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Regression & Correlation



Reproducibility of 
duplicate 
measurements. 
 
Dotted line represents 
identity line (x = y). 
Dashed lines represent 
the cut-off between 
unmeth  and methylated 
samples.  

Credits: Eugenia Migliavacca 



Reproducibility of 
duplicate 
measurements. 
 
Dotted line represents 
identity line (x = y). 
Dashed lines represent 
the cut-off between 
unmeth  and methylated 
samples.  
Pearson correlation 
0.996,  
Spearman correlation 
0.93, N=94. 

Credits: Eugenia Migliavacca 



Correlation r



is a measure of linear association
Correlation r



It indicates the strength of a linear 
relationship between two 

variables
 

Correlation r



The correlation coefficient  r  is defined as the average value of the 
product 
 

   (X in SUs)*(Y in SUs) 

 where SU  =  standard units, 

X in SUs  = (X – mean(X))/SD(X), 

Y in SUs  = (Y – mean(Y))/SD(Y), 

 



The correlation coefficient  r  is defined as the average value of the 
product 
 

   (X in SUs)*(Y in SUs) 

 where SU  =  standard units, 

X in SUs  = (X – mean(X))/SD(X), 

Y in SUs  = (Y – mean(Y))/SD(Y). 

 



The correlation coefficient  r  is defined as the average value of the 
product 
 

   (X in SUs)*(Y in SUs) 

 where SU  =  standard units, 

X in SUs  = (X – mean(X))/SD(X), 

Y in SUs  = (Y – mean(Y))/SD(Y). 

 

-1 ≤ r ≤ 1 

r  is a unit-less quantity 



the closer r  is to –1 or 1, the more 
tightly the points on the scatterplot 

are clustered around a line 

r  = 0 



Examples of correlations between two variables 



Correlation r = 0 



Correlation r = 0 



•  r is a measure of LINEAR ASSOCIATION 

•  r does NOT  tell us if Y is a function of X 

•  r does NOT  tell us if X causes Y 

•  r does NOT  tell us if Y causes X 

•  r does NOT  tell us the slope of the line 
(except for its sign) 

•  r does NOT  tell us what the scatterplot looks 
like (it is only a summary of the data) 

...and what r is not 



•  You cannot  infer that since X and Y are 
highly correlated (r close to –1 or 1) that 
X is causing a change in Y 

•  Y  could be causing X 

•  X and Y could both be varying along with 
a third, possibly unknown factor (either 
causal or not; often ‘time’ ): 

Correlation does not imply causality ! 

Correlation is NOT causation 
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Robust correlation 

Pearson's correlation assumes that the data 
follows a bivariate normal distribution. 
 
It will only assess whether there is a linear 
correlation in the data. 
 
Other types of correlation (robust methods) are 
available: most commonly, the Spearman and 
Kendall correlations 



Pearson's correlation assumes that the data follows a 
bivariate normal distribution. 
 
 
 
 
 
 
 
Measures the joint variability of two normalized variables. 

Pearson, Spearman and Kendall correlations 



Pearson, Spearman and Kendall correlations 

Pearson correlation:  0.90 Pearson correlation:  0.99 

Spearman correlation:  0.99  

Spearman’s correlation is based on the rank of values 
 
 
 
 
 
 
 

Raw data Ranked data 



© OriginLab Corporation 

Correlation methods 



In R:  
>?cor 

>cor(x,y) 

Note, however, that if there are missing values (NA), then 
you will get an error message 

 



In R:  
>?cor 

>cor(x,y) 

Note, however, that if there are missing values (NA), then 
you will get an error message 

 

 

Elementary statistical functions in R require  

•  no missing values, or 

•  explicit statement of what to do with NA (na.rm=TRUE) 

 

 



> cor.test(x,y) 
 

  

Testing whether a correlation is different from 0 



> cor.test(x,y) 
 

 Pearson's product-moment correlation 
 
data:  x and y 
t = 21.5241, df = 98, p-value < 2.2e-16 
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval: 
 0.8667723 0.9376171 
sample estimates: 
      cor  

0.9085158  
 



R Vs RevoScaleR
#Initialize some variables to specify the data sets. 
inputFileClass <-  
paste0("/media/sf_docVM/correlationregression/”,"class.csv") 
 
#Import the  data. 
class_data<- rxImport(inData = inputFileClass) 

R                                                         RevoScaleR

 cor(  class_data[,3],     
 class_data[,5]) 

rxCor(formula=~Height+Age,  
 data = class_data[,4:5],  
 reportProgress = 0) 



Correlation measures the relationship



Correlation measures the relationship

But it does not describe it



Description can be a line: linear Model  

The equation for a line to predict y knowing x (in slope-
intercept form) looks like 
 

y = a + b x 
 

where a is called the intercept and b is the slope. 
 

a 



What is the “best” line which fits this data ? 
Can we use it to summarise the relation between x and y ? 

y = 1 – 0.6x 

y = 0.8 + 0x 
y = 0.9 – 0.3x 

y = 1.1 – 0.9x 

y = 0.5 – 1.2x 

y = 0.9 + 0.6x 



Least-square fitting 
baxy +=



ε1 

ε2 

ε3 
ε4 

ε5 
ε6 

ε7 

Least-square fitting 

The least-squares procedure finds the straight line with 
the smallest sum of squares of vertical errors. 

baxy +=

iii baxy ε++=

)( baxy iii +−=ε
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Regression line such that: 
 

Least-square fitting 
baxy +=

iii baxy ε++=

)( baxy iii +−=ε

The least-squares procedure finds the straight line with 
the smallest sum of squares of vertical errors. 



