

We have

(W_{11})	<i>W</i> ₁₂	W 13	W_{14}	(\mathbf{v})		$(W_{11} X_1 + W_{12} X_2 + W_{13} X_3 + W_{14} X_4)$
<i>W</i> ₂₁	W ₂₂	W ₂₃	W ₂₄	$\begin{pmatrix} \lambda_1 \\ X_2 \end{pmatrix}$		$W_{21} x_1 + W_{22} x_2 + W_{23} x_3 + W_{24} x_4$
<i>W</i> ₃₁	W ₃₂	W ₃₃	W ₃₄	~2 Vo	=	$W_{31} X_1 + W_{32} X_2 + W_{33} X_3 + W_{34} X_4$
<i>W</i> ₄₁	W 42	W 43	W 44	×3 ×.		$W_{41} X_1 + W_{42} X_2 + W_{43} X_3 + W_{44} X_4$
\ <i>W</i> ₅₁	W ₅₂	W 53	W_{54}	$\langle x_4 \rangle$		$(w_{51} x_1 + w_{52} x_2 + w_{53} x_3 + w_{54} x_4)$

We have

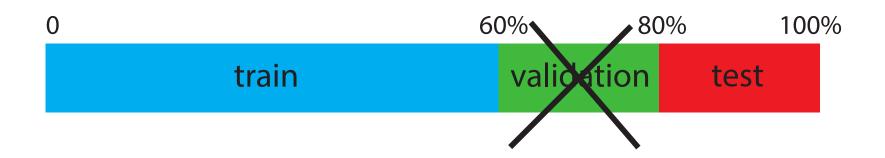
(W_{11})	W ₁₂	W 13	W_{14}	$\langle \mathbf{v}_{i} \rangle$		$(W_{11} X_1 + W_{12} X_2 + W_{13} X_3 + W_{14} X_4)$
W ₂₁	W ₂₂	W ₂₃	W ₁₄ W ₂₄	$\begin{pmatrix} \lambda_1 \\ \chi_2 \end{pmatrix}$		$W_{21} X_1 + W_{22} X_2 + W_{23} X_3 + W_{24} X_4$
<i>W</i> ₃₁	W ₃₂	W ₃₃	W ₃₄	×2 Xo	=	$\begin{array}{c} W_{31} \ X_1 + W_{32} \ X_2 + W_{33} \ X_3 + W_{34} \ X_4 \\ W_{41} \ X_1 + W_{42} \ X_2 + W_{43} \ X_3 + W_{44} \ X_4 \end{array}$
<i>W</i> ₄₁	W ₄₂	W ₄₃	W44	$\begin{pmatrix} x_3 \\ x_4 \end{pmatrix}$		$W_{41} X_1 + W_{42} X_2 + W_{43} X_3 + W_{44} X_4$
\ <i>W</i> ₅₁	W ₅₂	W ₅₃	W ₅₄ /	\^4/		$(w_{51} x_1 + w_{52} x_2 + w_{53} x_3 + w_{54} x_4)$

We now add a bias node:

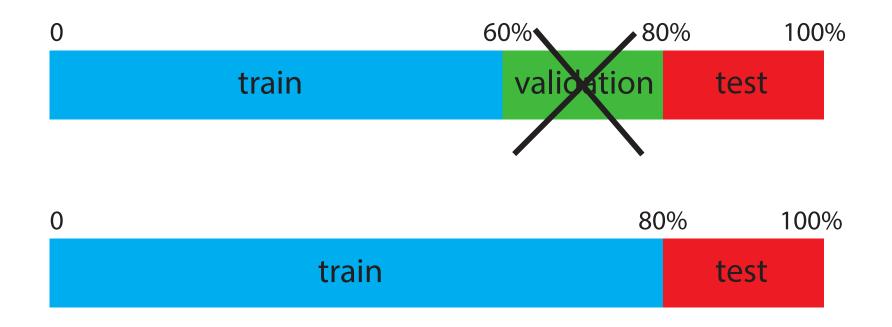
$$\begin{pmatrix} W_{10} & W_{11} & W_{12} & W_{13} & W_{14} \\ W_{20} & W_{21} & W_{22} & W_{23} & W_{24} \\ W_{30} & W_{31} & W_{32} & W_{33} & W_{34} \\ W_{40} & W_{41} & W_{42} & W_{43} & W_{44} \\ W_{50} & W_{51} & W_{52} & W_{53} & W_{54} \end{pmatrix} \begin{pmatrix} +1 \\ X_1 \\ X_2 \\ X_3 \\ X_4 \end{pmatrix} = \begin{pmatrix} W_{10} + W_{11} X_1 + W_{12} X_2 + \dots \\ W_{20} + W_{21} X_1 + W_{22} X_2 + \dots \\ W_{30} + W_{31} X_1 + W_{32} X_2 + \dots \\ W_{40} + W_{41} X_1 + W_{42} X_2 + \dots \\ W_{40} + W_{41} X_1 + W_{42} X_2 + \dots \\ W_{50} + W_{51} X_1 + W_{52} X_2 + \dots \end{pmatrix}$$

The bias node introduces the intercepts W_{10} , W_{20} , W_{30} , W_{40} , W_{50}

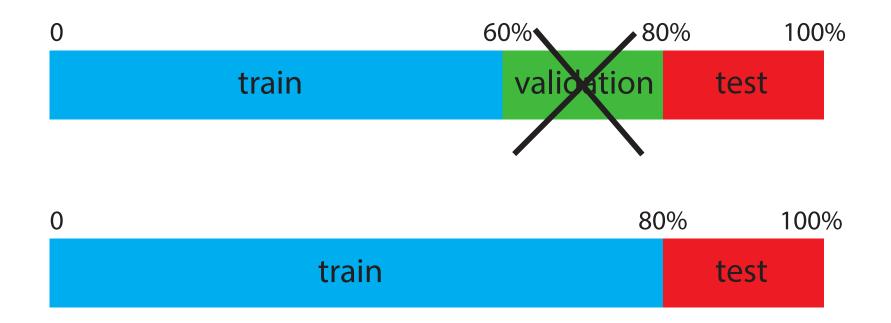
For small datasets, one may not want to keep a separate validation dataset:



For small datasets, one may not want to keep a separate validation dataset:

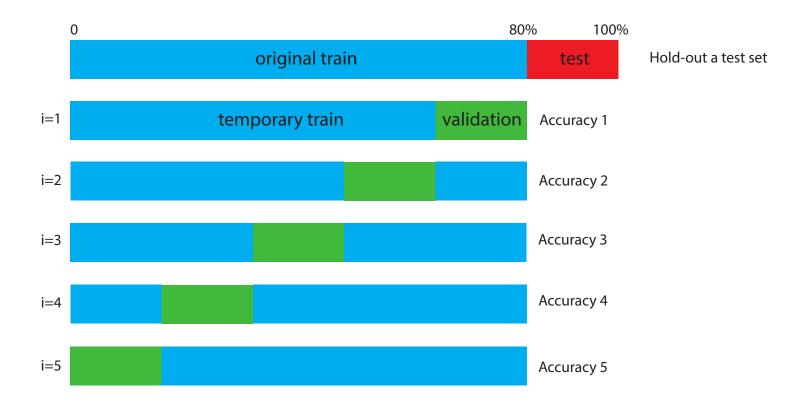


For small datasets, one may not want to keep a separate validation dataset:

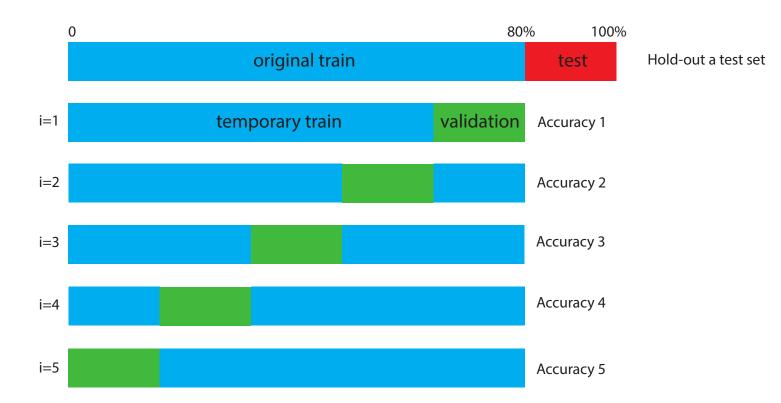


- Model selection: Evaluate the validation accuracy of different models by using K-fold cross-validation.
- Model assessment: Use the training set to fit the best selected model and the test set to evaluate its accuracy.

Estimate the validation accuracy of a model by K-fold cross-validation (K=5):



Estimate the validation accuracy of a model by K-fold cross-validation (K=5):



The Cross-Validation accuracy rate:

$$CV = \frac{1}{K} \sum_{i=1}^{K} Accuracy_i$$

Bonus 2: K-fold CV for model assessment

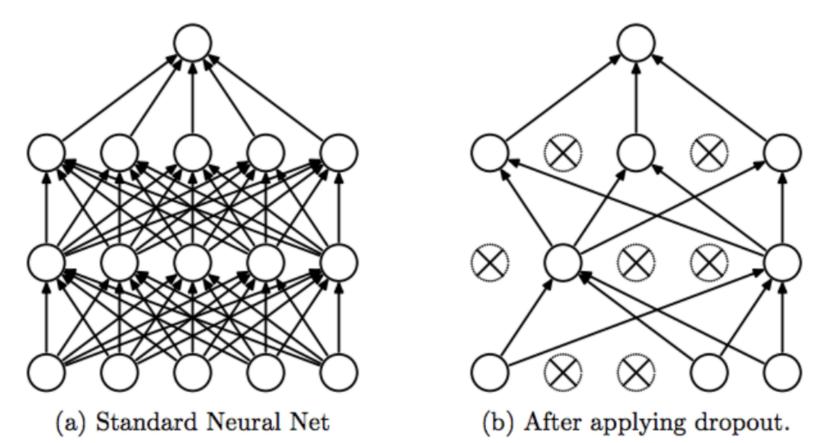
The best selected model (obtained by **inner** K-fold CV) and its accuracy may depend on the particular training/test splitting. One may check the stability of the best model and its prediction accuracy by using **outer** K-fold CV (K=5):

The Cross-Validation Test accuracy rate:

CV Test =
$$\frac{1}{K} \sum_{i=1}^{K}$$
 Test Accuracy_i

Bonus 3: Dropout nodes

Dropout is a regularization technique for reducing overfitting in neural networks. One drops out units (both hidden and visible) during training according to a random distribution. This prevents units from co-adapting too much.



Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting", JMLR 2014

 Training Phase: For each selected layer and for each training iteration, ignore a random fraction 1-p of nodes.
 Different nodes will be dropped at each iteration. Training Phase: For each selected layer and for each training iteration, ignore a random fraction 1-p of nodes.
 Different nodes will be dropped at each iteration.

 Testing Phase: Use all nodes but make normalization (to account for the missing nodes during training).

