {

# Start by getting the original summary

originalsummary <- base::summary.default(data)

# Then we modify the output as we want

…

}

This allows the redefinition of a function, still 
allowing access to its original version:

Deleting the new function will let the original one 
available.



Example: redefining the addition 

> 1+1

[1] 2

> `+` <- function(x, y) { base::`+`( base::`+`(x, y), 0.1 )  }

> 1+1

[1] 2.1

> rm(`+`)   # Don't forget to go back to a "sane" version of 
the addition.

> 1+1

[1] 2

Exporting function

A package can choose to make a function 
available outside its namespace by
exporting it.

Otherwise, by default, the code is only 
available to other functions from this package.



Example: the t.test function in package stats

> t.test
function (x, ...) 
UseMethod("t.test")
<bytecode: 0x55ccd563e0c0>
<environment: namespace:stats>

> methods(t.test)
[1] t.test.default* t.test.formula*
see '?methods' for accessing help and source code
> t.test.default
Error: object 't.test.default' not found

The package exports t.test (which is then available 
from outside) but not t.test.default, which you are 
supposed to call through t.test only.

How to access a non-exported function ?

> getAnywhere(t.test.default)
A single object matching ‘t.test.default’ was found
It was found in the following places

registered S3 method for t.test from namespace stats
namespace:stats

with value

function (x, y = NULL, alternative = c("two.sided", "less", 
"greater"), 

mu = 0, paired = FALSE, var.equal = FALSE, conf.level = 0.95, 
...) 

{
alternative <- match.arg(alternative)
if (!missing(mu) && (length(mu) != 1 || is.na(mu))) 

To get the source code:



How to access a non-exported function ?

> stats::t.test.default()

Error: 't.test.default' is not an exported object from 
'namespace:stats'

> stats:::t.test.default()

Error in stats:::t.test.default() : 

argument "x" is missing, with no default

To run it:

However, if a function is not exported, there is 
usually a good reason.

R best practices



What we are not going to discuss: style rules

• How to format your code

• How to indent your code

• How to name your identifiers

• How to use comments

• …

Suggestion of styleguides:
• Google styleguide: https://google.github.io/styleguide/Rguide.xml

• Hadley Wickham's R style guide: http://adv-r.had.co.nz/Style.html

<-
vs

=



Assignment operators: <- vs =

• R provides 5 assignment operators:
?assignOps

Description

Assign a value to a name.

Usage

x <- value
x <<- value
value -> x
value ->> x
x = value

• We will discuss <<- later

• -> and ->> allow the assignment to be done left to right 
(something impossible with =)

Assignment operators: <- vs =

• Originally, R would only accept <- for assignment

• This choice has a historical origin in the APL programming
language, at a time where "←" was an actual key on the 
keyboard

• The "=" operator was added in 2001, for improving
compatibility with other languages.

• Both Hadley Wickam's and Google's styleguides suggest
using "<-" only, and so does the R community in general

• The two operators are mostly interchangeable

• There are a few exceptions, though…



Assignment operators: <- vs =

• Function parameters can only be specified with an "=":
mean(data, na.rm=TRUE) # works

mean(data, na.rm<-TRUE) # does not work

• However, if you want to specify an assignment within a 
parameter, you must use <-

• For example, if you want to compute an expression, store it
and measure its execution time simultaneously:

system.time(result<-expression) # works

Assignment operators: <- vs =

• Using result=expression would not work, as the 
system.time() function does not accept a result
parameter

• An alternative way of doing this would be:
system.time( (result=expression) )

• More generally, <- can be used everywhere, while = can only
be used at the "top level"

• For example:
if (x <- 0) 1 else 0 # works

if (x = 0)  1 else 0 # does not work

• One reason for this: confusing x=0 and x==0 is one of the 
most common mistake in other programming languages

• But in most cases, you can probably avoid using such a 
construct anyway…



Local vs global variables

> m <- 1

> f <- function() { m <- m + 1 }

> f()

> m

[1] 1

Local vs global variables

> m <- 1

> f <- function() { m <<- m + 1 }

> f()

> m

[1] 2

The "<<-" operator forces the assignment to work 
on the global m variable, and not on a local variable 
that exists only inside the loop.