Over all possible straight lines, y= 1 - 0.6x is the 
“best” possible line according to this criterion. 

y = 1 – 0.6x 

y = 0.8 + 0x 

y = 0.9 – 0.3x 

y = 1.1 – 0.9x 

y = 0.5 – 1.2x 

y = 0.9 + 0.6x 



Linearity in linear models 

iippiii XXXY εββββ +++++= −− 1122110 !

Linearity is about the model parameters 

iiii XXY εβββ +++= 22110 log

iii XY εβ += sin

iiiii XXXY εββββ ++++= 3322110 )log(

iii XY εββββ +++= )exp( 3210

Linear in  sβ

Not linear in  sβ

iiiii XXXY εββββ ++++= 3
3

2
210



What if the data is not linear ? 



What if the data is not linear ? 

Use a polynomial regression 
 

y = b0 + b1 x + b2 x2 
 

This is still linear for bi; it is as if we had added a 
new variable. 
 



What if the data is not linear ? 

Consider transforming the data (log) 
 

log(y) = a + b x 
 



Linear models in matrix terms



iippiii XXXY εββββ +++++= −− 1122110 !
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Least-square estimation of regression coefficients 



εXβY +=

)'( 10 −= pbb!b βestimator of 

YX'XbX' =

YX'XX'b 1)( −=

0ε =}{E

is computed as follows: 

Least-square estimation of regression coefficients 

β

β

where 



εXβY +=

)'( 10 −= pbb!b βestimator of 

YX'XbX' =
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is computed as follows: 

Least-square estimation of regression coefficients 

β

β

where 

Computationally intensive 



                        Y = b0 + b1 x1 + b2 x2 + b3 x3 

 

in R: 
 

               yvar ~ xvar1 + xvar2 + xvar3 
 

       ~ as “described (or modeled) by” 
 

    



                        Y = b0 + b1 x1 + b2 x2 + b3 x3 

 

in R: 
 

               yvar ~ xvar1 + xvar2 + xvar3 
 

       ~ as “described (or modeled) by” 

By default, an intercept is included in the model  
 
 
To leave the intercept out: 
 

    yvar ~ -1 + xvar1 + xvar2 + xvar3 



Generic form  
  response ~ predictors 

              predictors can be numeric or factor 
 
R symbols to create formulas 
 

+  to add more variables 
-  to leave out variables 
:  to introduce interactions between two terms 
* to include both interactions and the terms  
      (a*b is the same as a + b + a:b) 
^n adds all terms including interactions up to order n 
I() treats what’s in () as a mathematical expression 

More on model formulas 



A concrete example in R 

Using the CLASS dataset, from the program SAS 
(units have been modified from imperial to metric) 

 
 data <- read.table("http://lausanne.isb-sib.ch/~schutz/data/class.txt") 



The CLASS dataset from SAS 

> data 
      Name Gender Age  Height  Weight 
1    JOYCE      F  11 130.302 22.8765 
2   THOMAS      M  11 146.050 38.5050 
3    JAMES      M  12 145.542 37.5990 
4     JANE      F  12 151.892 38.2785 
5     JOHN      M  12 149.860 45.0735 
6   LOUISE      F  12 143.002 34.8810 
7   ROBERT      M  12 164.592 57.9840 
8    ALICE      F  13 143.510 38.0520 
9  BARBARA      F  13 165.862 44.3940 
10 JEFFREY      M  13 158.750 38.0520 
11   CAROL      F  14 159.512 46.4325 
12   HENRY      M  14 161.290 46.4325 
13  ALFRED      M  14 175.260 50.9625 
14    JUDY      F  14 163.322 40.7700 
15   JANET      F  15 158.750 50.9625 
16    MARY      F  15 168.910 50.7360 
17  RONALD      M  15 170.180 60.2490 
18 WILLIAM      M  15 168.910 50.7360 
19  PHILIP      M  16 182.880 67.9500 



The CLASS dataset from SAS 

> summary(data[,-1]) 
 
Gender      Age            Height          Weight      
F: 9   Min.   :11.00   Min.   :130.3   Min.   :22.88   
M:10   1st Qu.:12.00   1st Qu.:148.0   1st Qu.:38.17   
       Median :13.00   Median :159.5   Median :45.07   
       Mean   :13.32   Mean   :158.3   Mean   :45.31   
       3rd Qu.:14.50   3rd Qu.:167.4   3rd Qu.:50.85   
       Max.   :16.00   Max.   :182.9   Max.   :67.95 
 
 
> pairs(data[,-1]) 
 
 
   





Fitting the linear model in R 

Model:   Height = 64.07  +  7.08 x Age 

> model <- lm( Height ~ Age ) 
> model 
 
Call: 
lm(formula = Height ~ Age) 
 
Coefficients: 
(Intercept)          Age   
      64.07         7.08   



> plot( Age, Height ) 
> abline(model, col="red", lwd=2) 



>plot(Age, Height,  
xlim=range(0,Age), ylim=range(coef(model)[1], Height)) 
>abline(model, col="red", lwd=2) 



Example of summary results of the lm command in R 

> summary( lm( Height ~ Age) ) 
 