The error function:

$$E_n(W) = -\sum_{k=1}^3 t_{nk} \cdot \log y_{nk}(W)$$

The weights are updated with the gradient descent algorithm:

$$(w_{ij}^{(1)})^{\tau} = (w_{ij}^{(1)})^{\tau-1} - \eta \cdot \frac{\partial E_n}{\partial w_{ij}^{(1)}}$$
$$(w_{ij}^{(2)})^{\tau} = (w_{ij}^{(2)})^{\tau-1} - \eta \cdot \frac{\partial E_n}{\partial w_{ij}^{(2)}}$$

The error function:

$$E_n(W) = -\sum_{k=1}^3 t_{nk} \cdot \log y_{nk}(W)$$

The weights are updated with the gradient descent algorithm:

$$(w_{ij}^{(1)})^{\tau} = (w_{ij}^{(1)})^{\tau-1} - \eta \cdot \frac{\partial E_n}{\partial w_{ij}^{(1)}}$$
$$(w_{ij}^{(2)})^{\tau} = (w_{ij}^{(2)})^{\tau-1} - \eta \cdot \frac{\partial E_n}{\partial w_{ij}^{(2)}}$$

The gradients are computed by **back-propagation**:

$$(1)\frac{\partial E_n}{\partial w_{ij}^{(2)}} \qquad (2)\frac{\partial E_n}{\partial w_{ij}^{(1)}}$$

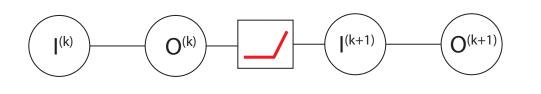
After some analytical computations:

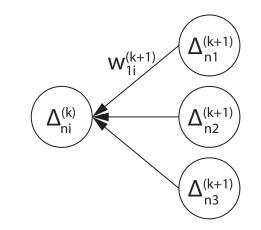
$$\frac{\partial E_n}{\partial w_{ij}^{(2)}} = \Delta_{ni}^{(2)} \cdot z_{nj}^{(2)}$$
$$\frac{\partial E_n}{\partial w_{ij}^{(1)}} = \Delta_{ni}^{(1)} \cdot x_{nj}$$

with errors:

$$\Delta_{ni}^{(2)} = (y_{ni} - t_{ni})$$
$$\Delta_{ni}^{(1)} = ReLU'(z_{ni}^{(1)}) \sum_{p=1}^{3} w_{pi}^{(2)} \Delta_{np}^{(2)}$$

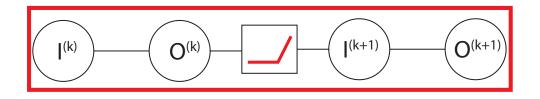
Relations between layer k and k + 1:

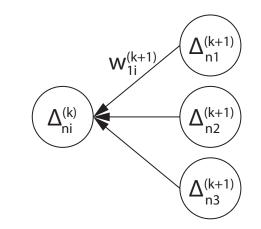




$$\frac{\partial E_n}{\partial w_{ij}^{(k)}} = \Delta_{ni}^{(k)} \cdot I_{nj}^{(k)}$$
$$\Delta_{ni}^{(k)} = ReLU'(O_{ni}^{(k)}) \sum_{p=1}^3 w_{pi}^{(k+1)} \Delta_{np}^{(k+1)}$$

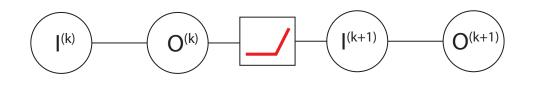
Relations between layer k and k + 1:

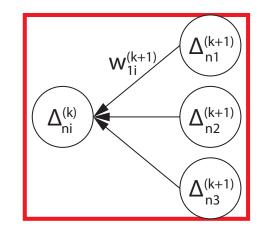




$$\frac{\partial E_n}{\partial w_{ij}^{(k)}} = \Delta_{ni}^{(k)} \cdot I_{nj}^{(k)}$$
$$\Delta_{ni}^{(k)} = ReLU'(O_{ni}^{(k)}) \sum_{p=1}^3 w_{pi}^{(k+1)} \Delta_{np}^{(k+1)}$$

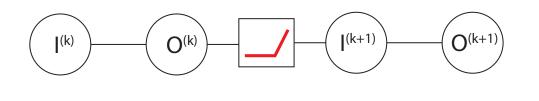
Relations between layer k and k + 1:

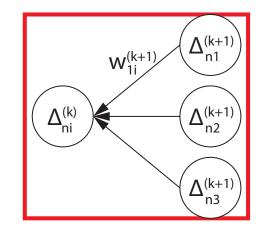




$$\frac{\partial E_n}{\partial w_{ij}^{(k)}} = \Delta_{ni}^{(k)} \cdot I_{nj}^{(k)}$$
$$\Delta_{ni}^{(k)} = ReLU'(O_{ni}^{(k)}) \sum_{p=1}^3 w_{pi}^{(k+1)} \Delta_{np}^{(k+1)}$$

Relations between layer k and k + 1:





$$\begin{aligned} \frac{\partial E_n}{\partial w_{ij}^{(k)}} &= \Delta_{ni}^{(k)} \cdot I_{nj}^{(k)} \\ \Delta_n^{(k)} &= ReLU'(O_n^{(k)}) \circ \left(W^{(k+1)}\right)^T \Delta_n^{(k+1)} \end{aligned}$$

Two modifications to go from NN classification to NN regression

Bonus 5: Neural Network for Regression

Modification 1

Remove the SoftMax function

Bonus 5: Neural Network for Regression

Modification 2

Replace the cross-entropy error by

the sum-of-squares error:

$$E(W) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} |t_{nk} - y_{nk}(W)|^2$$

QUESTIONS ?

COFFEE BREAK

input

output

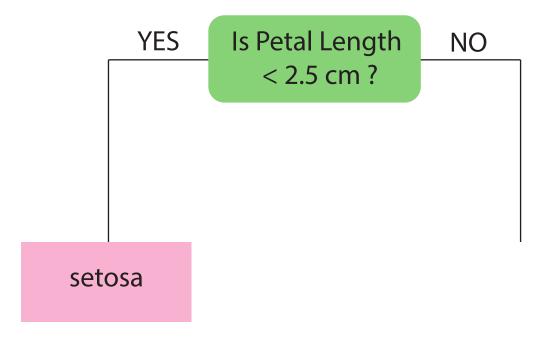
Sepal length	Sepal width	Petal length	Petal width	Species
5.1	3.5	1.4	0.2	setosa
7.0	3.2	4.7	1.4	versicolor
6.3	3.3	6.0	2.5	virginica

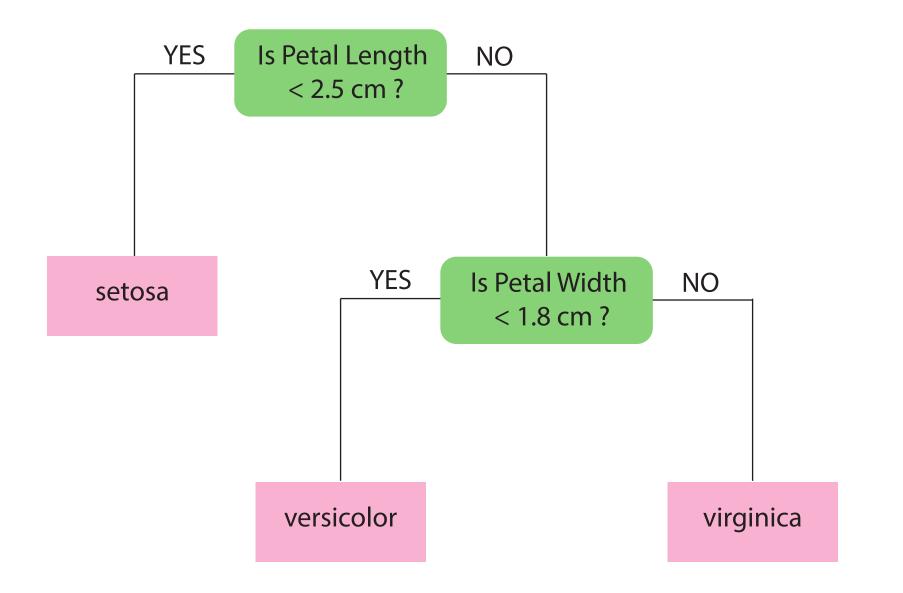
A decision tree is a model

that predicts the output

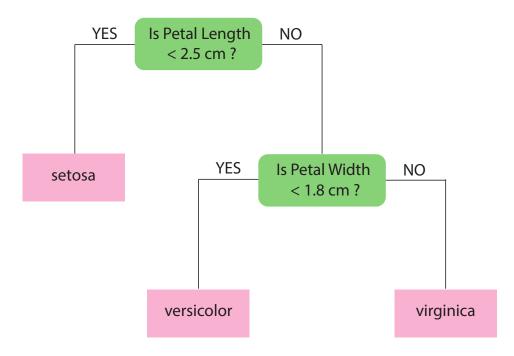
by answering questions on the input

EXAMPLE

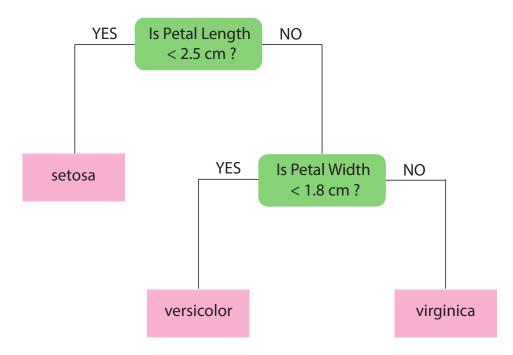




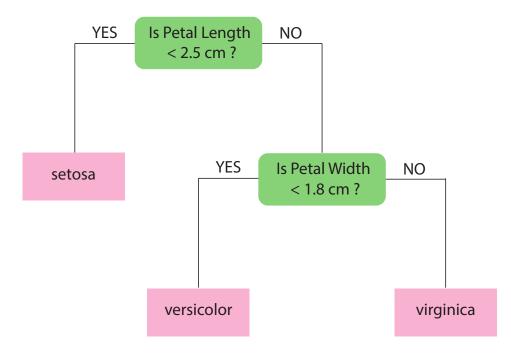
	output			
Sepal length	Sepal width	Petal length	Petal width	Species
5.1	3.5	1.4	0.2	setosa
7.0	3.2	4.7	1.4	versicolor
6.3	3.3	6.0	2.5	virginica



	output			
Sepal length	Sepal width	Petal length	Petal width	Species
5.1	3.5	1.4	0.2	setosa
7.0	3.2	4.7	1.4	versicolor
6.3	3.3	6.0	2.5	virginica



	output			
Sepal length	Sepal width	Petal length	Petal width	Species
5.1	3.5	1.4	0.2	setosa
7.0	3.2	4.7	1.4	versicolor
6.3	3.3	6.0	2.5	virginica

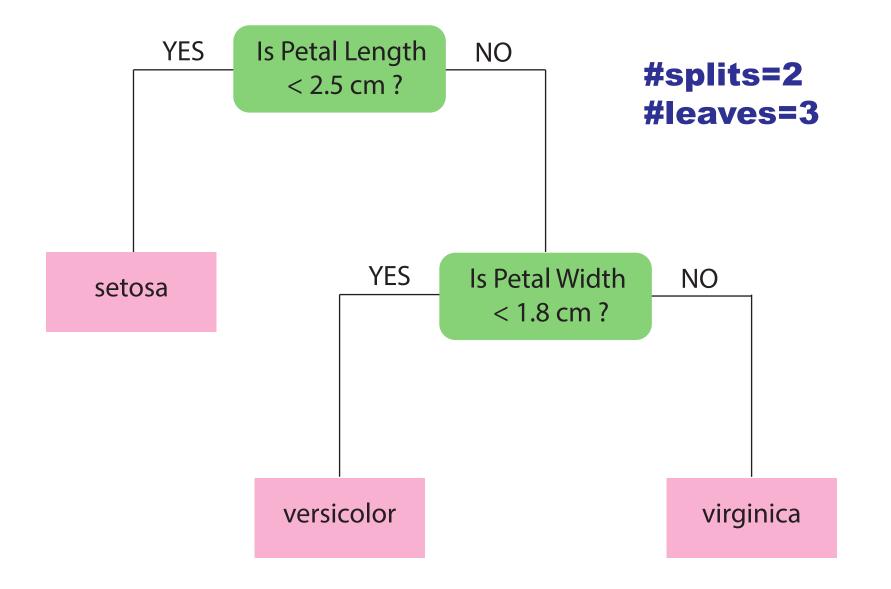


How to choose the questions ?