> sample(1:100, 10, replace=T)

[1] 27 38 58 91 21 90 95 67 63 

> A <- "a"; B <- "b"; C <- "c"; T <- "t"

> sample(1:100, 10, replace=T)



> A <- "a"; B <- "b"; C <- "c"; T <- "t"

> sample(1:100, 10, replace=T)

Error in sample(1:100, 10, replace = T) : invalid 'replace' argument

‘T’ and ‘F’, as shortcuts for TRUE and FALSE, can freely be 
redefined by the user, something impossible with the full form:

> TRUE <- "t"

Error in TRUE <- "t" : invalid (do_set) left-hand side to assignment

This will yield an error, or even worse…

If you are really vicious…

> T <- FALSE

> sample(1:10, 10, replace=T)

[1]  7  6  3  4 10  1  8  5  9  2

# What will happen, more likely:

> T <- complicated_function( many, many, complicated, arguments, and

the, function, returns, FALSE, in, the,

end )

> sample( 1:10, 10, replace=T )

[1]  7  6  3  4 10  1  8  5  9  2



selectcolumns <- function( m, cols, rows ) {

m1 <- m [, cols]

m2 <- m1[rows, ]

m2

}

nrows <- 20

m1 <- data.frame( a=runif(nrows), b=runif(nrows), c=runif(nrows) )

row.names(m1) <- paste( "row", 1:nrow(m1), sep="")

cols <- c("b", "c")

rows <- c("row10", "row12")

> selectcolumns(m1, cols, rows)

b         c

row10 0.8578518 0.2864960

row12 0.3767570 0.7874534

selectcolumns <- function( m, cols, rows ) {

m1 <- m [, cols]

m2 <- m1[rows, ]

m2

}

nrows <- 20

m1 <- data.frame( a=runif(nrows), b=runif(nrows), c=runif(nrows) )

row.names(m1) <- paste( "row", 1:nrow(m1), sep="")

cols <- "b"

rows <- c("row10", "row12")

> selectcolumns(m1, cols, rows)

Error in m1[rows, ] : incorrect number of dimensions



By default, R removes all dimensions that it deems not useful:

> m <- matrix(1:4, nrow=2)

> m[,1:2]

[,1] [,2]

[1,]    1    3

[2,]    2    4

yields a matrix, but

> m[,1]

[1] 1 2

yields a vector (instead of 2 x 1 matrix).

To avoid this, use the drop=FALSE option to the matrix 
subsetting: 

> m[,1]

[1] 1 2

> m[,1, drop=FALSE]

[,1]

[1,]    1

[2,]    2

> m[1,, drop=FALSE]



It is not possible to set drop=FALSE as the default mode.

Doing this would mean that accessing one element in a matrix 
would return a 1x1 matrix:

> M[2,3, drop=FALSE]

[,1]

[1,]    4

which is almost certainly not what you want.

Another possible consequence

> head(data1, 3)

identifier   var1    var2

1       3862 0.87207 -2.0105

2       1577 0.01075  0.1970

3       5150 1.28249 -0.4650

> head(data2, 3)

identifier  var3    var4

1       3862 0.1383 -2.0165

2       1577 2.3219  0.6855

3       5150 0.6865  0.7783

> data <- cbind( data1[, c("var1", "var2")],
data2[, c("var3", "var4")], data1[, "identifier"] )



Matrices converted to vectors lose their names !

> head(data1, 3)

identifier   var1    var2

1       3862 0.87207 -2.0105

2       1577 0.01075  0.1970

3       5150 1.28249 -0.4650

> head(data2, 3)

identifier  var3    var4

1       3862 0.1383 -2.0165

2       1577 2.3219  0.6855

3       5150 0.6865  0.7783

> data <- cbind( data1[, c("var1", "var2")],
data2[, c("var3", "var4")], data1[, "identifier"] )

> head(data, 3)

var1     var2     var3    var4 data1[, "identifier"]

1   0.87207 -2.01057  0.13836 -2.0165                  3862

2   0.01075  0.19709  2.32192  0.6855                  1577

3   1.28249 -0.46507  0.68659  0.7783                  5150

Avoid the attach command

# Starting from a clean R session

> data <- list( a=1, b=2 )

> attach(data)

> a

[1]   1

# equivalent to

> data$a

[1]   1



Avoid the attach command

> a <- 0; data <- list(a=1, b=2) # a = 0
> attach(data)                      # a = ?
# Warning displayed
> a <- 3 # a = ?  data$a = ?
> rm(a)                        # a = ?
> data$a <- 4 # a = ? 
> attach(data) # a = ?
# Warning message displayed
> rm(a) # a = ?
> detach(data) # a = ?
> detach(data) # a = ?
> attach(data) # a = ?
> rm(list = ls()) # a = ?
> detach(data) # a = ?