Call: 
lm(formula = Height ~ Age) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-12.59000  -3.57300  -0.07867   3.49000  15.57133  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   64.069     16.565   3.868  0.00124 **  
Age            7.079      1.237   5.724 2.48e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 7.832 on 17 degrees of freedom 
Multiple R-squared: 0.6584,     Adjusted R-squared: 0.6383  
F-statistic: 32.77 on 1 and 17 DF,  p-value: 2.48e-05  



Example of summary results of the lm command in R 

> summary( lm( Height ~ Age) ) 
 
Call: 
lm(formula = Height ~ Age) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-12.59000  -3.57300  -0.07867   3.49000  15.57133  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   64.069     16.565   3.868  0.00124 **  
Age            7.079      1.237   5.724 2.48e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 7.832 on 17 degrees of freedom 
Multiple R-squared: 0.6584,     Adjusted R-squared: 0.6383  
F-statistic: 32.77 on 1 and 17 DF,  p-value: 2.48e-05  

Function call 



Example of summary results of the lm command in R 

> summary( lm( Height ~ Age) ) 
 
Call: 
lm(formula = Height ~ Age) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-12.59000  -3.57300  -0.07867   3.49000  15.57133  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   64.069     16.565   3.868  0.00124 **  
Age            7.079      1.237   5.724 2.48e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 7.832 on 17 degrees of freedom 
Multiple R-squared: 0.6584,     Adjusted R-squared: 0.6383  
F-statistic: 32.77 on 1 and 17 DF,  p-value: 2.48e-05  



Distribution of the residuals 

Five-number summary of the residuals  
(but no mean – why ?), equivalent to 
 

  > fivenum( residuals( model ) ) 

        8      11      17       4       7  

  -12.590  -3.573  -0.078   3.490  15.571 
 
 
 
 
 

or, graphically, using a boxplot: 
 

  > boxplot( residuals ( model), horizontal=T) 



Example of summary results of the lm command in R 

> summary( lm( Height ~ Age) ) 
 
Call: 
lm(formula = Height ~ Age) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-12.59000  -3.57300  -0.07867   3.49000  15.57133  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   64.069     16.565   3.868  0.00124 **  
Age            7.079      1.237   5.724 2.48e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 7.832 on 17 degrees of freedom 
Multiple R-squared: 0.6584,     Adjusted R-squared: 0.6383  
F-statistic: 32.77 on 1 and 17 DF,  p-value: 2.48e-05  



Coefficients 

These statistical tests tell us if the parameters are significantly 
different from 0.  
**It is not interesting for the intercept, but usually interesting for 
the slope. 
 
 
 
Estimate and Std. Error are obtained from the matrices of the 
model. 
 

   T-value = Estimate / Std. Error 

 
This assumes that the residuals follow a normal distribution ! 



Example of summary results of the lm command in R 

> summary( lm( Height ~ Age) ) 
 
Call: 
lm(formula = Height ~ Age) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-12.59000  -3.57300  -0.07867   3.49000  15.57133  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   64.069     16.565   3.868  0.00124 **  
Age            7.079      1.237   5.724 2.48e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 7.832 on 17 degrees of freedom 
Multiple R-squared: 0.6584,     Adjusted R-squared: 0.6383  
F-statistic: 32.77 on 1 and 17 DF,  p-value: 2.48e-05  



RSE (Residual Standard Error) and degrees of freedom 

The number of degrees of freedom indicates the number of 
independant pieces of data that are available to estimate the error 
While we have 19 residuals here, they are not all independent: for 
example, the last one is constrained because the sum of all residuals 
must be 0. 
The number of DF   

  total observations – number of parameters estimated 
 
Two parameters are estimated (intercept + coefficient), so 19-2 = 17 



Example of summary results of the lm command in R 

> summary( lm( Height ~ Age) ) 
 
Call: 
lm(formula = Height ~ Age) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-12.59000  -3.57300  -0.07867   3.49000  15.57133  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   64.069     16.565   3.868  0.00124 **  
Age            7.079      1.237   5.724 2.48e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 7.832 on 17 degrees of freedom 
Multiple R-squared: 0.6584,     Adjusted R-squared: 0.6383  
F-statistic: 32.77 on 1 and 17 DF,  p-value: 2.48e-05  



RSE (Residual Standard Error) and degrees of freedom 

The residual standard error is the standard deviation of the residuals 
(which we would usually like to be small) 
 
It is not exactly equal to what the sd command would return: 

 > sd(residuals(model)) 
 [1] 7.611075 
 > sqrt(sum(residuals(model)^2)/18) 
 [1] 7.611075 

 

 

Here, we must divide by the number of degrees of freedom to get the 
same number: 

 > sqrt(sum(residuals(model)^2)/17) 
 [1] 7.831732 



Example of summary results of the lm command in R 

> summary( lm( Height ~ Age) ) 
 
Call: 
lm(formula = Height ~ Age) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-12.59000  -3.57300  -0.07867   3.49000  15.57133  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   64.069     16.565   3.868  0.00124 **  
Age            7.079      1.237   5.724 2.48e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 7.832 on 17 degrees of freedom 
Multiple R-squared: 0.6584,     Adjusted R-squared: 0.6383  
F-statistic: 32.77 on 1 and 17 DF,  p-value: 2.48e-05  



Multiple and adjusted R-squared 

R2 is the proportion of the total variance in the response data that is 
explained by the model  
if R2=1, the data fits perfectly on a straight line, and the model explains 

all the variance 
 
 



