
www.sib.swiss	

Statistical methods for big data
in life sciences and health
with R
Linda Dib, Frédéric Schütz
4th of June 2018

Credits	

•  Who?	
•  This	course	worth	1	credits	

Course	web-page	
	

•  Course	page:		
•  https://edu.sib.swiss/course/view.php?id=344	

•  Login:	smbd18	
•  Password:	SIB-smbd18	

3	

	
What	is	Big?	(for	this	course)		

	

When	R	doesn’t	work	

	
What	is	Big?	(for	this	course)		

	
What	gets	more	difficult	when	data	is	big?		
– Visualization	

•  Visualizations	get	messy		

– Memory	issues	
•  The	data	may	not	load	into	memory		

– Computational	time	
•  Analyzing	the	data	may	take	a	long	time		

– Etc.

How	much	data	can	R	load?		

R	sets	a	limit	on	the	most	memory	it	will	allocate	
from	the	operating	system		

>memory.limit()

>?memory.limit

Comparing	R	to	SAS	

Under	the	hood:		
•  R	loads	all	data	into	
memory	(by	default)		

•  SAS	allocates	memory	
dynamically	to	keep	data	
on	disk	(by	default)		

	

Changing	the	limit		
	

memory.size()	allows	you	to	change	R’s	allocation	limit.	
But…		
Memory	limits	are	dependent	on	your	configuration		

	•If	you're	running	32-bit	R	on	any	OS,	it'll	be	2	or	3Gb		
	•If	you're	running	64-bit	R	on	a	64-bit	OS,	the	upper	limit	

is	effectively	infinite,		
	but…		
	…you	shouldn’t	load	huge	datasets	into	memory	One	an	use		
	 	Virtual	memory,	swapping,	etc.		

	
Under	any	circumstances,	you	cannot	have	more	than	(231)-1	
=	2,147,483,647	rows	or	columns		
	

Changing	the	limit		
	

memory.size()	allows	you	to	change	R’s	allocation	limit.	
But…		
Memory	limits	are	dependent	on	your	configuration		

	•If	you're	running	32-bit	R	on	any	OS,	it'll	be	2	or	3Gb		
	•If	you're	running	64-bit	R	on	a	64-bit	OS,	the	upper	limit	

is	effectively	infinite,		
	but…		
	…you	shouldn’t	load	huge	datasets	into	memory	One	an	use		
	 	Virtual	memory,	swapping,	etc.		

	
Under	any	circumstances,	you	cannot	have	more	than	(231)-1	
=	2,147,483,647	rows	or	columns		
	

Changing	the	limit		
	

memory.size()	allows	you	to	change	R’s	allocation	limit.	
But…		
Memory	limits	are	dependent	on	your	configuration		

	•If	you're	running	32-bit	R	on	any	OS,	it'll	be	2	or	3Gb		
	•If	you're	running	64-bit	R	on	a	64-bit	OS,	the	upper	limit	

is	effectively	infinite,		
	but…		
	…you	shouldn’t	load	huge	datasets	into	memory	and	use		
	 	Virtual	memory,	swapping,	etc.		

	
Under	any	circumstances,	you	cannot	have	more	than	(231)-1	
=	2,147,483,647	rows	or	columns		
	

maximum	2,147,483,647	
rows	or	columns		

2GB	of	memory	≠	2GB	on	disk		
	

Making	memory	size	meaningful	

First	example	

Investigate	object	size	

Smoking,	Alcohol	and	Œsophageal	Cancer	

Breslow,	N.	E.	and	Day,	N.	E.	(1980)	Statistical	Methods	in	Cancer	Research.	Volume	1:	
The	Analysis	of	Case-Control	Studies.	IARC	Lyon	/	Oxford	University	Press.	

Smoking,	Alcohol	and	Œsophageal	Cancer	
Data	from	a	case-control	study	of	œsophageal	cancer	
in	Ille-et-Vilaine,	France.	
	

Breslow,	N.	E.	and	Day,	N.	E.	(1980)	Statistical	Methods	in	Cancer	Research.	Volume	1:	
The	Analysis	of	Case-Control	Studies.	IARC	Lyon	/	Oxford	University	Press.	

>data(esoph)
>object.size(esoph)

Smoking,	Alcohol	and	Œsophageal	Cancer	
Data	from	a	case-control	study	of	œsophageal	cancer	
in	Ille-et-Vilaine,	France.	
	

Breslow,	N.	E.	and	Day,	N.	E.	(1980)	Statistical	Methods	in	Cancer	Research.	Volume	1:	
The	Analysis	of	Case-Control	Studies.	IARC	Lyon	/	Oxford	University	Press.	