One wants to answer

as few as possible questions

to determine which species a given plant belongs to



This is a global optimization problem that cannot be handled computationally

We start with all the training data and choose a **locally** optimal question that splits the data at each stage

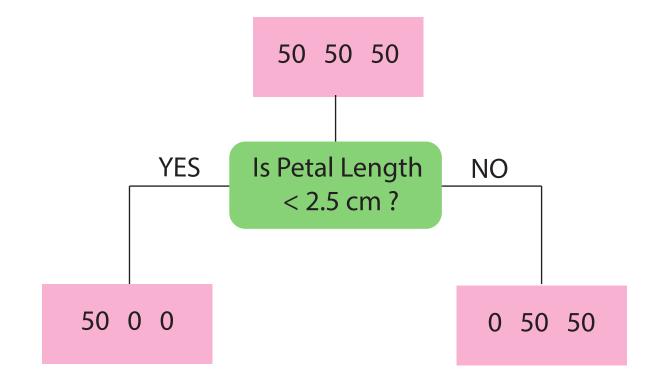
Information

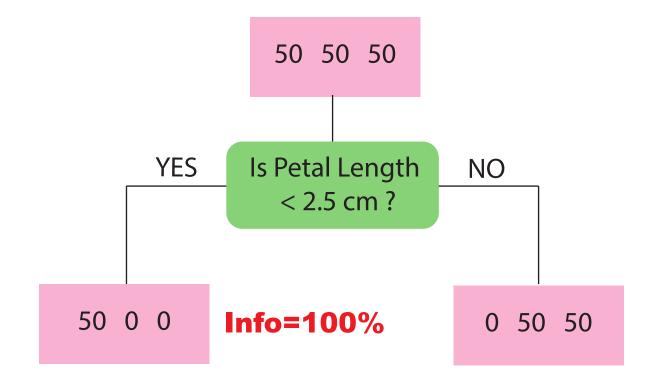
Information content of a leaf

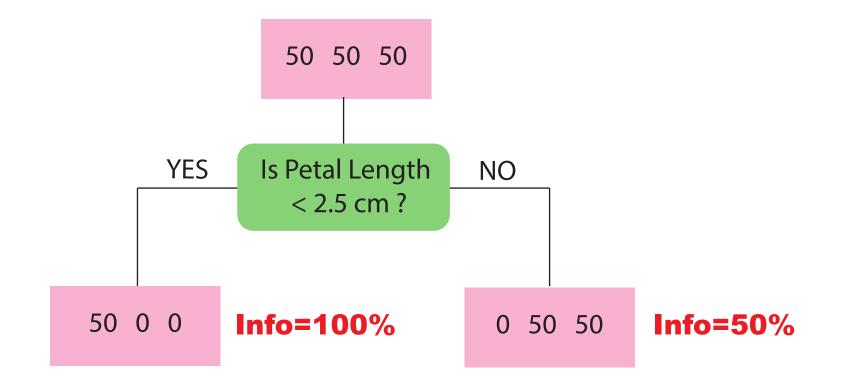
If I take randomly a sample from the leaf, how much do I know about its class

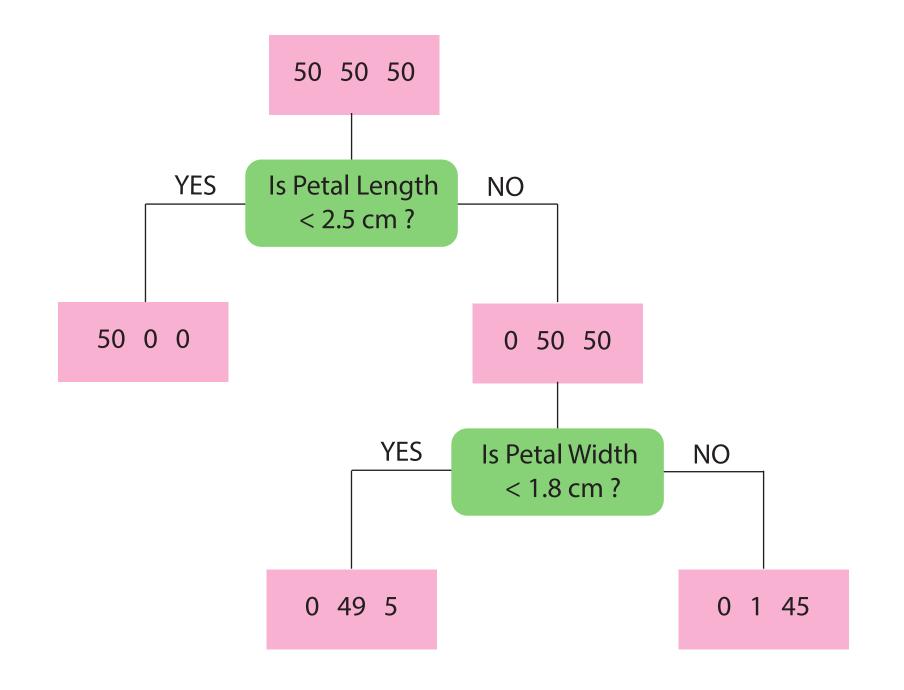
EXAMPLE

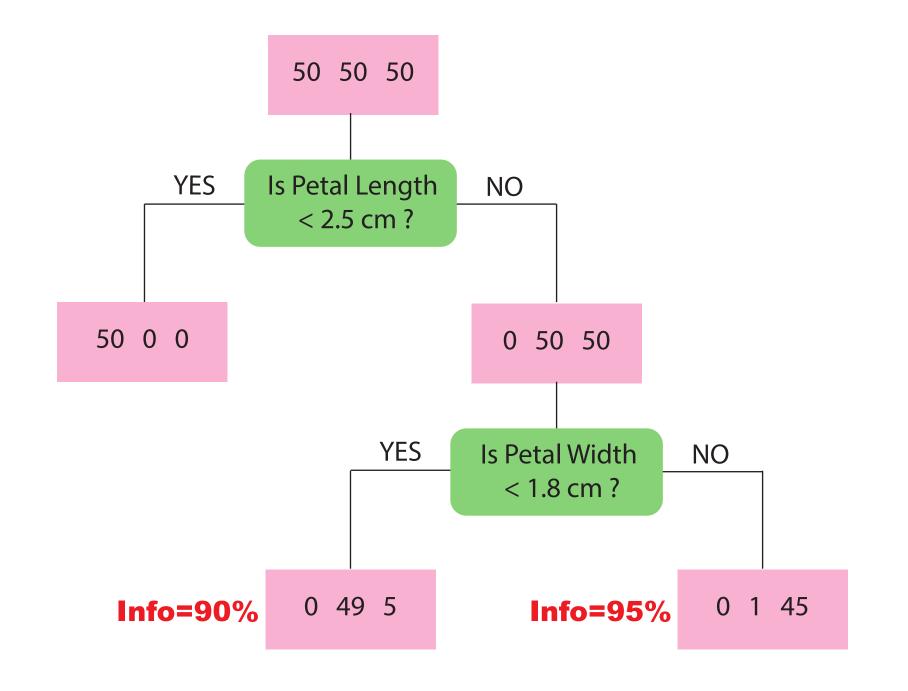
50 50 50







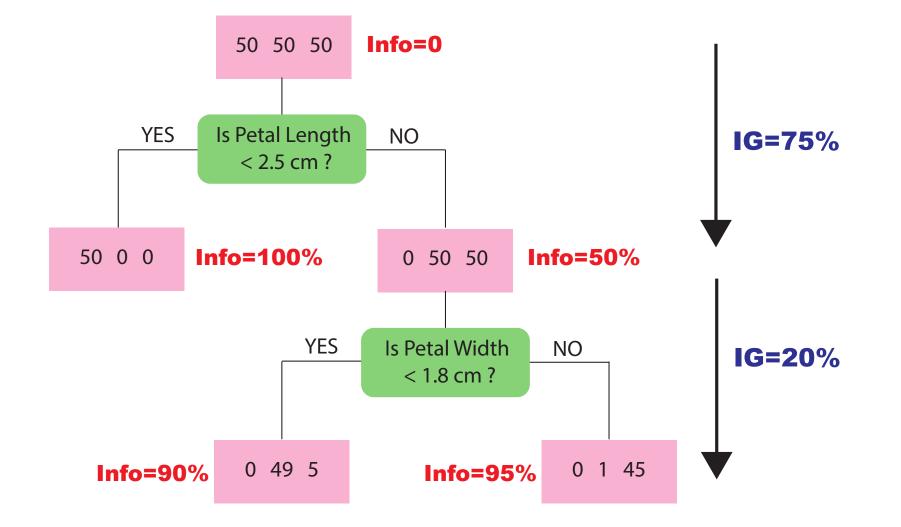




We start at the root

and split the training data on the feature that results in the largest **information gain**

 $IG = Info(D_{children}) - Info(D_{parent})$



Assume $Info(D_{parent}) \in [0, 1]$:

 $IG = Info(D_{children}) - Info(D_{parent})$

$$= [1 - Info(D_{parent})] - [1 - Info(D_{children})]$$

$$=$$
 LackInfo(D_{parent}) - LackInfo($D_{children}$)

LackInfo is called the **impurity index I**:

$$IG = I(D_{\text{parent}}) - \left[\frac{N_{\text{left child}}}{N_{\text{parent}}}I(D_{\text{left child}}) + \frac{N_{\text{right child}}}{N_{\text{parent}}}I(D_{\text{right child}})\right]$$

The impurity index:

$$I_{E}(D_{\ell}) = 1 - \max_{c=1,2,3} \{p_{\ell c}\} \quad \text{(Misclassification error)}$$
$$I_{H}(D_{\ell}) = -\sum_{c=1}^{3} p_{\ell c} \log_{2}(p_{\ell c}) \quad \text{(Entropy or Deviance)}$$
$$I_{G}(D_{\ell}) = 1 - \sum_{c=1}^{3} p_{\ell c}^{2} \quad \text{(Gini index)}$$

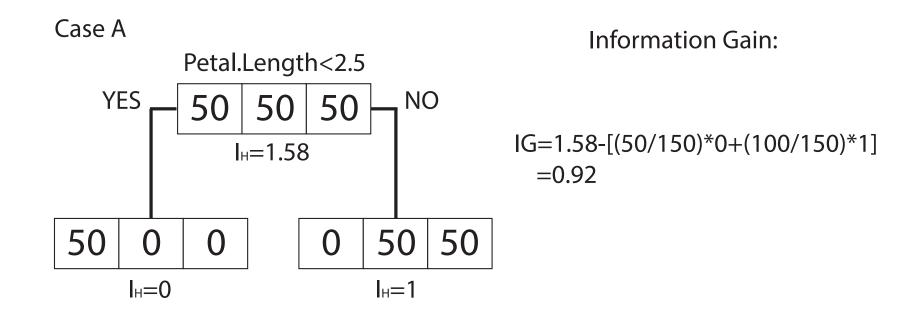
where $p_{\ell c}$ is the proportion of data points at leaf ℓ that belongs to class c = 1, 2, 3.