Multiple and adjusted R-squared 

R2 is the proportion of the total variance in the response data that is 
explained by the model  
if R2=1, the data fits perfectly on a straight line, and the model explains 

all the variance 
 
In the case of simple regression, it is equal to the square of the 
correlation coefficient between the two variables: 
 

  > summary(model)$r.squared 
  [1] 0.6584257 
  > cor(Age, Height)^2 
  [1] 0.6584257 

 



Multiple and adjusted R-squared 

R2 is the proportion of the total variance in the response data that is 
explained by the model  
if R2=1, the data fits perfectly on a straight line, and the model explains 

all the variance 
 
In the case of simple regression, it is equal to the square of the 
correlation coefficient between the two variables: 
 

  > summary(model)$r.squared 
  [1] 0.6584257 
  > cor(Age, Height)^2 
  [1] 0.6584257 

 
The Adjusted R-squared is similar to R-squared, but it takes into 
account the number of variables in the model (we will come back to this 
later). 



Example of summary results of the lm command in R 

> summary( lm( Height ~ Age) ) 
 
Call: 
lm(formula = Height ~ Age) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-12.59000  -3.57300  -0.07867   3.49000  15.57133  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   64.069     16.565   3.868  0.00124 **  
Age            7.079      1.237   5.724 2.48e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 7.832 on 17 degrees of freedom 
Multiple R-squared: 0.6584,     Adjusted R-squared: 0.6383  
F-statistic: 32.77 on 1 and 17 DF,  p-value: 2.48e-05  



F-test for significance of regression 

The F-statistic allows us to test if the whole regression (adding all 
variables vs having only the intercept in) is significant. 
 
Note: With only one variable, it provides exactly the same result as the 
t-test for the significance of the coefficient of this variable. 



Multiple regression:  
assessing the effect of several variables 

together 



R Vs RevoScaleR

#call lm 
lm_class_basicR<-lm( 

 formula= Height~Age,  
 data =class_data[,-1]) 

 
#summary of lm output 
summary(lm_class_basicR)

       
#call lm 
lm_class<-rxLinMod( 

 formula= Height~Age,  
 data =class_data[,-1]) 

 
#summary of lm output 
summary(lm_class) 

#Initialize some variables to specify the data sets. 
inputFileClass <-  
paste0("/media/sf_docVM/correlationregression/”,"class.csv") 
 
#Import the  data. 
class_data<- rxImport(inData = inputFileClass) 

R                                                         RevoScaleR



Challenge
Investigate the correlation and the relationship between weight and age 
using R basic commands and RevoScaleR 



Challenge: Solution

#call lm 
lm_class_basicR<-lm( 

 formula= Height~Weight,  
 data =class_data[,-1]) 

 
#summary of lm output 
summary(lm_class_basicR)

       
#call lm 
lm_class<-rxLinMod( 

 formula= Height~Weight,  
 data =class_data[,-1]) 

 
#summary of lm output 
summary(lm_class) 

Investigate the correlation and the relationship between 
weight and height using R basic commands and RevoScaleR 

R                                                         RevoScaleR



What happens if both,   
age and weight variables 

were included in the same model ? 



One multiple regression with two variables 

Call: 
lm(formula = Height ~ Age + Weight) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-9.20695 -3.30604 -0.04478  2.11432 10.41880  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 81.77355   12.90896   6.335 9.92e-06 *** 
Age          3.11575    1.34668   2.314  0.03431 *   
Weight       0.35064    0.08827   3.973  0.00109 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 5.728 on 16 degrees of freedom 
Multiple R-squared: 0.828,      Adjusted R-squared: 0.8065  
F-statistic: 38.52 on 2 and 16 DF,  p-value: 7.646e-07  
 

This model allows us to determine the respective 
contribution of each variable separately. 



Coefficients 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 81.77355   12.90896   6.335 9.92e-06 *** 
Age          3.11575    1.34668   2.314  0.03431 *   
Weight       0.35064    0.08827   3.973  0.00109 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 

This is similar to the simple regression case. 
 
Each test is conducted assuming that the tested parameter is the last 
one entering the model: 
 

 « If weight is already in the model, is the coefficient for age 
significantly different from 0 ? » 



Two single regressions vs one multiple regression 

Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  81.77355   12.90896   6.335 9.92e-06 *** 
Age           3.11575    1.34668   2.314  0.03431 *   
Weight        0.35064    0.08827   3.973  0.00109 **  

Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)    64.069     16.565   3.868  0.00124 **  
Age             7.079      1.237   5.724 2.48e-05 *** 

Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 108.12816    6.80692  15.885 1.24e-11 *** 
Weight        0.50194    0.06644   7.555 7.89e-07 *** 

While both age and weight seem significant by themselves, age is much 
less significant when weight is already included (see also the R2). 
 

It is likely that a lot of the information provided by the age is also provided 
by the weight, so that there may be little need to have both terms in the 
model. 



Multiple and adjusted R-squared 

 

Multiple R-squared: 0.828,      Adjusted R-squared: 0.8065  

As before, R2 is the proportion of the total variance in 
the response data that is explained by the model. 
 
Adding a new variable in the model will always 
increase R2, up to 1 when there the number of degrees 
of freedom is 0 (number of parameters to estimate = 
number of observations). 
 



Multiple and adjusted R-squared 

The adjusted R-squared adjusts for the number of 
variables in the model, and does not necessarily 
increase when the number of variables increase; it can 
even be negative. 
 