Avoid the attach command

> a <- 0; data <- list(a=1, b=2) # a = 0   
> attach(data)                      # a = 0
# Warning displayed
> a <- 3 # a = 3  data$a = 1
> rm(a)                        # a = 1
> data$a <- 4 # a = 1 
> attach(data) # a = 4
# Warning message displayed
> rm(a) # a = 4  (error message)
> detach(data) # a = 1
> detach(data) # Error message
> attach(data) # a = 4
> rm(list = ls()) # a = 4
> detach(data) # Error message



Use «with», «within» or «transform» instead

> head(clinicaldata, 3)

phenotype  genotype

1 0.8142518 0.9347601

2 0.9287772 0.3461621

3 0.1474810 0.5330606

> with( clinicaldata,  plot( genotype, phenotype ) )

# Equivalent to

> plot( clinicaldata$genotype, clinicaldata$phenotype )

Use «with», «within» or «transform» instead

> head(clinicaldata, 3)

phenotype  genotype

1 0.8142518 0.9347601

2 0.9287772 0.3461621

3 0.1474810 0.5330606

> new <- within(clinicaldata,  genotype <- log2(genotype)))

> new

phenotype    genotype

1 0.8142518 -0.09733194

2 0.9287772 -1.53048032

3 0.1474810 -0.90762854



Use «with», «within» or «transform» instead

> head(clinicaldata, 3)

phenotype  genotype

1 0.8142518 0.9347601

2 0.9287772 0.3461621

3 0.1474810 0.5330606

> transform(clinicaldata, genotype = log2( genotype))

# Equivalent to

> clinicaldata$genotype <- log2(clinicaldata$genotype)

Using transform() is clearer than using the direct 
command, but less flexible than using within().

Subset

> head(clinicaldata, n=3)
phenotype age sex weight

1  4.373546  NA   F     77
2  5.183643  46   M     89
3  4.164371  52   M     76

> subset(clinicaldata, sex=="F" & age <40, select=-weight)
phenotype age sex

8   5.738325  39   F
16  4.955066  24   F
17  4.983810  32   F
20  5.593901  36   F

The subset commands allows the selection of rows (or 
elements of vectors) based on logical expressions, and 
selection of columns based on names.

It removes NA values from columns where a selection is done.



Subset

The subset function is useful when working in an interactive 
session, but its use is not recommended in scripts, according
to the help page:

Warning:

This is a convenience function intended for 
use interactively. For programming it is 
better to use the standard subsetting
functions like ‘[’, and in particular the 
non-standard evaluation of argument ‘subset’ 
can have unanticipated consequences.

How can we improve this code ?

> annotations <- read.table("annotations-from-provider.txt")

identifier entrezid gene

1          31    73398    H

2          41    55359    P

3          89    97377    H

4          63    37348    Y

5          17     4465    T

6          55    55583    Z

7          55    17866    K

...

# We do not need the gene code

> annotations <- annotations[,1:2]

If available, always use data frame names instead of column 
numbers:

> annotations <- annotations[, c("identifier", "entrezid") ]

Reproducible
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Loading file affy-annot.txt into R

ProbeSet ID ID Target Description

1  1007_s_at U48705 discoidin domain receptor tyrosine kinase 1

2  1053_at M87338 replication factor C (activator 1) 2, 40kDa

3  117_at X51757 heat shock 70kDa protein 6 (HSP70B')

4  121_at X69699 paired box 8

5  1255_g_at L36861 guanylate cyclase activator 1A (retina)

6  1294_at L13852 ubiquitin-like modifier activating enzyme 7

7  1487_at L38487 Human ER-related protein (hERRa1) mRNA, 3' end

8  1316_at X55005 thyroid hormone receptor, alpha

9  1320_at X79510 protein tyrosine phosphatase, non-receptor type 21

10 1405_i_at M21121 chemokine (C-C motif) ligand 5

11 1431_at J02843 cytochrome P450, family 2, subfamily E, polypeptide 1

12 1438_at X75208 EPH receptor B3

Where are the 4 missing rows?