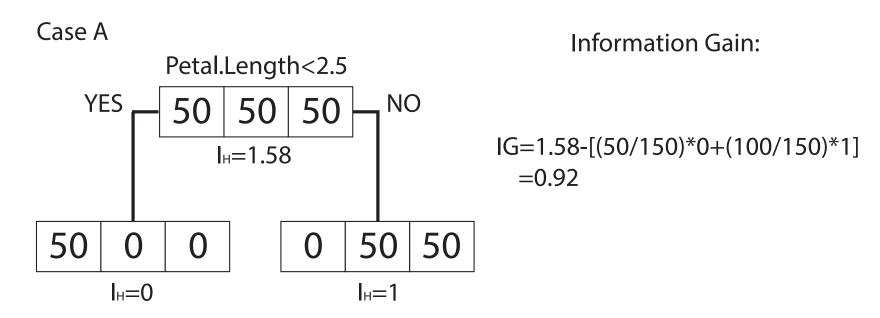
In the case of 2 classes: index=MAX info=MIN 0.5 Entropy 0.4 Misclassificationerror Ginindet 0.3 0.2 0.1 index=MIN index=MIN info=MAX g info=MAX 0.2 0.4 0.6 0.8 0.0 1.0 р

Conclusion: we want info=MAX or I=MIN at the children leaves

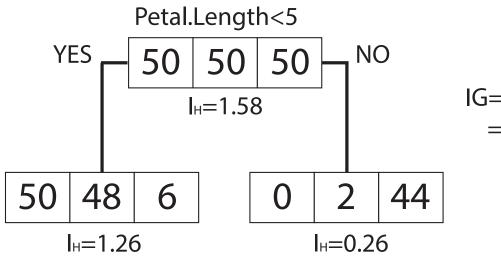
Ref: The Elements of Statistical Learning

EXAMPLE

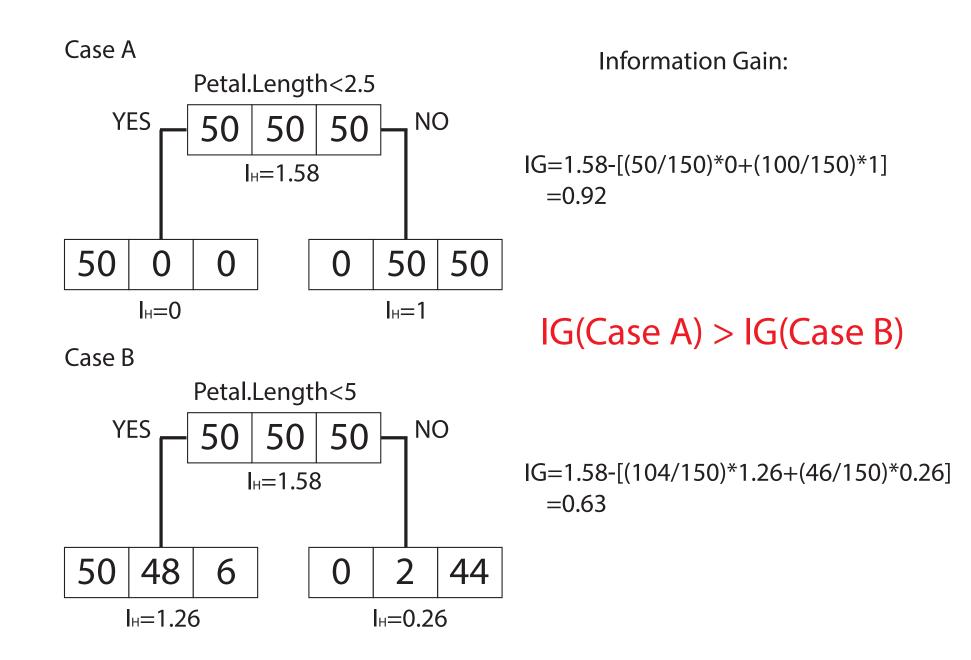




Case B



IG=1.58-[(104/150)*1.26+(46/150)*0.26] =0.63



How many splitting features should be tested ?

Order the values from smallest to biggest:

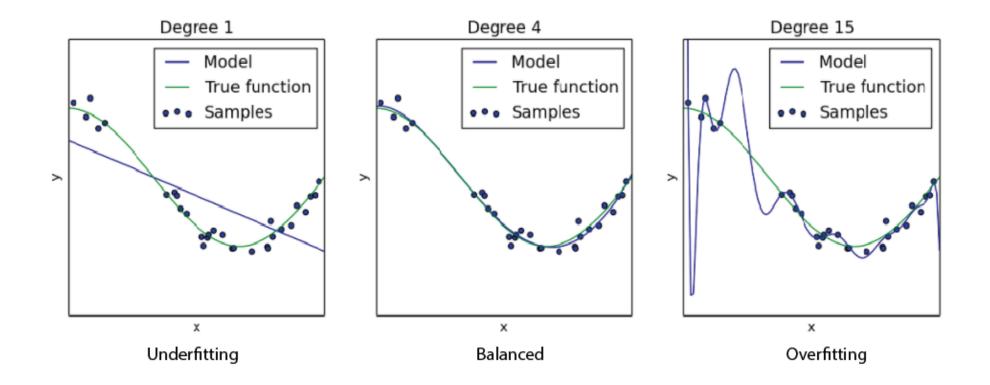
n	1	2	•••	149	150
Petal Length	1.0	1.1	•••	6.7	6.9
Petal Width	0.1	0.1	•••	2.5	2.5
Sepal Length	4.3	4.4	•••	7.7	7.9
Sepal Width	2.0	2.2	•••	4.2	4.4

There are 4x150=600 possible questions (splitting features)

When to stop splitting features ?

The answer is related to the problem of under-fitting and over-fitting

When to stop splitting features ?



If the tree is too small

(too few splits),

it may under-fit the data

If the tree is too big

(too many splits),

it may over-fit the data

Method 1

Use stopping rules

that will prevent any node being split

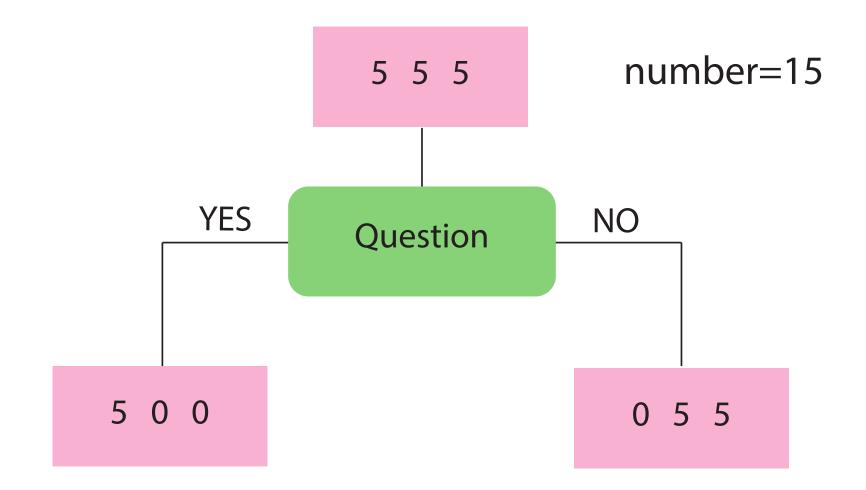
if those conditions are not met

minsplit

The minimum number of samples

that must exist in a node in order for a split to be attempted

When to stop splitting features ?



When to stop splitting features ?