Size	of	data?	

Second	example	

Investigate	odds	computation	

BRFSS	-Behavioral	Risk	Factor	Surveillance	System		
	
	

BRFSS	-Behavioral	Risk	Factor	Surveillance	System		
Health-related	telephone	surveys	collected	in	U.S		
	
Download	BRFSS	as	XPT	file	and	unzip	to	a	local	file		
URL:	http://www.cdc.gov/brfss/annual_data/2013/files/LLCP2013XPT.ZIP		

	
	
	
	
	

Universal	Xpt	File	Viewer	was	previously	known	as	the	SAS	Viewer.	
In R two packages:
•  Hmisc
•  SASxport

>library(SASxport)
>brfss<- read.xport(”LLCP2013.xpt")
>head(brfss)

Cholesterol	Awareness			

Health	Care	Access	
		

Health plan? Cholesterol	
aware

Cholesterol	
un-aware

YES 39 22
NO 61 78
Total 100 100

Cholesterol awareness &. health plan

Health plan? Cholesterol	
aware

Cholesterol	
un-aware

YES 39 22
NO 61 78
Total 100 100

oddsTMS =

39 / 100
61 / 100

= 39
61

= 0.639

Cholesterol awareness &. health plan

282.0
78
22

==Placeboodds

Odds ratio = 0.639

0.282
= 2.27

Odds are 2.27 times
higher being aware

than non aware when
having a health care

plan

Health plan? Cholesterol	
aware

Cholesterol	
un-aware

YES 39 22
NO 61 78
Total 100 100

oddsTMS =

39 / 100
61 / 100

= 39
61

= 0.639

Cholesterol awareness &. health plan

aware	

Not	aware	

BRFSS	-Behavioral	Risk	Factor	Surveillance	System	
Health-related	telephone	surveys	collected	in	U.S	
		
Download	BRFSS	as	XPT	file	and	unzip	to	a	local	file		
URL:	http://www.cdc.gov/brfss/annual_data/2013/files/LLCP2013XPT.ZIP		

	
	
	
	
	

.		

>library(epitools)
>oddsratio(as.factor(brfss$X_HCVU651),as.factor(brfss$X_RF
CHOL))

BRFSS	-Behavioral	Risk	Factor	Surveillance	System	
Health-related	telephone	surveys	collected	in	U.S	
		
Download	BRFSS	as	XPT	file	and	unzip	to	a	local	file		
URL:	http://www.cdc.gov/brfss/annual_data/2013/files/LLCP2013XPT.ZIP		

	
	
	
	
	

.		

Error	in	fisher.test(xx)	:	FEXACT	error	40.		
Out	of	workspace.		

>library(epitools)
>oddsratio(as.factor(brfss$X_HCVU651),as.factor(brfss$X_RF
CHOL)) 	

Changing	the	amount	of	memory	
	will	NOT	solve	this		

Solutions	to	bypass	the	limitation	

– Get	a	bigger	computer		
– Format	the	data	differently		
– Make	the	data	smaller		

	

Solutions	to	bypass	the	limitation	

– Get	a	bigger	computer		
– Format	the	data	differently		
– Make	the	data	smaller		

	

You	may	be	lucky	enough	to	have	budget	for	a	
bigger	PC		

More	likely,	get	some	temporary	space:		
	
– Use	one	machine	on	the	high-performance	cluster		
– Rent	some	cloud	computing	time	

Solutions	to	bypass	the	limitation	

– Get	a	bigger	computer		
– Format	the	data	differently		
– Make	the	data	smaller	

Use	data	table	rather	than		
data	frame		

	

data.table	package	=	optimizations	to	data	
frame,	but	slightly	different	syntax		

>brfss_dt	<-	data.table(brfss)		
>object.size(brfss_dt)		
>object.size(brfss)		

data.table	cheat	sheet		

https://www.datacamp.com/community/tutorials/data-table-cheat-sheet	
Karlijn	Willems		

Buffer	the	data	set	on	disk	as	in	SAS	

ffdf	object	ff	package	

http://hsinay.blogspot.ch/p/big-data-analysis-using-ff-and-12-nov.html	

buffers	the	data	set	on	disk	as	in	SAS	

ffdf	object	from	ff	package	

ff	Advantage:	
Works	a	lot	like	a	standard	date	frame,	only	
reading	in	data	only	on	demand	
	
ff	Drawback:		
Proceed	with	caution	when	dealing	with	column	
types	

Solutions	to	bypass	the	limitation	

– Get	a	bigger	computer		
– Format	the	data	differently		
– Make	the	data	smaller	

data	smaller		=		subsetting	

data	smaller		=		subsetting		
	 	 	 					+	remove	unnecessary	data	

>rows <- [1:500]
>columns <- [1:30]
>subset <- bigdata[rows, columns]
>rm(bigdata)

Pseudocode	

Challenge	

Can	you	divide	the	brfss	data	into	chunks	of	500	
random	and	try	computing	an	odds	ratio?		