> data <- read.table("affy-annot.txt", sep="\t")

> dim(data)

[1] 8 3

Loading file affy-annot.txt into R

ProbeSet ID ID Target Description

1  1007_s_at U48705 discoidin domain receptor tyrosine kinase 1

2  1053_at M87338 replication factor C (activator 1) 2, 40kDa

3  117_at X51757 heat shock 70kDa protein 6 (HSP70B')

4  121_at X69699 paired box 8

5  1255_g_at L36861 guanylate cyclase activator 1A (retina)

6  1294_at L13852 ubiquitin-like modifier activating enzyme 7

7  1487_at L38487 Human ER-related protein (hERRa1) mRNA, 3' end

8  1316_at X55005 thyroid hormone receptor, alpha

9  1320_at X79510 protein tyrosine phosphatase, non-receptor type 21

10 1405_i_at M21121 chemokine (C-C motif) ligand 5

11 1431_at J02843 cytochrome P450, family 2, subfamily E, polypeptide 1

12 1438_at X75208 EPH receptor B3

Where are the 4 missing rows?

> data <- read.table("affy-annot.txt", sep="\t")

> dim(data)

[1] 8 3



Loading file affy-annot.txt into R

ProbeSet ID ID Target Description

1  1007_s_at U48705 discoidin domain receptor tyrosine kinase 1

2  1053_at M87338 replication factor C (activator 1) 2, 40kDa

3  117_at X51757 heat shock 70kDa protein 6 (HSP70B'...' end

8  1316_at X55005 thyroid hormone receptor, alpha

9  1320_at X79510 protein tyrosine phosphatase, non-receptor type 21

10 1405_i_at M21121 chemokine (C-C motif) ligand 5

11 1431_at J02843 cytochrome P450, family 2, subfamily E, polypeptide 1

12 1438_at X75208 EPH receptor B3

The 4 missing lines are all in the 3rd row.

> data <- read.table("affy-annot.txt", sep="\t")

> dim(data)

[1] 8 3

> data <- read.table("affy-annot.txt", sep="\t", quote="" )
> dim(data)
[1] 12  3

• Assume as little as possible about your data

• In particular, always specify the «quote» 
argument when reading a file (especially if you do 
not use quotes !):

Reproducible
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P. Dalgaard, «Introductory Statistics with R» (1st edition, 2002), p. 118

Reproducible
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The code does not work in R 2.15

> library(ISwR)

> data(red.cell.folate)

> attach(red.cell.folate)

> stripchart(folate~ventilation, "jitter", jit=0.05, pch=16,

+ vert=T)

Error in eval(predvars, data, env) : invalid 'envir' argument



CHANGES IN R VERSION 2.7.0

GRAPHICS CHANGES

o   stripchart() is now a generic function, with default and
formula methods defined.  Additional graphics parameters may
be included in the call.  Formula handling is now
similar to boxplot().

stripchart              package:graphics               R Documentation

1-D Scatter Plots

Description:

‘stripchart’ produces one dimensional scatter plots (or dot plots)
of the given data.  These plots are a good alternative to
‘boxplot’s when sample sizes are small.

Usage:

stripchart(x, method = "overplot", jitter = 0.1, offset = 1/3,
vertical = FALSE, group.names, add = FALSE,
at = NULL, xlim = NULL, ylim = NULL,
ylab=NULL, xlab=NULL, dlab="",
log = "", pch = 0, col = par("fg"), cex = par("cex“)

Arguments:

x: the data from which the plots are to be produced.  The data
can be specified as a single numeric vector, or as list of
numeric vectors, each corresponding to a component plot.
Alternatively a symbolic specification of the form ´x ~ g´
can be given, indicating the observations in the vector ´x´
are to be grouped according to the levels of the factor ´g´. 