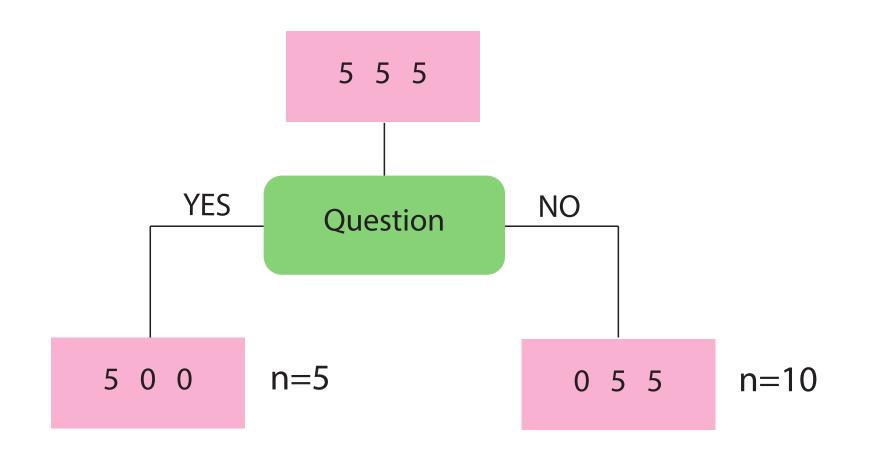
minsplit=10

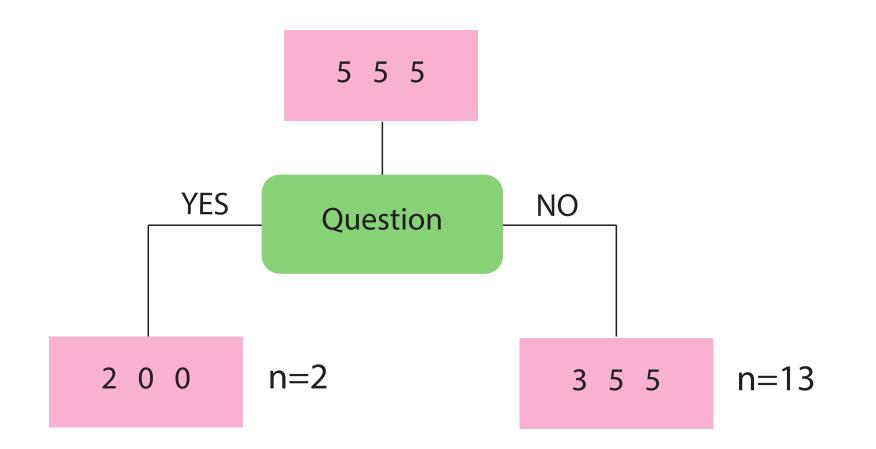
DO NOT SPLIT

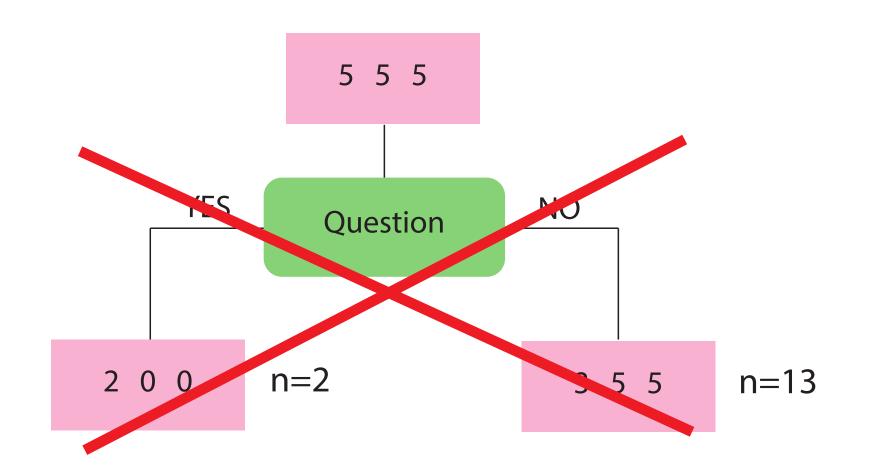
minbucket

The minimum number of samples

in any terminal leaf





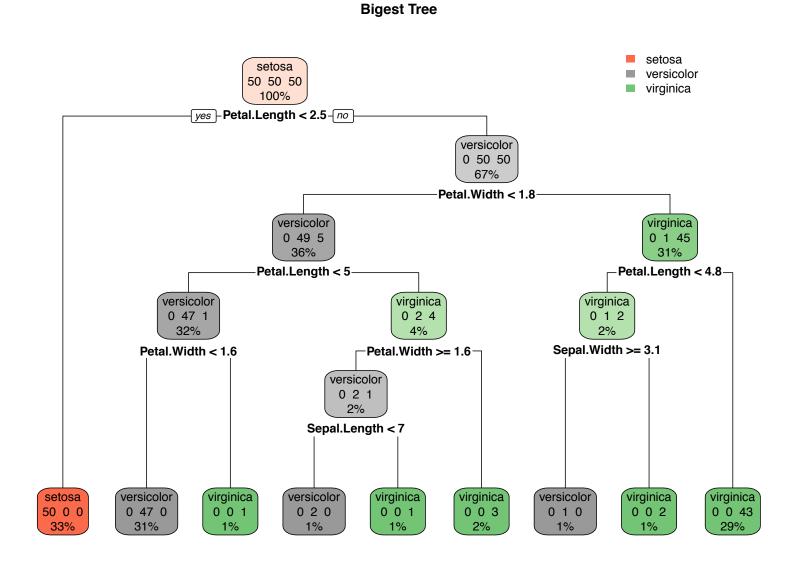


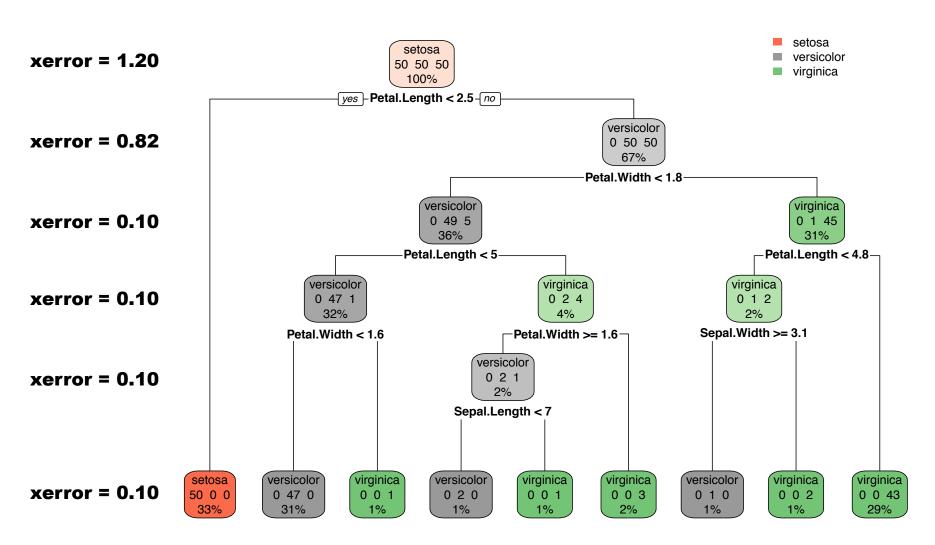
Method 2

Prune the biggest tree from bottom-up:

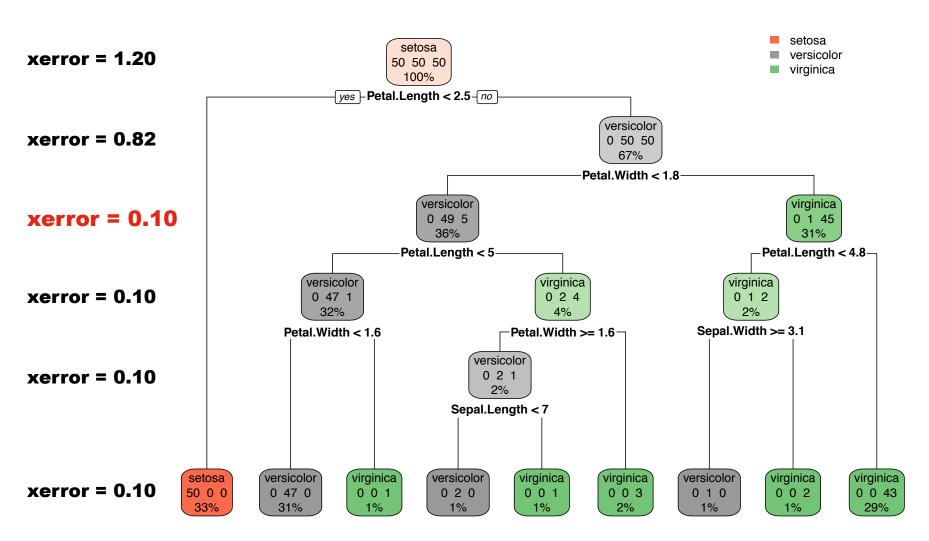
stop when reaching minimum validation error

EXAMPLE

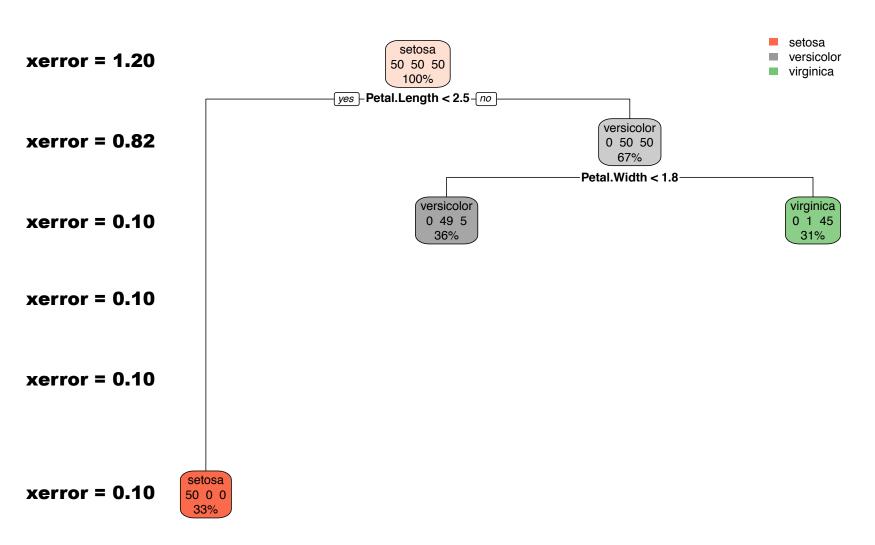




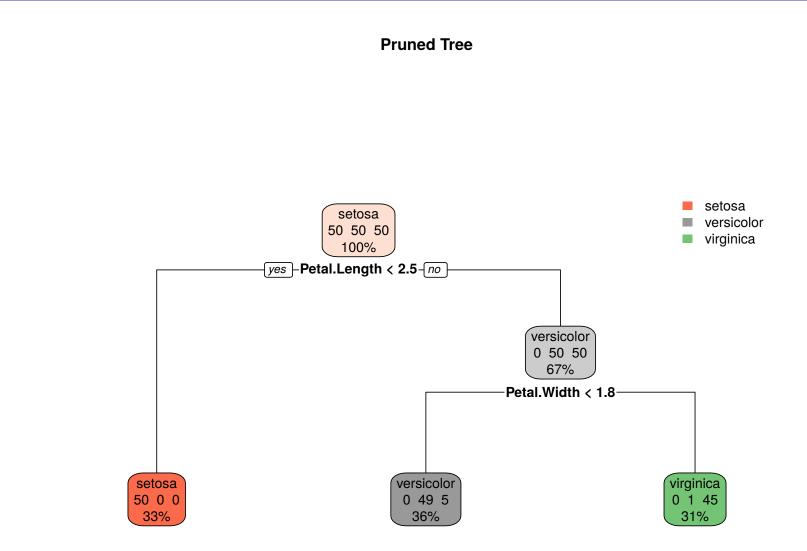
Bigest Tree



Bigest Tree



Bigest Tree

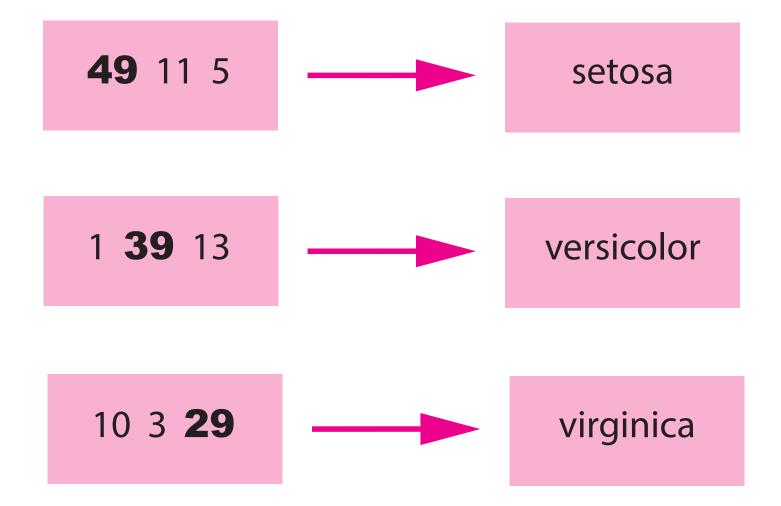


How to evaluate the decision tree performances ?

How to evaluate the decision tree performances ?

How to evaluate the decision tree performances ?

At first we apply the **majority class rule** at each end node:



How to evaluate the decision tree performances ?

Apply the decision tree to test data to get **confusion matrix**:

predictions					
actuals	setosa	versicolor	virginica		
setosa	14	0	0		
versicolor	0	9	0		
virginica	0	2	10		

Use the following **performance metrics**:

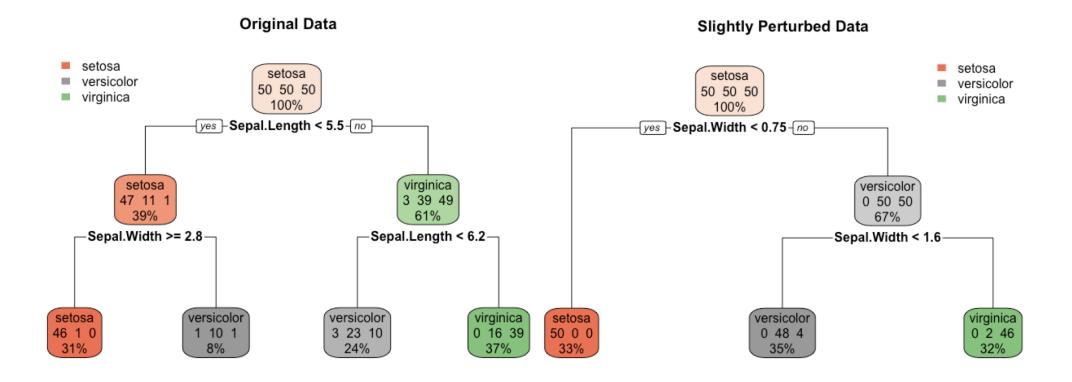
Accuracy rate	=	Number of correct predictions Total number of predictions	$=rac{33}{35}=94\%$
Error rate	=	Number of wrong predictions Total number of predictions	$=rac{2}{35}=6\%$

A decision tree is sensitive

to small data modifications

(a small change may give a very different tree)

We perturb the data with ± 0.1 random numbers



Hyperparameters:

- Splitting rule: impurity index
- Stopping rule: minsplit, minbucket, prune

Hyperparameters:

- Splitting rule: impurity index
- Stopping rule: minsplit, minbucket, prune

Main advantage:

• Easy to visualise graphically and to interpret

Hyperparameters:

- Splitting rule: impurity index
- Stopping rule: minsplit, minbucket, prune

Main advantage:

Easy to visualise graphically and to interpret

Main disadvantage:

 Sensitive to training data (a small change in data may give a very different tree). This may be solved partially using a random forest, which is an ensemble of decision trees. QUESTIONS ?