Challenge:	Solution	

Can	you	divide	the	brfss	data	into	chunks	of	500	
random	and	try	computing	an	odds	ratio?		
	
>rows_to_select <- sample(1:nrow(brfss), 500, replace=F)

>brfss_sample <- brfss[rows_to_select,]
>oddsratio(as.factor(brfss$X_HCVU651),as.factor(brfss$X_RF
CHOL))

data	smaller		=		subsetting	

data	smaller		=		subsetting	

directly	from	a	database	

Subset	using	SQL	query		
R	packages:	“RODBC”	or	“RMySQL”	

	

Once	you	split	

Once	you	split	you	need	to	combine	

split-apply-combine	

split-apply-combine	

There	are	many	ways	to	do	this	in	R.		

Specifically:	
by,	aggregate,	split,	and	plyr,	cast,	tapply,	
data.table,	dplyr,	and	so	forth.	

Data	set	to	illustrate	the	different	
functions	

#Calculate mean per group (mean by group)

>df <- data.frame(
 group=factor(sample(c(”g1",”g2”), 10,
 replace=TRUE)),

 mortality=runif(10))

10	rows,	2	groups	

Data	set	to	illustrate	the	different	
functions	

#Calculate mean per group (mean by group)

>df <- data.frame(
 group=factor(sample(c(”g1",”g2”), 10,
 replace=TRUE)),

 mortality=runif(10))

>df

>dt<- data.table(df)
>setkey(dt, mortality)

				

	 	group 	mortality	
1	 		g1 	 	0.80668490	
2 		g1 	 	0.53349584	
3		 		g2 	 	0.07571784	
4	 		g2 	 	0.39518628	
5		 		g1 	 	0.84557955	
6		 		g1 	 	0.69121443	
7	 		g1 	 	0.38124950	
8	 		g2 	 	0.22536126	
9	 		g1 	 	0.04704750	
10 		g2 	 	0.93561651	

split-apply-combine:	Tapply	function	

>tapply(df$mortality, df$group, mean)

split-apply-combine:	Aggregate	
function	

aggregate	takes	in	data.frames,	outputs	
data.frames,	and	uses	a	formula	interface.	

>aggregate(mortality~ group, df, mean)

split-apply-combine:	By	function	
In	its	most	user-friendly	form,	it	takes	in	vectors	and	applies	a	function	
to	them.	However,	its	output	is	not	in	a	very	manipulable	form	

>res.by <- by(df$mortality, df$group,
mean)
>res.by
	
To	get	around	this,	for	simple	uses	of	by	the	as.data.frame	method	in	
the	taRifx	library	works:	
	
>library(taRifx)
>as.data.frame(res.by)

split-apply-combine:	Split	function	

As	the	name	suggests,	it	performs	only	the	"split"	part	of	
the	split-apply-combine	strategy.		
To	test	it	here	is	the	a	small	function	that	uses	sapply	for	
apply-combine.			

	
>splitmean <- function(df) {
 s <- split(df, df$group)
 sapply(s, function(x)

 mean(x$mortality))
}
>splitmean(df)

split-apply-combine:	data.table	
structure	

>library(data.table)
>setDT(df)[, .(mean_mortality =
mean(mortality)), by = group]

split-apply-combine:	Reshape2	
function	

The	reshape2	library	is	not	designed	with	split-
apply-combine	as	its	primary	focus.	Instead,	it	uses	
a	two-part	melt/cast	strategy	to	perform	a	wide	
variety	of	data	reshaping	tasks.	However,	since	it	
allows	an	aggregation	function	it	can	be	used	for	
this	problem	
	
>library(reshape2)
>dcast(melt(df), variable ~ group,
mean)

split-apply-combine:	plyr	and	dplyr	
packages	

Hadley	Wickham	in	plyr	package	adresses	
performance	on	very	large	datasets	
plyr	(the	pre-cursor	of	dplyr)	

split-apply-combine:	Dplyr	package	

>library(dplyr)

>group_by(df,group) %>%
summarize(m=mean(mortality))

split-apply-combine:	Plyr	package	

If	you	have	to	learn	one	tool	for	split-apply-
combine	manipulation	it	should	be	plyr.	
	