It is always equal or below R2. 

 

Multiple R-squared: 0.828,      Adjusted R-squared: 0.8065  



Example 

y <- rnorm(10) 
x1 <- rnorm(10); x2 <- rnorm(10); … ; x9 <- 
rnorm(10) 
summary(lm(y ~ x1)); summary(lm(y ~ x1+x2)); 
… 

1: Multiple R-squared: 0.1419,     Adjusted R-squared: 0.03464 
2: Multiple R-squared: 0.5173,     Adjusted R-squared: 0.3794 
3: Multiple R-squared: 0.557,      Adjusted R-squared: 0.3355  
4: Multiple R-squared: 0.5577,     Adjusted R-squared: 0.2039  
5: Multiple R-squared: 0.7953,     Adjusted R-squared: 0.5395  
6: Multiple R-squared: 0.8321,     Adjusted R-squared: 0.4962   
7: Multiple R-squared: 0.984,      Adjusted R-squared: 0.9281  
8: Multiple R-squared: 0.9851,     Adjusted R-squared: 0.866  
9: Multiple R-squared:     1,      Adjusted R-squared:   NaN  
 



The last regression from the example 

Call: 
lm(formula = y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9) 
 
Residuals: 
ALL 10 residuals are 0: no residual degrees of freedom! 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept) -0.02693         NA      NA       NA 
x1           0.53886         NA      NA       NA 
x2          -0.52227         NA      NA       NA 
x3           0.51881         NA      NA       NA 
x4           0.74757         NA      NA       NA 
x5           0.14394         NA      NA       NA 
x6          -0.65387         NA      NA       NA 
x7          -0.48271         NA      NA       NA 
x8          -0.62487         NA      NA       NA 
x9           0.23759         NA      NA       NA 
 
Residual standard error: NaN on 0 degrees of freedom 
Multiple R-squared:     1,      Adjusted R-squared:   NaN  
F-statistic:   NaN on 9 and 0 DF,  p-value: NA  
 



F-statistic for significance of regression 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 81.77355   12.90896   6.335 9.92e-06 *** 
Age          3.11575    1.34668   2.314  0.03431 *   
Weight       0.35064    0.08827   3.973  0.00109 **  
 
F-statistic: 38.52 on 2 and 16 DF,  p-value: 7.646e-07  
 

Again, the F-statistic allows us to test if the whole regression 
(adding all variables vs having only the intercept in) is significant. 
 
If any of the tests for the individual variables is significant, the F-
test will generally be significant as well. 
 
However, even if no individual variable is significant (e.g. p < 0.05), 
the F-test can still be significant. 



Categorical variables, 
dummy variables and 

contrasts 



Categorical variables 

We’d like to use categorical variables in a linear model, as in: 
 

   Height = b0 + b1 Age + b2 « Gender » + error 
 
Intuitively, we want to estimate a « Male » and a « Female » effect. 
 



Categorical variables 

We’d like to use categorical variables in a linear model, as in: 
 

  Height = b0 + b1 Age + b2 « Gender » + error 
 
Intuitively, we want to estimate a « Male » and a « Female » effect. 
 
 
 
 
In practice, categorical variables (factors in R) are turned (by default, 
based on alphabetical order) into dummy variables of the form 
 

     
 

 Gender =  
 

0 if Female 
1 if Male 



Example of summary results of the lm command in R 

Call: 
lm(formula = Height ~ Age + Gender) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-8.8462 -4.8523 -0.8102  3.3677 13.5058  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   62.291     14.957   4.165  0.00073 *** 
Age            6.928      1.117   6.202 1.27e-05 *** 
GenderM        7.204      3.251   2.216  0.04152 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 7.061 on 16 degrees of freedom 
Multiple R-squared: 0.7387,     Adjusted R-squared: 0.706  
F-statistic: 22.61 on 2 and 16 DF,  p-value: 2.176e-05  



Example of summary results of the lm command in R 

Call: 
lm(formula = Height ~ Age + Gender) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-8.8462 -4.8523 -0.8102  3.3677 13.5058  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   62.291     14.957   4.165  0.00073 *** 
Age            6.928      1.117   6.202 1.27e-05 *** 
GenderM        7.204      3.251   2.216  0.04152 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 7.061 on 16 degrees of freedom 
Multiple R-squared: 0.7387,     Adjusted R-squared: 0.706  
F-statistic: 22.61 on 2 and 16 DF,  p-value: 2.176e-05  

baseline for 
height among 

Female 



Example of summary results of the lm command in R 

Call: 
lm(formula = Height ~ Age + Gender) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-8.8462 -4.8523 -0.8102  3.3677 13.5058  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   62.291     14.957   4.165  0.00073 *** 
Age            6.928      1.117   6.202 1.27e-05 *** 
GenderM        7.204      3.251   2.216  0.04152 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 7.061 on 16 degrees of freedom 
Multiple R-squared: 0.7387,     Adjusted R-squared: 0.706  
F-statistic: 22.61 on 2 and 16 DF,  p-value: 2.176e-05  

baseline for 
height among 

Female 

The factor GenderM corresponds to 
the difference in baseline for Males 
compared to females. 



Graphical interpretation 

The model specifies 2 straight lines, with the same slope but different y-
intercepts: 
 

  For women:  Height = 62.3 + 6.9  Age (in black) 
  For men:  Height = 69.4 + 6.9  Age (in red) 

7.20 



What if we don’t use a linear model ? 