Random Forest

A decision tree has an important weakness: a small change in the training dataset may give a very different tree

EXAMPLE

If we split randomly the training data into two parts and fit a DT to both halves, they may be very different

Decision tree has high variance

How to reduce variance ?

Average over a set of predictions

Probabilistic setting

1 tree: X and Y are random variables with $V(Y) = \sigma^2$

Probabilistic setting

1 tree: X and Y are random variables with $V(Y) = \sigma^2$

Random forest with M trees:

$$Y = \frac{1}{M} \sum_{i=1}^{M} Y_i$$
 Corr $(Y_i, Y_j) = \varrho$

Then

$$V(Y) = \frac{1}{M}\sigma^2 + \frac{M-1}{M}\varrho\sigma^2$$

If M is large and ρ is small, the RF output has small variance

How to generate many uncorrelated trees ?

• Generate many training datasets

• Generate many training datasets

• Build a decision tree for each training dataset

• Generate many training datasets

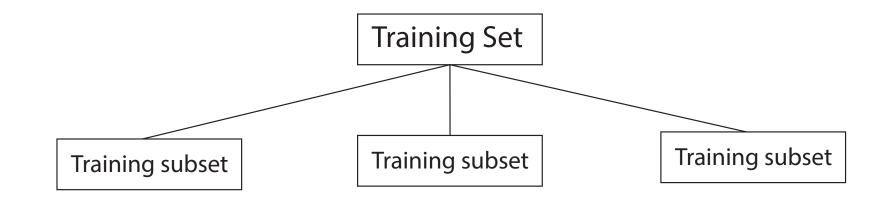
• Build a decision tree for each training dataset

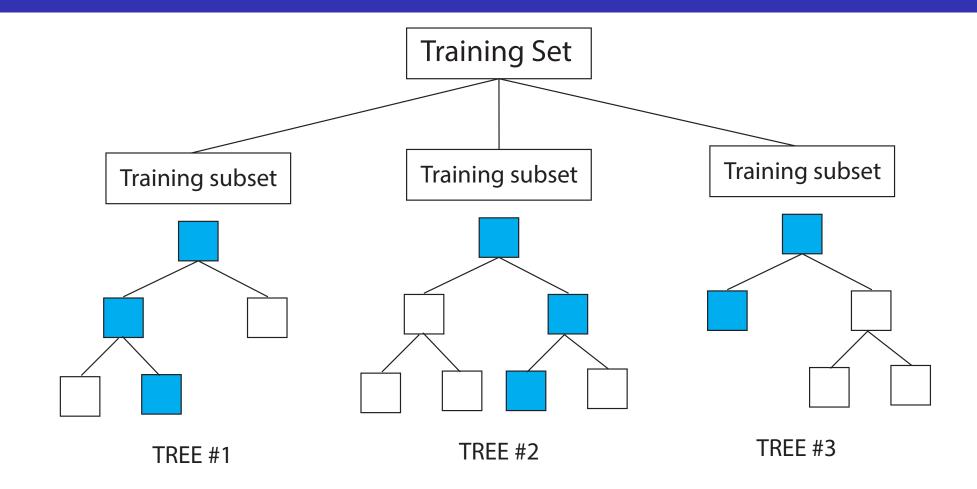
• Apply the majority rule for the prediction

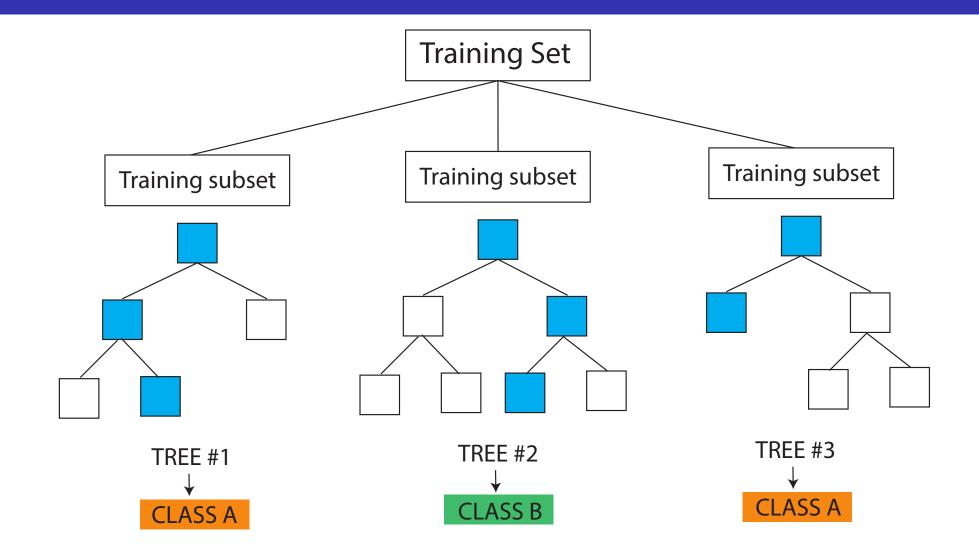
How to choose the splitting features ?

EXAMPLE

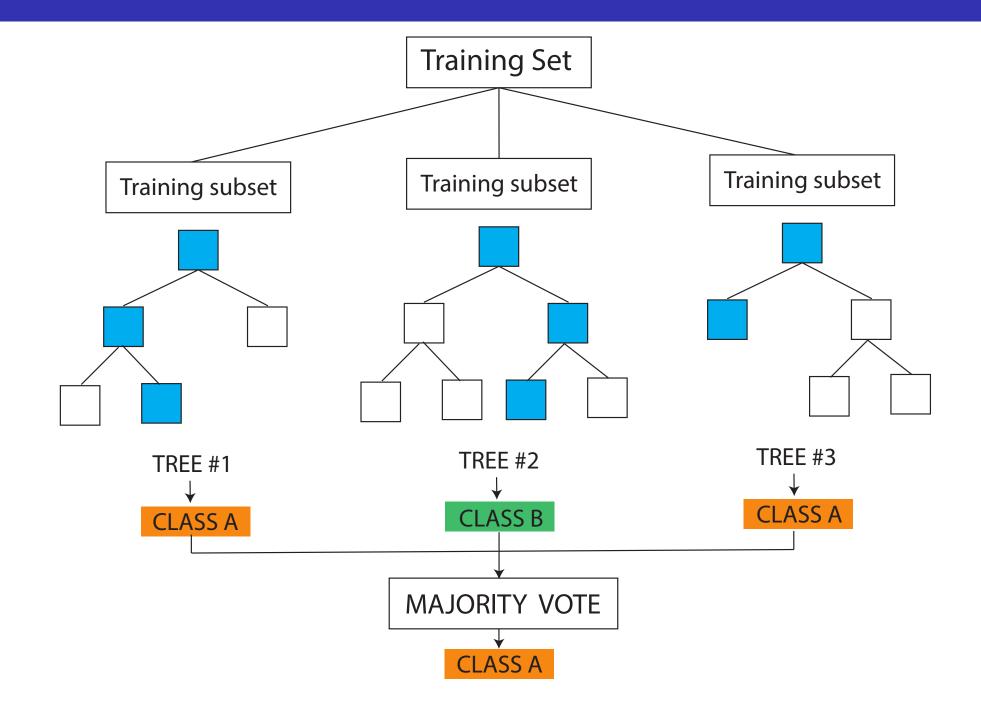
Training Set







Random forest with 3 decision trees



Algorithm: Draw *B* bootstrap samples of size n < N with or without replacement (B = 4, n = 4, N = 10, no replacement):

Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Plant 6 Plant 7 Plant 8 Plant 9 Plant 10 Algorithm: Draw *B* bootstrap samples of size n < N with or without replacement (B = 4, n = 4, N = 10, no replacement):

Plant 1	Plant 1	Plant 1	Plant 1
Plant 2	Plant 2	Plant 2	Plant 2
Plant 3	Plant 3	Plant 3	Plant 3
Plant 4	Plant 4	Plant 4	Plant 4
Plant 5	Plant 5	Plant 5	Plant 5
Plant 6	Plant 6	Plant 6	Plant 6
Plant 7	Plant 7	Plant 7	Plant 7
Plant 8	Plant 8	Plant 8	Plant 8
Plant 9	Plant 9	Plant 9	Plant 9
Plant 10	Plant 10	Plant 10	Plant 10

Algorithm: Draw *B* bootstrap samples of size n < N with or without replacement (B = 4, n = 4, N = 10, no replacement):

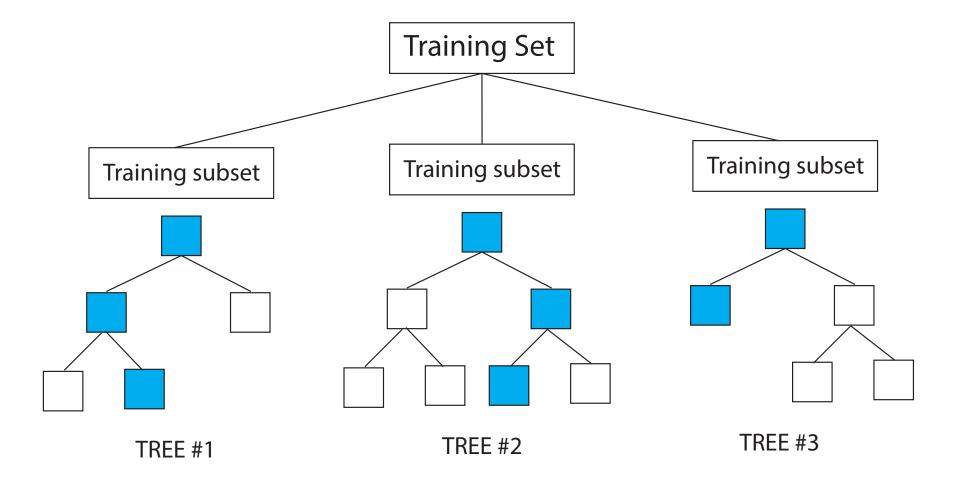
Plant 1	Plant 1	Plant 1	Plant 1
Plant 2	Plant 2	Plant 2	Plant 2
Plant 3	Plant 3	Plant 3	Plant 3
Plant 4	Plant 4	Plant 4	Plant 4
Plant 5	Plant 5	Plant 5	Plant 5
Plant 6	Plant 6	Plant 6	Plant 6
Plant 7	Plant 7	Plant 7	Plant 7
Plant 8	Plant 8	Plant 8	Plant 8
Plant 9	Plant 9	Plant 9	Plant 9
Plant 10	Plant 10	Plant 10	Plant 10

For each bootstrap sample:

Select randomly *m* variables from the *p* variables.
Important to obtain **decorrelated** trees
Typically $m = \sqrt{p}$ (p = 4 so m = 2 for iris)

Split the node into two daughter nodes based on the m variables (the value m is same at each node)

Build a decision tree for each training dataset



What is the importance of each variable ?