>library(plyr)

>res.plyr <- ddply(df, .(group),
function(x) >mean(x$mortality))

>res.plyr

Wrap	up	on	memory	

If	your	data	is	just	too	big,	there	are	several	
things	you	can	do:		
–	Get	a	bigger	computer		
–	Format	the	data	differently		
–	Make	the	data	smaller	:	split	&	combine	

	
What	is	Big?	(for	this	course)		

	
What	gets	more	difficult	when	data	is	big?		
– Visualization	

•  Visualizations	get	messy		

– Memory	issues	
•  The	data	may	not	load	into	memory		

– Computational	time	
•  Analyzing	the	data	may	take	a	long	time		

– Etc.

	
Computational	time	

	

Modeling	and	computational	time	

Sometimes	you	can	load	the	data,	but	analyzing	
it	is	slow		

Sometimes	you	can	load	the	data,	but	analyzing	
it	is	painfully	slow		

Implementation	matters	

R	was	built	by	statisticians,		
not	by	data	miners.		

	
	

R	aren't	the	best	IMHO	

If	you’re	doing	a	lot	of	computation		

	PROFILE	your	code	

If	you’re	doing	a	lot	of	computation		

	PROFILE	your	code	
(i.e.	time	your	code)		
	

Benchmark	the	different	methods	

Benchmark	the	different	methods	
>library(microbenchmark)
>m1 <- microbenchmark(

 by(df$mortality, df$group, mean),

 aggregate(mortality~ group, df, mean),

 splitmean(df),

 ddply(df, .(group), function(x) mean(x$mortality)),

 dcast(melt(df), variable ~ group, mean),

 dt[, mean(mortality), by = group],

 summarize(group_by(df, group), m = mean(mortality)),
 summarize(group_by(dt, group), m = mean(mortality))

)

>print(m1, signif = 3)

>autoplot(m1)

Benchmark	the	different	methods	
>library(microbenchmark)
>m1 <- microbenchmark(

 by(df$mortality, df$group, mean),

 aggregate(mortality~ group, df, mean),

 splitmean(df),

 ddply(df, .(group), function(x) mean(x$mortality)),

 dcast(melt(df), variable ~ group, mean),

 dt[, mean(mortality), by = group],

 summarize(group_by(df, group), m = mean(mortality)),
 summarize(group_by(dt, group), m = mean(mortality))

)

>print(m1, signif = 3)

>autoplot(m1)

Benchmark	the	different	methods	
>library(microbenchmark)
>m1 <- microbenchmark(
 by(df$mortality, df$group, mean),

 aggregate(mortality~ group, df, mean),

 splitmean(df),

 ddply(df, .(group), function(x) mean(x$mortality)),

 dcast(melt(df), variable ~ group, mean),

 dt[, mean(mortality), by = group],

 summarize(group_by(df, group), m = mean(mortality)),
 summarize(group_by(dt, group), m = mean(mortality))

)

>print(m1, signif = 3)

>autoplot(m1)

Benchmark	the	different	methods	
>library(microbenchmark)
>m1 <- microbenchmark(

 by(df$mortality, df$group, mean),
 aggregate(mortality~ group, df, mean),
 splitmean(df),
 ddply(df, .(group), function(x) mean(x$mortality)),
 dcast(melt(df), variable ~ group, mean),
 dt[, mean(mortality), by = group],
 summarize(group_by(df, group), m = mean(mortality)),
 summarize(group_by(dt, group), m = mean(mortality))
)

>print(m1, signif = 3)

>autoplot(m1)

Benchmark	the	different	methods	
>library(microbenchmark)
>m1 <- microbenchmark(

 by(df$mortality, df$group, mean),

 aggregate(mortality~ group, df, mean),

 splitmean(df),

 ddply(df, .(group), function(x) mean(x$mortality)),

 dcast(melt(df), variable ~ group, mean),

 dt[, mean(mortality), by = group],

 summarize(group_by(df, group), m = mean(mortality)),
 summarize(group_by(dt, group), m = mean(mortality))

)

>print(m1, signif = 3)
>autoplot(m1)

Benchmark	the	different	methods	
>library(microbenchmark)
>m1 <- microbenchmark(

 by(df$mortality, df$group, mean),

 aggregate(mortality~ group, df, mean),

 splitmean(df),

 ddply(df, .(group), function(x) mean(x$mortality)),

 dcast(melt(df), variable ~ group, mean),

 dt[, mean(mortality), by = group],

 summarize(group_by(df, group), m = mean(mortality)),
 summarize(group_by(dt, group), m = mean(mortality))

)

>print(m1, signif = 3)

>autoplot(m1)

Wrap	up	

•  Plyr	is	always	worth	learning	for	its	flexibility	
•  data.table	is	worth	learning	if	you	plan	to	
analyze	huge	datasets	

•  by	and	aggregate	and	split	are	all	base	R	
functions	and	thus	universally	available	

Challenge	

Benchmark	the	different	split	and	merge	
methods	available	in	R	when	dataframe	is	
composed	of	1,000	groups	and	has	10000	then	
107	rows:	

	
What	is	Big?	(for	this	course)		

	
What	gets	more	difficult	when	data	is	big?		
– Visualization	

•  Visualizations	get	messy		

– Memory	issues	
•  The	data	may	not	load	into	memory		

– Computational	time	
•  Analyzing	the	data	may	take	a	long	time		

– Etc.