R 2.6



stripchart(x, method = "overplot", jitter = 0.1, offset = 1/3,
vertical = FALSE, group.names, add = FALSE,
at = NULL, xlim = NULL, ylim = NULL,
ylab=NULL, xlab=NULL, dlab="",
log = "", pch = 0, col = par("fg"), cex = par("cex“)

Arguments:

x: the data from which the plots are to be produced.  The data
can be specified as a single numeric vector, or as list of
numeric vectors, each corresponding to a component plot.
Alternatively a symbolic specification of the form ´x ~ g´
can be given, indicating the observations in the vector ´x´
are to be grouped according to the levels of the factor ´g´. 

R 2.6

stripchart(folate~ventilation, "jitter", jit=0.05,pch=16,vert=T)

stripchart              package:graphics               R Documentation

1-D Scatter Plots

Description:

‘stripchart’ produces one dimensional scatter plots (or dot plots)
of the given data.  These plots are a good alternative to
‘boxplot’s when sample sizes are small.

Usage:

stripchart(x, ...)

## S3 method for class 'formula'
stripchart(x, data = NULL, dlab = NULL, ...,

subset, na.action = NULL)

## Default S3 method:
stripchart(x, method = "overplot", jitter = 0.1, offset = 1/3,

vertical = FALSE, group.names, add = FALSE,
at = NULL, xlim = NULL, ylim = NULL,
ylab=NULL, xlab=NULL, dlab="", glab="",
log = "", pch = 0, col = par("fg"), cex = par("cex"), 
axes = TRUE, frame.plot = axes, ...)

R 2.7



stripchart(x, data = NULL, dlab = NULL, ...,
subset, na.action = NULL)

## Default S3 method:
stripchart(x, method = "overplot", jitter = 0.1, offset = 1/3,

vertical = FALSE, group.names, add = FALSE,
at = NULL, xlim = NULL, ylim = NULL,
ylab=NULL, xlab=NULL, dlab="", glab="",
log = "", pch = 0, col = par("fg"), cex = par("cex"), 
axes = TRUE, frame.plot = axes, ...)

R 2.7

stripchart(folate~ventilation, "jitter", jit=0.05,pch=16,vert=T)

Corrected code in the second edition of the book

> library(ISwR)

> data(red.cell.folate)

> attach(red.cell.folate)

> stripchart(folate~ventilation, "jitter", jit=0.05, pch=16,

+ vert=T)

Error in eval(predvars, data, env) : invalid 'envir' argument

> stripchart(folate~ventilation, method="jitter",

+ jitter=0.05, pch=16, vert=T)

P. Dalgaard, «Introductory Statistics with R» (2nd edition, 2008), p. 134

Also worth noting: the short parameter «jit» has been replaced by the 
full name «jitter»



CHANGES IN R VERSION 2.4.0 

USER-VISIBLE CHANGES 

o The functions read.csv(), read.csv2(), read.delim(), 
read.delim2() now default their 'comment.char' argument to "". 
(These functions are designed to read files produced by other 
software, which might use the # character inside fields, but 
are unlikely to use it for comments.) 

Reproducible
Research

Storing the session information

> library(affy)
> sessionInfo()
R version 2.15.1 (2012-06-22)
Platform: x86_64-pc-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_AU.UTF-8       LC_NUMERIC=C              
[3] LC_TIME=en_AU.UTF-8        LC_COLLATE=en_AU.UTF-8    
[5] LC_MONETARY=en_AU.UTF-8    LC_MESSAGES=en_AU.UTF-8   
[7] LC_PAPER=C                 LC_NAME=C                 
[9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils datasets  methods   base     

other attached packages:
[1] affy_1.34.0        Biobase_2.16.0     BiocGenerics_0.2.0

loaded via a namespace (and not attached):
[1] affyio_1.24.0         BiocInstaller_1.4.7   preprocessCore_1.18.0
[4] zlibbioc_1.2.0 

Reproducible
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Storing the session information

> sink("logfile.txt")
> sessionInfo()
...
> sink()

> capture.output( sessionInfo(), file="logfile.txt" )
> log <- capture.output( sessionInfo() )
[1] "R version 2.15.1 (2012-06-22)"                               
[2] "Platform: x86_64-pc-linux-gnu (64-bit)"                      
[3] ""                                                            
[4] "locale:"                                                     
[5] " [1] LC_CTYPE=en_AU.UTF-8       LC_NUMERIC=C              "  
[6] " [3] LC_TIME=en_AU.UTF-8        LC_COLLATE=en_AU.UTF-8    "  
[7] " [5] LC_MONETARY=en_AU.UTF-8    LC_MESSAGES=en_AU.UTF-8   "  

...