PROBLEM

It is not clear in a random forest

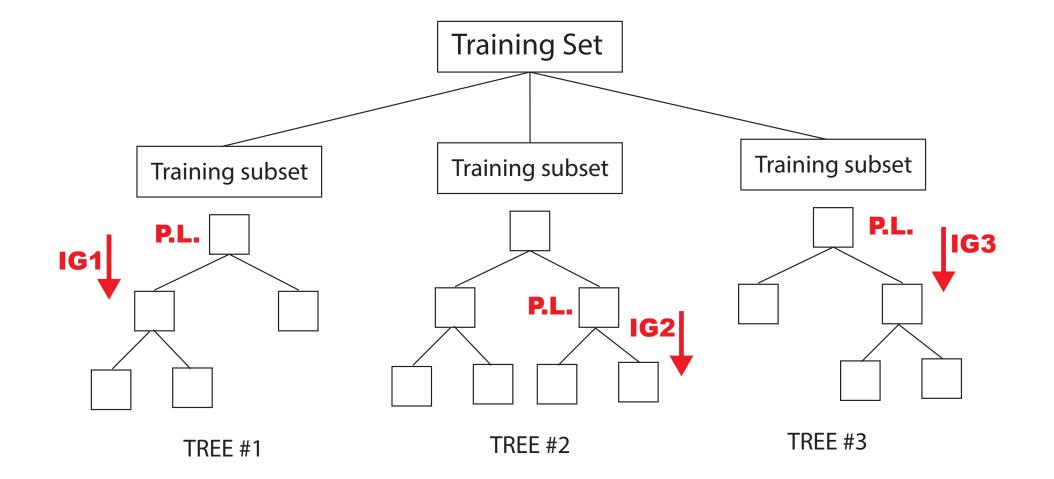
which variables are important in predicting the species a given plant belongs to

What is the importance of each variable ?

SOLUTION

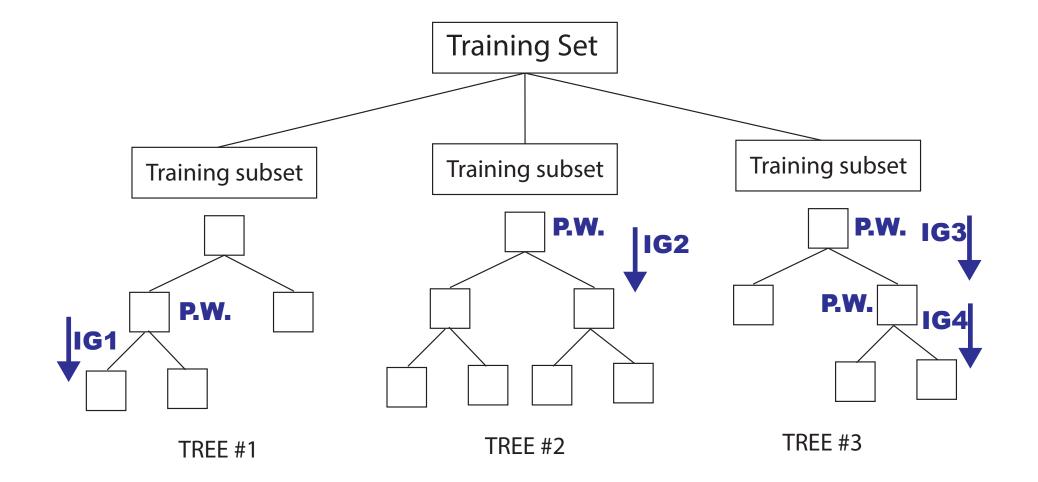
The **importance** of a given predictor may be computed by adding up the information gain increases averaged over all splits in the random forest involving the predictor in question

Build a decision tree for each training dataset



Importance=(IG1+IG2+IG3)/3

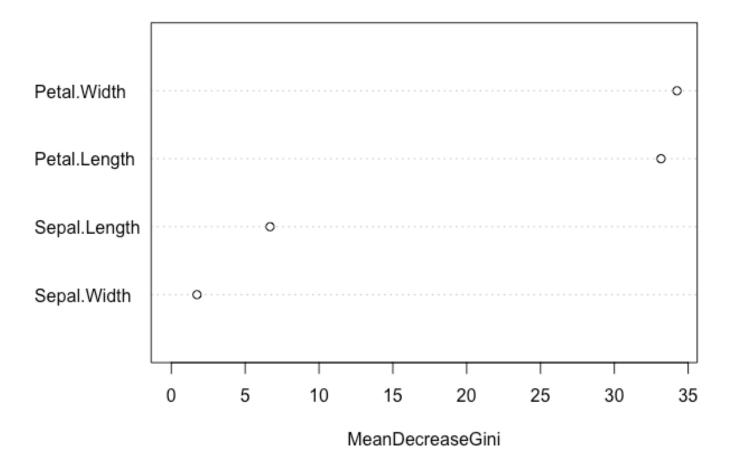
Build a decision tree for each training dataset



Importance=(IG1+IG2+IG3+IG4)/3

What is the importance of each variable ?

random_forest



New hyperparameters compared to decision tree:

• Number of trees, size of train subset (with or without replacement), number of variables used at each split

New hyperparameters compared to decision tree:

• Number of trees, size of train subset (with or without replacement), number of variables used at each split

Main advantage compared to decision tree:

• Robust to training data change

New hyperparameters compared to decision tree:

• Number of trees, size of train subset (with or without replacement), number of variables used at each split

Main advantage compared to decision tree:

• Robust to training data change

Main disadvantage compared to decision tree:

Not easy to visualise graphically and to interpret

QUESTIONS ?

Applications

Predict the risk of kidney transplantation rejection

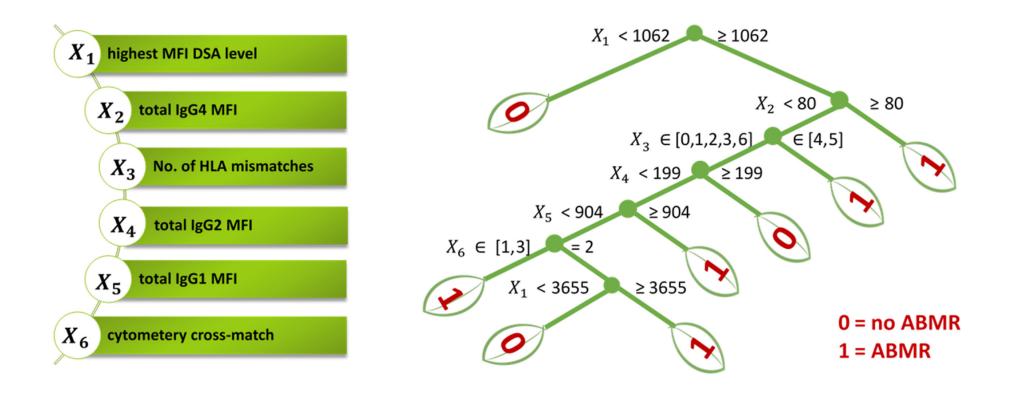
Ref: Decision tree and random forest models for outcome prediction in antibody incompatible kidney transplantation, Torgyn Shaikhina, DaveLowe, Sunil Dagade, David Briggs, Robert Higgins, Natasha Khovanov, Biomedical Signal Processing and Control (2017)

Some kidney diseases require transplantation to save the life of the patient

But the kidney may be rejected

What are the risk factors associated with rejection ?

They used 6 predictors in a decision tree (data: 80 patients)



0 = No Kidney Rejection Impurity index: Gini 1 = Kidney Rejection

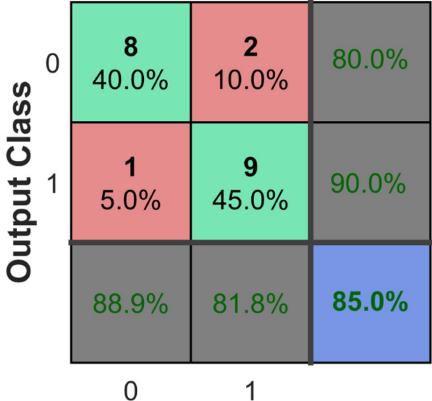
minsplit=10, minbucket=1

Application 1

Decision Tree:

	Training Confusion Matrix				
ISS	0	21 35.0%	5 8.3%	80.8%	
Output Class	1	4 6.7%	30 50.0%	88.2%	
no		84.0%	85.7%	85.0%	
		0	1		
Target Class					

Test Confusion Matrix



Target Class

Random Forest (600 trees):

Training Confusion Matrix				
0 0	24 40.0%	2 3.3%	92.3%	
Output Class	3 5.0%	31 51.7%	91.2%	
NO	88.9%	93.9%	91.7%	
	0	1		
Target Class				

Test Confusion Matrix

0	5 25.0%	1 5.0%	83.3%
Output Class	2 10.0%	12 60.0%	85.7%
no	71.4%	92.3%	85.0%
	0	1	

Target Class

Predict the risk of type 2 diabetes

Ref: Type 2 Diabetes Mellitus Screening and Risk Factors Using Decision Tree: Results of Data Mining, Shafi Habibi, Maryam Ahmadi, and Somayeh Alizadeh, Glob J Health Sci. (2015)

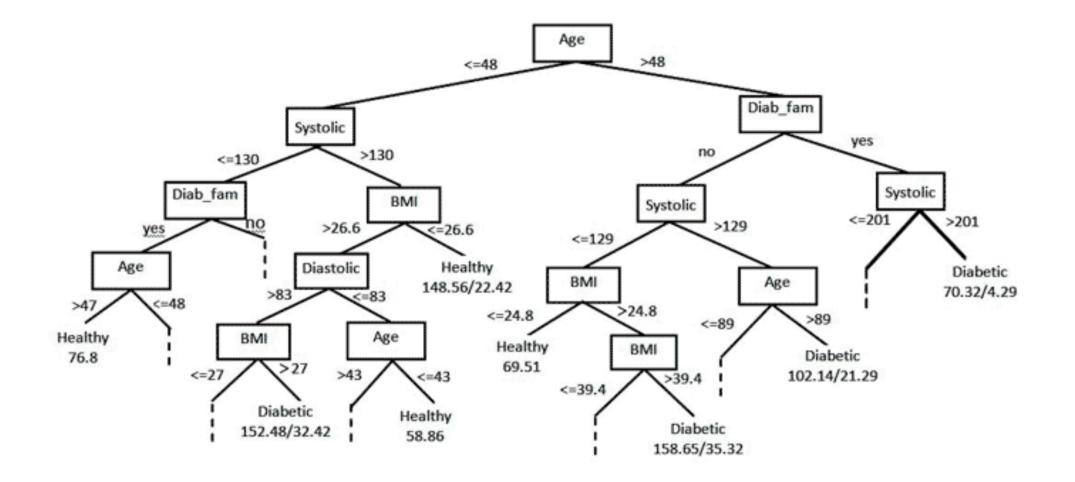
DATA

20'000 patient records

(age, gender, BMI, etc)

are classified as diabetic or healthy

Application 2



Rem: Gender was used but does not appear in the tree

PREDICTION

Table 2. Confusion matrix of the decision tree model

	Classes	Diabetic	Healthy
TRUE	Healthy	253	21221
	Diabetic	641	283

Accuracy = 98 %

PREDICTION

Table 2. Confusion matrix of the decision tree model

	Classes	Diabetic	Healthy
TRUE	Healthy	253	21221
	Diabetic	641	283

Accuracy = 98 %

You may want to minimize FNR

QUESTIONS ?