Profiling	several	lines	of	code	in	R		

Simple	profiling		
–Option	1:		
	system.time(<call>)		

Profiling	several	lines	of	code	in	R		

Simple	profiling		
–Option	2:		
	start_time	<-	proc.time()		
<call>
	end_time	<-	proc.time()		
	end_time	–	start_time	

More	advanced	profiling	options		

Rprof	is	a	function	in	the	utils	library	that	
creates	an	external	file	with	deep	profiling	

results		

Tricks	to	go	faster	

The	compiler	package		

compile()				compiles	a	specific	function	
enableJIT()	auto-compiles	every	function	at	first	use		

Tricks	to	go	faster	

Go	parallel	

Parallel	processing	is	basically	splitting	subtasks	
to	independent	processors,	then	merging	

results	

Go	parallel	≠	split	combine	

Fragment	data	Fragment	the	
instruction	set	

How	to	go	parallel	without	explicitly	
doing	parallel	programming?	

–	aaply:			
in	Plyr	package:	like	apply,	but	with	an	option	to	
parallelize		
–	foreach:		
allows	you	to	write	loops	that	can	be	parallelized	
–	mclapply:		
uses	apply	and	themulticore	of	the	machine	
		

Going	parallel	issues	

-How	do	you	know	when	subsections	of	a	task	
are	independent?		
	
-How	do	you	know	when	you	are	done?	
		
-New	classes	of	potential	mistakes:	Race	
conditions,	mutual	exclusion,	and	deadlocks		

Fragment	data	Fragment	the	
instruction	set	

Fragment	data	Fragment	the	
instruction	set	 +

=	

MapReduce	Fragment	
data	

Fragment	the	
instruction	set	+ =	

MapReduce	is	behind		
Hadoop	concept	in	Big	data	

STOP!		
What	is	hadoop?	

103	

Hadoop	
Hadoop	is	a	framework	which	was	used	to	solve	Big	
Data	management	challenges	and	it	was	introduced	
by	Apache	Software	Foundation.	

Current	distributions:	
– Apache	Hadoop	
–  Cloudera	
– Hortonworks	
– MapR	
– AWS	
– Windows	Azure	HDInsignts	

Hadoop	

Hadoop	is	an	open-source	
It	contains	two	modules		
– MapReduce	
– Hadoop	Distributed	File	System	(HDFS):		
used	to	store	and	process	the	datasets.		

Hadoop	

Hadoop	is	an	open-source	
It	contains	two	modules		
– MapReduce	
– Hadoop	Distributed	File	System	(HDFS):		
used	to	store	and	process	the	datasets.		

MapReduce	in	R	
	

MapReduce	library	in	R:	
>library(mapReduce)

>mapReduce(map, reduce, data)

Takeaway	message:		
if	you	think	your	data	needs	MapReduce	scale	
processing,	talk	to	us	

Compare	the	profiling	time		of	for	and	apply	
functions	that	return	TRUE		
when	color	value	==	E		
in	diamonds	dataset	

Challenge	:	profiling	

Which	case	is	faster?	

ggplot2 dataset
>library(gg[plot2)
>diamonds

Case1:	Do	some	operation	on	every	row	using	apply	(which	
pre-allocates	memory):		
start_time	<-	proc.time()		
apply(diamonds,	1,	function(row)	{	row['color']	==	'E'	})		
proc.time()	-	start_time		
	
Case2:	Do	the	same	operation	but	build	the	response	vector	
through	concatenation:		
start_time	<-	proc.time()		
e_diamonds	<-	c()		
for	(row	in	1:nrow(diamonds))	{		
e_diamonds	<-	c(e_diamonds,	diamonds[row,	'color']	==	'E')	}		
e_diamonds		
proc.time()	-	start_time		

IMPORTANT	

Course room

Monday,	Tuesday,	Wednesday:		
– Génopode	Building	2020	

Thursday:		
– Amphipôle	Building	321

Thank	you	for	your	attention		