We could also compute the difference in means 
between males and females directly: 

 > means <- tapply( data$Height, data$Gender, FUN=mean ) 
 > means 
        F        M  
 153.8958 162.3314  
 > diff(means) 
        M  
 8.435622  

 

This result is slightly different from the 7.20 cm 
difference found with the linear model. 
 
Where does the difference come from ? 



Interactions 

So far, we have assumed a difference between the lines, but the 
same slope; that is, for both men and women, the effect of age is 
the same. 
 

If this assumption is incorrect, it means that there is an interaction 
between the factors « age » and « gender », that is, the effect of 
age is different depending on the gender. 
 
 

Interactions are modeled in R in the following way: 
 

  lm(formula = Height ~ Age + Gender + Age:Gender) 
 

which is equivalent to  
 

  lm(formula = Height ~ Age * Gender) 



Coefficients with an interaction 

The coefficients can be interpreted as follows: 
 

According to the model, the height is equal to 
 

  56.26 (the intercept) 
  plus 17.13, but only for males 
  plus 7.38 times the person’s age 
  minus 0.75 times the person’s age, but only for males. 

 

Call: 
lm(formula = Height ~ Age * Gender) 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  56.2610    24.4880   2.297  0.03640 *  
Age           7.3841     1.8429   4.007  0.00114 ** 
GenderM      17.1304    31.5238   0.543  0.59483    
Age:GenderM  -0.7468     2.3583  -0.317  0.75585    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  



Different slopes 

No interaction With interaction 



What if Males were the baseline ? 

The two models are 
exactly the same; 
only the way we look 
at the coefficient 
changes. 

Call: 
lm(formula = Height ~ Age + Gender) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-8.8462 -4.8523 -0.8102  3.3677 13.5058  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   62.291     14.957   4.165  0.00073 *** 
Age            6.928      1.117   6.202 1.27e-05 *** 
GenderM        7.204      3.251   2.216  0.04152 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 7.061 on 16 degrees of freedom 
Multiple R-squared: 0.7387,     Adjusted R-squared: 0.706  
F-statistic: 22.61 on 2 and 16 DF,  p-value: 2.176e-05  

Call: 
lm(formula = Height ~ Age + Gender1) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-8.8462 -4.8523 -0.8102  3.3677 13.5058  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   69.495     15.135   4.592 0.000301 *** 
Age            6.928      1.117   6.202 1.27e-05 *** 
Gender1F      -7.204      3.251  -2.216 0.041517 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 7.061 on 16 degrees of freedom 
Multiple R-squared: 0.7387,     Adjusted R-squared: 0.706  
F-statistic: 22.61 on 2 and 16 DF,  p-value: 2.176e-05  Gender1 <- relevel(Gender, ref="M") 



R Vs RevoScaleR

# lm using basic R 
lm_gender<-lm( 

 formula=Height~Age+Gender,  
 data =class_data) 

summary(lm_gender)

       
# lm using RevoScaleR  
# not working 
>lm_class_gender<-rxLinMod( 

 formula= Height~Age+Gender,  
 data =class_data) 

# working 
>recodedDF2 <- rxFactors(inData 
= class_data, sortLevels = 
TRUE,factorInfo = c("Gender"))    
rxGetVarInfo(recodedDF2) 
>lm_class_gender<-rxLinMod( 

 formula= Height~Age+Gender,  
 data =recodedDF2) 

>summary(lm_class_gender) 

R                                                         RevoScaleR



Call: 
lm(formula = Height ~ Age + Gender, data = recodedDF2) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-3.483 -1.910 -0.319  1.326  5.317  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  24.5241     5.8886   4.165 0.000731 *** 
Age           2.7276     0.4398   6.202 1.27e-05 *** 
GenderM       2.8362     1.2797   2.216 0.041517 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 2.78 on 16 degrees of freedom 
Multiple R-squared:  0.7387,  Adjusted R-squared:  0.706  
F-statistic: 22.61 on 2 and 16 DF,  p-value: 2.176e-05 
 



Call: 
rxLinMod(formula = Height ~ Age + Gender, data = recodedDF2) 
 
Linear Regression Results for: Height ~ Age + Gender 
Data: recodedDF2 
Dependent variable(s): Height 
Total independent variables: 4 (Including number dropped: 1) 
Number of valid observations: 19 
Number of missing observations: 0  
  
Coefficients: (1 not defined because of singularities) 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  27.3603     5.9587   4.592 0.000301 *** 
Age           2.7276     0.4398   6.202 1.27e-05 *** 
Gender=F     -2.8362     1.2797  -2.216 0.041517 *   
Gender=M     Dropped    Dropped Dropped  Dropped     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 2.78 on 16 degrees of freedom 
Multiple R-squared: 0.7387  
Adjusted R-squared: 0.706  
F-statistic: 22.61 on 2 and 16 DF,  p-value: 2.176e-05  
Condition number: 1.1301  



As cheddar cheese matures, a variety of chemical processes take place. The 
taste of matured cheese is related to the concentration of several chemicals in 
the final product. In a study of cheddar cheese from the LaTrobe Valley of 
Victoria, Australia, samples of cheese were analyzed for their chemical 
composition and were subjected to taste tests. Overall taste scores were 
obtained by combining the scores from several tasters. 
 
Case: Sample number 
Taste: Subjective taste test score, obtained by combining the scores of several 
tasters 
Acetic: concentration of acetic acid 
H2S: concentration of hydrogen sulfide 
Lactic: Concentration of lactic acid  
 
 
EXERCISE 
Which factor(s) influence the taste of cheese? 