BONUS

Which is

the best learning algorithm ?

No universal machine learning algorithm:

• No free lunch theorem: In a nutshell, it states that there is no learning algorithm that works best for all problems.

No universal machine learning algorithm:

- No free lunch theorem: In a nutshell, it states that there is no learning algorithm that works best for all problems.
- As a consequence, one should try several reasonable learning algorithms based on the nature of the problem, type and amount of data, error function, etc.

No universal machine learning algorithm:

- No free lunch theorem: In a nutshell, it states that there is no learning algorithm that works best for all problems.
- As a consequence, one should try several reasonable learning algorithms based on the nature of the problem, type and amount of data, error function, etc.
- And use the validation set accuracy as a performance measure to select the best one.

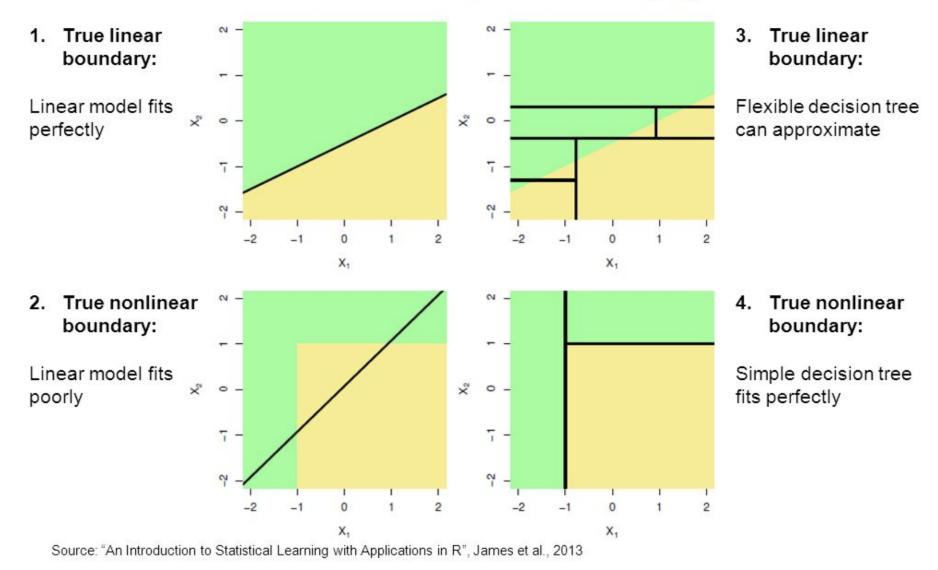
No universal machine learning algorithm:

- No free lunch theorem: In a nutshell, it states that there is no learning algorithm that works best for all problems.
- As a consequence, one should try several reasonable learning algorithms based on the nature of the problem, type and amount of data, error function, etc.
- And use the validation set accuracy as a performance measure to select the best one.

Example: Let us put aside the interpretability and robustness. Then, the accuracy for the iris data:

NN= 0.94, Tree= 0.94, RF= 0.91 -> Best: NN=Tree

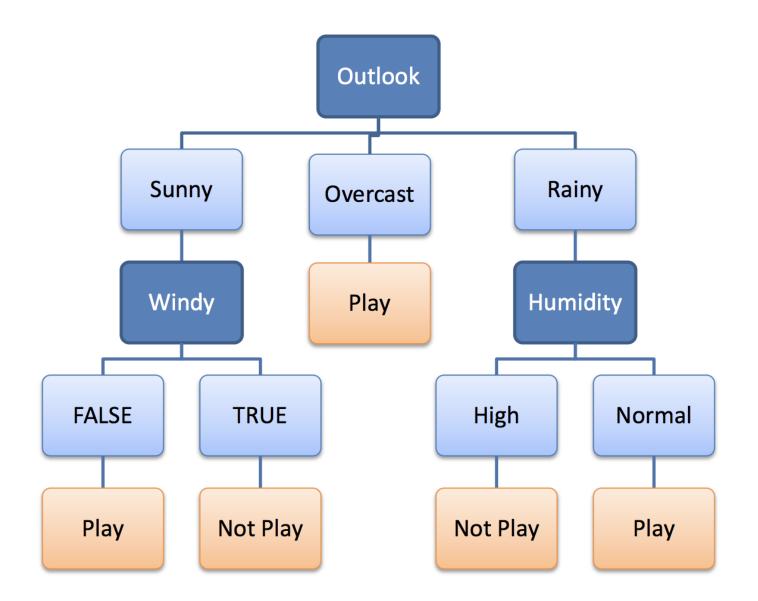
Bonus 2: Decision Tree versus Linear Model



Decision Tree for Classification:

	Target			
Outlook	Temp.	Humidity	Windy	Play Golf
Rainy	Hot	High	False	Νο
Rainy	Hot	High	True	Νο
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	Νο
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	Νο

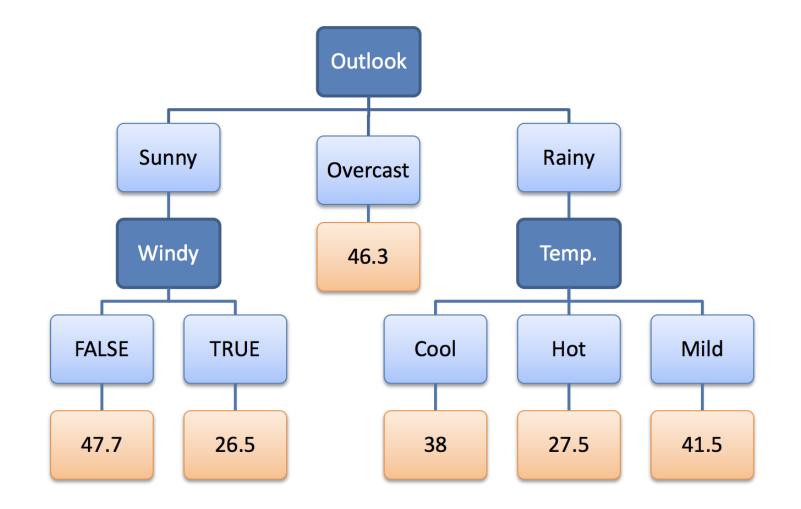
Decision Tree for Classification:



Decision Tree for Regression:

Predictors				Target	
Outlook	Outlook Temp. Humidity Windy				
Rainy	Hot	High	False	25	
Rainy	Hot	High	True	30	
Overcast	Hot	High	False	46	
Sunny	Mild	High	False	45	
Sunny	Cool	Normal	False	52	
Sunny	Cool	Normal	True	23	
Overcast	Cool	Normal	True	43	
Rainy	Mild	High	False	35	
Rainy	Cool	Normal	False	38	
Sunny	Mild	Normal	False	46	
Rainy	Mild	Normal	True	48	
Overcast	Mild	High	True	52	
Overcast	Hot	Normal	False	44	
Sunny	Mild	High	True	30	

Decision Tree for Regression:



Two modifications to go from DT classification to DT regression

Modification 1

Information Gain

becomes

Modification 2

Most commonly occurring class in each leaf

becomes

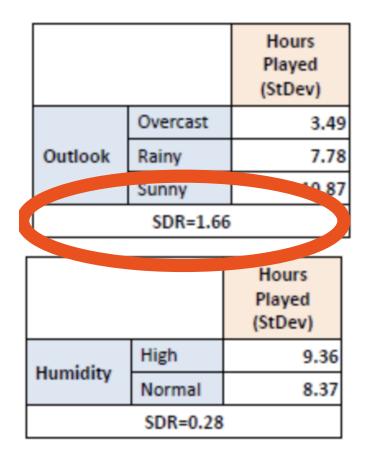
Mean response of the training output values

	Hours Played (StDev)	
	Overcast	3.49
Outlook	Rainy	7.78
	Sunny	10.87

		Hours Played (StDev)
the states	High	9.36
Humidity	Normal	8.37

		Hours Played (StDev)	
	Cool	10.51	
Temp.	Hot	8.95	
	Mild	7.65	
	SDR=0.17		

		Hours Played (StDev)
Minche	False	7.87
Windy	True	10.59



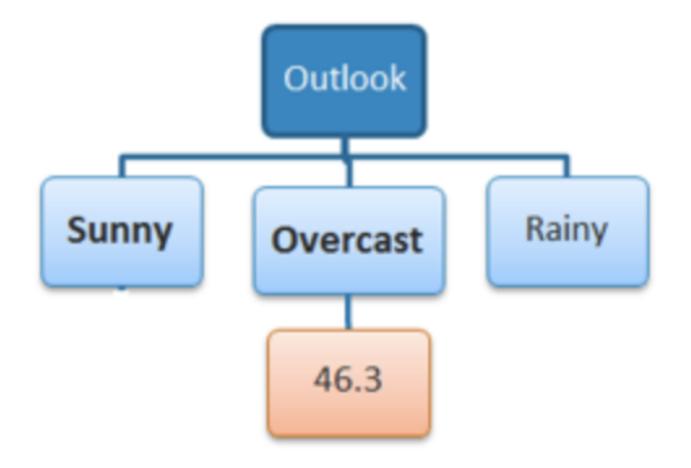
		Hours Played (StDev)
	Cool	10.51
Temp.	Hot	8.95
	Mild	7.65
	SDR=0.17	

		Hours Played (StDev)
Min de	False	7.87
windy	Windy True	

		Outlook	Temp	Humidity	Windy	Hours Played
		Sunny	Mild	High	FALSE	45
	2	Sunny	Cool	Normal	FALSE	52
	Sunny	Sunny	Cool	Normal	TRUE	23
	SI	Sunny	Mild	Normal	FALSE	46
		Sunny	Mild	High	TRUE	30
-¥	st	Overcast	Hot	High	FALSE	46
8	S I	Overcast	Cool	Normal	TRUE	43
Outlook	er	Overcast	Mild	High	TRUE	52
ō	Overcast	Overcast	Hot	Normal	FALSE	44
		Rainy	Hot	High	FALSE	25
	>	Rainy	Hot	High	TRUE	30
I	Rainy	Rainy	Mild	High	FALSE	35
	č	Rainy	Cool	Normal	FALSE	38
		Rainy	Mild	Normal	TRUE	48

		Outlook	Temp	Humidity	Windy	Hours Played
		Sunny	Mild	High	FALSE	45
	Sunny	Sunny	Cool	Normal	FALSE	52
]	5	Sunny	Cool	Normal	TRUE	23
	SI	Sunny	Mild	Normal	FALSE	46
		Sunny	Mild	High	TRUE	30
×	st	Overcast	Hot	High	FALSE	46
8	2	Overcast	Cool	Normal	TRUE	43
Outlook	- Je	Overcast	Mild	High	TRUE	52
ō	Overcast	Overcast	Hot	Normal	FALSE	44
		Rainy	Hot	High	FALSE	25
	2	Rainy	Hot	High	TRUE	30
L	Rainy	Rainy	Mild	High	FALSE	35
	8	Rainy	Cool	Normal	FALSE	38
		Rainy	Mild	Normal	TRUE	48

Mean response of the training output values:



Multicollinearity

occurs when two or more predictor variables

are intercorrelated

Is multicollinearity a problem ?

Yes for interpretation

(to know which variables are important)

(or to know the effects of individual predictors)

No really for prediction

(more variables may give better accuracy)

THANK YOU FOR YOUR ATTENTION