Reproducible
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Use sink() and capture.output() .

What could go wrong in this code ?

n <- 100

results <- rep(0, n)

for (i in 1:n) {

data <- read.table(paste("data", i, ".txt", sep=""))

model <- lm( data$y ~ data$x )

results[i] <- coef(model)[2,1]

}



Managing errors

> n <- 100

> results <- rep(NA, n)

> for (i in 1:n) {

+   data <- read.table(paste("data", n, ".txt", sep=""))

+   model <- lm( data$y ~ data$x )

+   results[i] <- coef(model)[2,1]

+ }

Error in file(file, "rt") : cannot open the connection

In addition: Warning message:

In file(file, "rt") :

cannot open file 'data100.txt': No such file or directory

A potential problem if you don't check for errors

data <- read.table("data1")

# Do something with the data 

...

data <- read.table("data2")

# Do something with the data 

...

If you execute this code interactively (e.g. by 
pasting it in an R console) and the second 
read.table() call fails and you miss the error, then 
the data variable will still contain the content of file 
"data1", so that the rest of the code will seem to 
work ok.



Error handling: try()

n <- 100
results <- rep(0, n)
for (i in 1:n) {

data <- try( read.table(paste("data", i, ".txt", sep="")) )
if ( inherits(data, "try-error")) {

results[i] <- NA
} else {

model <- lm( data$y ~ data$x )
results[i] <- coef(model)[2,1]

}
}

See try() and tryCatch()

# Generate a dataset
set.seed(1)
x <- runif(100)
y <- 2*x + rnorm(length(x))/10
data <- data.frame(x, y)

# Fit a linear model
model <- lm( data$y ~ data$x )

# Generate a second dataset
x <- runif(100)
y <- 2*x + rnorm(length(x))/10
newdata <- data.frame(x, y)

# Use the linear model to perform a prediction on the newdata
predict(model, newdata)

This code does not return any error message, but it does not 
work. Why ?



# Generate a dataset
set.seed(1)
x <- runif(100)
y <- 2*x + rnorm(length(x))/10
data <- data.frame(x, y)

# Fit a linear model
model <- lm( data$y ~ data$x )

# Generate a second dataset
x <- runif(100)
y <- 2*x + rnorm(length(x))/10
newdata <- data.frame(x, y)

# Use the linear model to perform a prediction on the newdata
predict(model, newdata)

This code does not return any error message, but it does not 
work. Why ?

Manually

H2-D -- CD8
Df Sum Sq Mean Sq F value   Pr(>F)    

Nlrc5        1  33571   33571 343.424 1.71e-14 ***
CIITA        1     77      77   0.785    0.386    
Nlrc5:CIITA  1    609     609   6.225    0.021 *  
Residuals   21   2053      98                     
---
H2-D -- CD4

Df Sum Sq Mean Sq F value   Pr(>F)    
Nlrc5        1  31499   31499  90.402 4.65e-09 ***
CIITA        1   3467    3467   9.951  0.00478 ** 
Nlrc5:CIITA  1    447     447   1.283  0.27009    
Residuals   21   7317     348                     
---
H2-D -- NK

Df Sum Sq Mean Sq F value   Pr(>F)    
Nlrc5        1  18867   18867  70.462 3.78e-08 ***
CIITA        1    386     386   1.441    0.243    
Nlrc5:CIITA  1    403     403   1.506    0.233    
Residuals   21   5623     268                     

Data analysis

Graphics

Stats results

Article/Report

Manually



Use knitr in order to prepare reports

Allows you to integrate your results in a report.

Write the R code directly with the text, andlater 
integrate the results directly into the text.

Knitr: http://yihui.name/knitr/

Reproducible
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Dynamic documents
with knitR



Dynamic documents

• Based on the idea of literate programming

• Combine program code and explanation/ 
documentation in same document (Donald Knuth, 
1984)

• Documents in which the information is always up-
to-date

• Write your report step by step while processing the 
data, in the same file

• Integrate your results in a report: write the R code 
directly with the text, and later integrate the results 
directly into the text.