Challenge: cheese dataset 



Learning using linear model 



Learning using linear model 
To Learn you need to train 



Data 
Learning Predictive data 



Data 
Learning 
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#Split data 
>trainData=class[1:15,] 
>testData=class[5:19,] 
 
#To train, use: 
>model <-  
lm(formula = Height~Age+Gender,  
data = trainData) 
 
#To test and predict, use: 
>predict(model, testData) 
>cor(predict(model, 
testData),testData$Height) 

R Vs RevoScaleR
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#Split data 
>trainData=recodedDF2[1:15,] 
>testData=recodedDF2[5:19,] 
 
#To train, use: 
>model<-rxLinMod 
(formula= Height~Age+Gender,  
data =trainData) 
 
#To test and predict, use: 
>rxpredict(modelObject=model, 
data=testData) 



Challenge
Investigate the correlation and the relationship between  
Weight and age by taking into account the gender using R basic 
commands and RevoScaleR 



Challenge: Solution
Investigate the correlation and the relationship between weight and age 
using R basic commands and RevoScaleR 
# lm using RevoScaleR on categorical variables 
>recodedDF2 <- rxFactors(inData = class_data, sortLevels = 
TRUE,factorInfo = c("Gender"))    
>rxGetVarInfo(recodedDF2) 
>lm_class_gender<-rxLinMod( 

 formula= Weight~Age+Gender,  
 data =recodedDF2) 

>summary(lm_class_gender) 
 
# basic R 
>lm_class_gender_basic<-lm( 

 formula=  Weight~Age+Gender,  
 data =recodedDF2) 

>summary(lm_class_gender_basic) 



Explore the dataset using  
summary statistics, regressions and correlations from RevoScaleR. 

# Load the data and remove NAs 
>data("PimaIndiansDiabetes2", package = "mlbench”) 

Challenge: Diabetes example



Logistic regression 

Age ~ Height 



Logistic regression 

Discrete ~ continuous/discrete 



What	is	Logistic	Regression?	

Form	of	regression	that	allows	the	prediction	of	
discrete	variables	by	a	mix	of	continuous	and	
discrete	predictors.	
	
Predictors	do	not	have	to	be		
	-	normally	distributed	
	-	linearly	related	
	-	have	equal	variance	in	each	group	

	



Logistic regression is rarely taught because 
it requires a lot of computational power  



Y = Binary response, ex. Gender (male=1, female=0) 

X = Quantitative predictor, ex. height 

π = Proportion of success (1, yes, success, male)  
       at any X 

Binary	Logistic	Regression	Model	



Binary	Logistic	Regression	Model	

Y = Binary response, ex. Gender (male=1, female=0) 

X = Quantitative predictor, ex. height 

π = Proportion of success (1, yes, success, male)  
       at any X 

log π
1−π

⎛

⎝
⎜

⎞

⎠
⎟= β0 +β1X

Logit form 



Background	

Logit	is	the	natural	log	of	an	odds	ratio;	often	
called	a	log	odds	even	though	it	really	is	a	log	
odds	ratio.			
	
Logits	are	continuous	
		p	=	0.50,	then	logit	=	0	
		p	=	0.70,	then	logit	=	0.84	
		p	=	0.30,	then	logit	=	-0.84		
	



Binary	Logistic	Regression	Model	

Y = Binary response, ex. Gender (male=1, female=0) 

X = Quantitative predictor, ex. height 

π = Proportion of success (1, yes, success, male)  
       at any X 

  
π =

eβ0 +β1 X

1+ eβ0 +β1 X
log π

1−π

⎛

⎝
⎜

⎞

⎠
⎟= β0 +β1X

Logit form Probability form 



The	logistic	function	



The	logistic	function	

  
π =

eβ0 +β1 X

1+ eβ0 +β1 X



The	logistic	function	

Change in 
probability is not 
constant (linear) 
with constant 
changes in X 
 

Linear part 
of logistic fit 



Assumptions
Linearity	in	the	logit:	

the	regression	equation	should	have	a	linear	
relationship	with	the	logit	form	of	the	DV.			
There	is	no	assumption	about	the	predictors	being	
linearly	related	to	each	other.	

Absence	of	multicollinearity	
No	outliers	
	
	



>logitmodel_basic<-glm(
 Gender~Height, 
 family=binomial, 
 data=recordedDF) 

 
>summary(logitmodel) 

R Vs RevoScaleR
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>logitmodel<-rxLogit(
 Gender~Height, 
 data=recodedDF) 

 
 
>summary(logitmodel) 



In	R	
# Load the data and remove NAs 
>data("PimaIndiansDiabetes2", package = "mlbench") 
>PimaIndiansDiabetes2 <- na.omit(PimaIndiansDiabetes2) 
 
# run model 
>logitmodel_R <- glm( diabetes ~glucose, data = 
PimaIndiansDiabetes2, family = binomial) 
>summary(logitmodel_R) 

Diabetes example



In	R	
Call: 
glm(formula = diabetes ~ glucose, family = binomial, data = 
PimaIndiansDiabetes2) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.1728  -0.7475  -0.4789   0.7153   2.3860   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) -6.095521   0.629787  -9.679   <2e-16 *** 
glucose      0.042421   0.004761   8.911   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 498.10  on 391  degrees of freedom 
Residual deviance: 386.67  on 390  degrees of freedom 
AIC: 390.67 
 