Dynamic documents: software of interest

• Sweave:
http://www.stat.uni-muenchen.de/~leisch/Sweave/

• knitr : http://yihui.name/knitr/

• LaTeX: http://www.latex-project.org/

• markdown: 
http://daringfireball.net/projects/markdown/



http://yihui.name/knitr/

Why use knitr ?

• all-in-one: analysis, documenting, formatting, reporting

• no annoying and error-prone copy-pasting

• modifying input data or code: changes are directly reflected 
in report

• easy to display underlying code in report when needed

• split code in chunks, but can still access all previously 
defined

• variables (single R session)

• flexible: code externalization, child documents, caching,...



What we need to use knitR

• R

• knitr R package

• Editor with some support for R and configured to 
provide support for knitr
RStudio is strongly suggested, 
otherwise see http://yihui.name/knitr/demo/editors/

• TeX Live (required for PDF output)

• pandoc

• learn from demos and examples:

– http://yihui.name/knitr/

– http://rpubs.com

RStudio

http://www.rstudio.com/products/rstudio/download/



How can we write the report ?

• Write .Rnw files, and generate PDF reports using 
LaTeX

• keep general structure of standard LATEX 
document:
\documentclass{...}
\usepackage{...}
\begin{document}
...
\end{document}

• Use the same LATEX packages/configurations as 
usual

• Add R chunks in the LaTeX code

If LaTeX is too scary, consider:

• LYX: http://www.lyx.org/

• markdown:
– http://www.rstudio.com/ide/docs/auth
oring/using_markdown

– https://github.com/adam-p/markdown-
here/wiki/



Markdown and RMarkdown

Markdown is a simple plain text format that 
allows you to specify the layout of a document, 
and which can easily be converted to different 
formats afterwards.

R Markdown combines the core syntax of 
markdown (easy-to-write plain text format) with 
embedded R code chunks that are run so their 
output can be included in the final document. 

R Markdown v2 (http://rmarkdown.rstudio.com/)



R Markdown example

---

title: "Untitled"

author: "Frédéric Schütz"

date: "23/01/2015"

output: html_document

---

This is an R Markdown document. Markdown is a simple 
formatting syntax for authoring HTML, PDF, and MS Word 
documents. For more details on using R Markdown see 
<http://rmarkdown.rstudio.com>.

When you click the **Knit** button a document will be 
generated that includes both content as well as the output of 
any embedded R code chunks within the document. You can embed 
an R code chunk like this:



R Markdown example (continued)

```{r}

summary(cars)

```

You can also embed plots, for example:

```{r, echo=FALSE}

plot(cars)

```

Note that the `echo = FALSE` parameter was added to the code 
chunk to prevent printing of the R code that generated the 
plot.

• Emphasis:   *italic*   **bold**
_italic_   __bold__

• Headers
# Header 1
## Header 2
### Header 3

• Unordered List:
* Item 1
* Item 2

+ Item 2a
+ Item 2b

• Ordered list:
1. Item 1
2. Item 2
3. Item 3

+ Item 3a
+ Item 3b



R Code chunks

• R code placed in chunks will be evaluated and printed
```{r}
summary(cars$dist)
summary(cars$speed)
```

• Inline R Code
There were `r nrow(cars)` cars studied

• Links: use a plain http address or add a link to a phrase:
http://example.com
[linked phrase](http://example.com)

• Images on the web or local files in the same directory:
![alt text](http://example.com/logo.png)
![alt text](figures/img.png)



Exercises

• Using Rstudio, start a new .Rmd (R Markdown file).

• Look at the template that was provided, change the R 
code

• Create an HTML, a Word and a PDF file from this 
Markdown code

• Note: you may need to install a TeX distribution to 
generate PDF; you can also generate a Word or Excel 
document, and print/convert them to PDF if required

• Make sure to include information about the current R 
session (R version, packages loaded) in the final 
document

• Adapt an R script of your choice (ideally one you would 
use in your work) in a Markdown report

• Use Git to manage these files.

Generating random numbers
on a computer



Using a "real" random number generator (mostly for cryptography)

Generating random numbers for scientific simulations

In scientific simulations, we usually need 
sequences of numbers that look random 
(that is: looking at a series of number, we can 
not predict what the next one will be), but that 
remain predictable and repeatable when 
needed.

Otherwise, debugging is difficult, and it is 
impossible to verify the results obtained by 
others.



Using a pseudo-random number generator

A pseudo-random number generator (PRNG) 
fullfils this task; it usually includes two parts:

• A seed: an initial value

• A function that generates a new "random" 
number based on the previous ones (or on 
the seed)

Example: the linear congruential method

The series of random numbers is given by

Xn+1 = (a Xn + c) mod m

where

a,c and m are (well-chosen) constants;

Xn is the previous random number (or the seed)

Xn+1 is the next random number



Examples

A good example

Xn+1 = (48271 Xn + c) mod (231 -1 )

A bad example:

Xn+1 = (65539 Xn) mod 231

Called RANDU, this generator was used in most of 
the computers for more than a decade; it actually 
fails most criteria for randomness !

What happens in R ?

Random                 package:base                   R Documentation

Random Number Generation

Description:

‘.Random.seed’ is an integer vector, containing the random number

generator (RNG) *state* for random number generation in R.  It can

be saved and restored, but should not be altered by the user.

‘RNGkind’ is a more friendly interface to query or set the kind of

RNG in use.

‘RNGversion’ can be used to set the random generators as they were

in an earlier R version (for reproducibility).

‘set.seed’ is the recommended way to specify seeds.



Details:

The currently available RNG kinds are given below.  ‘kind’ is

partially matched to this list.  The default is

‘"Mersenne-Twister"’.

‘"Wichmann-Hill"’ The seed, ‘.Random.seed[-1] == r[1:3]’ is an

integer vector of length 3, where each ‘r[i]’ is in ‘1:(p[i]

- 1)’, where ‘p’ is the length 3 vector of primes, ‘p =

(30269, 30307, 30323)’.  The Wichmann-Hill generator has a

cycle length of 6.9536e12 (= ‘prod(p-1)/4’, see _Applied

Statistics_ (1984) *33*, 123 which corrects the original

article).

‘"Marsaglia-Multicarry"’: A _multiply-with-carry_ RNG is used, as

recommended by George Marsaglia in his post to the mailing

list ‘sci.stat.math’.  It has a period of more than 2^60 and

has passed all tests (according to Marsaglia).  The seed is

two integers (all values allowed).

‘"Mersenne-Twister"’: From Matsumoto and Nishimura (1998). A

twisted GFSR with period 2^19937 - 1 and equidistribution in

623 consecutive dimensions (over the whole period).  The

‘seed’ is a 624-dimensional set of 32-bit integers plus a

current position in that set.

‘"Knuth-TAOCP-2002"’: A 32-bit integer GFSR using lagged Fibonacci

sequences with subtraction.  That is, the recurrence used is

X[j] = (X[j-100] - X[j-37]) mod 2^30             

and the ‘seed’ is the set of the 100 last numbers (actually

recorded as 101 numbers, the last being a cyclic shift of the

buffer).  The period is around 2^129.



What about the seed ?

The seed should be random if we want random numbers (we 
need a bit of randomness to start the system, and it will then 
produce more randomness)

From the R help:

Initially, there is no seed; a new one is created from the current

time (and since R 2.14.0, the process ID) when one is required.

Hence different sessions will give different simulation results,

by default.  However, the seed might be restored from a previous

session if a previously saved workspace is restored.

A tale of caution



Record the seed used when generating random numbers

The set.seed() command allows one to choose a seed, so that 
the sequence of random numbers can be repeated.

Always record that seed, so that the results can be 
reproduced.

Suggestions:
set.seed(1)

for exercices
set.seed(201404041)

for real simulations
(reproducible, easy, and not duplicated)

# Generate a dataset
set.seed(1)
x <- runif(100)
y <- 2*x + rnorm(length(x))/10
data <- data.frame(x, y)

# Fit a linear model
model <- lm( data$y ~ data$x )

# Generate a second dataset
x <- runif(100)
y <- 2*x + rnorm(length(x))/10
newdata <- data.frame(x, y)

# Use the linear model to perform a prediction on the newdata
predict(model, newdata)

This code does not return any error message, but it does not 
work. Why ?