Number of Fisher Scoring iterations: 4 



In	R	
Call: 
glm(formula = diabetes ~ glucose, family = binomial, data = 
PimaIndiansDiabetes2) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.1728  -0.7475  -0.4789   0.7153   2.3860   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) -6.095521   0.629787  -9.679   <2e-16 *** 
glucose      0.042421   0.004761   8.911   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 498.10  on 391  degrees of freedom 
Residual deviance: 386.67  on 390  degrees of freedom 
AIC: 390.67 
 
Number of Fisher Scoring iterations: 4 



π̂ =
e−6.09+0.04Ht

1+ e−6.09+0.04Ht
Proportion 
of diabetic 
patients at 

the estimate 
glucose level 

Call: 
glm(formula = diabetes ~ glucose, family = binomial, data = 
PimaIndiansDiabetes2) 
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) -6.095521   0.629787  -9.679   <2e-16 *** 
glucose      0.042421   0.004761   8.911   <2e-16 *** 
--- 

  
π =

eβ0 +β1 X

1+ eβ0 +β1 X



>curve(exp(-6.09+0.04*x)/
(1+exp(-6.09+0.04*x)), add=TRUE) 

>plot(fitted(logitmodel_R)~PimaIndiansDiabete
s2$glucose) 



Logistic regression and Odds 



The logistic model assumes a linear 
relationship between the predictors 

and log(odds). 

  
log

π
1− π

⎛
⎝⎜

⎞
⎠⎟
= β0 + β1X

odds = π
1−π

= eβ0+β1Xwhere 
)(
)(

NoP
YesP

=



odds = π
1−π

⇔ π =
odds
1+odds

The assumption underlying the logistic model is 
that this odds ratio does not depend on x 



Then the odd ratio ( when x increases of 1) is  e β1  

odds = π
1−π

= eβ0+β1Xif 



Logistic Regression for TMS data 
glm(formula = diabetes ~ glucose, family = binomial, 
data = PimaIndiansDiabetes2) 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) -6.095521   0.629787  -9.679   <2e-16 *** 
glucose      0.042421   0.004761   8.911   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 
0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 
1) 
    Null deviance: 498.10  on 391  degrees of freedom 
Residual deviance: 386.67  on 390  degrees of freedom 
AIC: 390.67 
 
Number of Fisher Scoring iterations: 4 

Note: e0.04 = 1.040811 = odds ratio 



Example: TMS for Migraines 
Transcranial Magnetic Stimulation vs. Placebo 

Pain	Free? TMS Placebo 
YES 39 22 
NO 61 78 
Total 100 100 



  
oddsTMS =

39 / 100
61 / 100

= 39
61

= 0.639

� 

ˆ π =
0.639

1+ 0.639
= 0.39
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Example: TMS for Migraines 
Transcranial Magnetic Stimulation vs. Placebo 

Pain	Free? TMS Placebo 
YES 39 22 
NO 61 78 
Total 100 100 



  
oddsTMS =

39 / 100
61 / 100

= 39
61

= 0.639

282.0
78
22

==Placeboodds

   
Odds ratio = 0.639

0.282
= 2.27

Odds are 2.27 times 
higher of getting relief 

using TMS than 
placebo 

Example: TMS for Migraines 
Transcranial Magnetic Stimulation vs. Placebo 

Pain	Free? TMS Placebo 
YES 39 22 
NO 61 78 
Total 100 100 



Logistic Regression for TMS data 
>lmod=glm(cbind(Yes,No)~Group,family=binomial,data=TMS) 
 
>summary(lmod) 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.2657     0.2414  -5.243 1.58e-07 *** 
GroupTMS      0.8184     0.3167   2.584  0.00977 **  
--- 
Signif. codes:  0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 
��� 1  
 
(Dispersion parameter for binomial family taken to be 
1) 
 
    Null deviance: 6.8854  on 1  degrees of freedom 
Residual deviance: 0.0000  on 0  degrees of freedom 
AIC: 13.701 

Note: e0.8184 = 2.27 = odds ratio 
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Two forms of logistic data 

1.  �Bernoulli� logistic regression.  
Example: 0/1 
 
2.  �Binomial counts� logistic regression. 
Example: 0/1/2/.. 
 



Challenge	

In	R:	use	logistic	regression	to	look	at	whether	self-
reported	race/ethnicity	predicts	having	a	health	care	
plan	in	BRFSS	data.	
	

…This	is	reasonably	quick…	



In	R:	use	logistic	regression	to	investigate	whether	self-
reported	race/ethnicity	predicts	having	a	health	care	
plan	in	BRFSS	data.	

>brfss$has_plan	<-	brfss$hlthpln1	==	1		
>summary(glm(has_plan	~	as.factor(x.race),	data=brfss,	
family=binomial))		
	

Challenge:	solution	



>data(BreastCancer, package="mlbench") 
>bc$Class <- ifelse(bc$Class == "malignant", 1, 0) 
>bc$Class <- factor(bc$Class, levels = c(0, 1)) 
>bc <- BreastCancer[complete.cases(BreastCancer), ] 
str(bc) 
>logit_out<-glm(Class ~ Cell.shape, 
family="binomial", data = bc) 
>summary(logit_out) 
 

Challenge: Breast cancer Dataset

Use RevolScaleR commands to perform this logistic regression 



Thank you for your attention 


