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Bonus 1: Bias node

We have



w11 w12 w13 w14
w21 w22 w23 w24
w31 w32 w33 w34
w41 w42 w43 w44
w51 w52 w53 w54







x1
x2
x3
x4


 =




w11 x1 + w12 x2 + w13 x3 + w14 x4
w21 x1 + w22 x2 + w23 x3 + w24 x4
w31 x1 + w32 x2 + w33 x3 + w34 x4
w41 x1 + w42 x2 + w43 x3 + w44 x4
w51 x1 + w52 x2 + w53 x3 + w54 x4


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Bonus 1: Bias node

We have



w11 w12 w13 w14
w21 w22 w23 w24
w31 w32 w33 w34
w41 w42 w43 w44
w51 w52 w53 w54







x1
x2
x3
x4


 =




w11 x1 + w12 x2 + w13 x3 + w14 x4
w21 x1 + w22 x2 + w23 x3 + w24 x4
w31 x1 + w32 x2 + w33 x3 + w34 x4
w41 x1 + w42 x2 + w43 x3 + w44 x4
w51 x1 + w52 x2 + w53 x3 + w54 x4




We now add a bias node:



w10 w11 w12 w13 w14
w20 w21 w22 w23 w24
w30 w31 w32 w33 w34
w40 w41 w42 w43 w44
w50 w51 w52 w53 w54







+1
x1
x2
x3
x4




=




w10 + w11 x1 + w12 x2 + . . .
w20 + w21 x1 + w22 x2 + . . .
w30 + w31 x1 + w32 x2 + . . .
w40 + w41 x1 + w42 x2 + . . .
w50 + w51 x1 + w52 x2 + . . .




The bias node introduces the intercepts w10, w20, w30, w40, w50



Bonus 2: K-fold cross-validation for model selection

For small datasets, one may not want to keep a separate
validation dataset:

train validation test

0                                                                         60%                   80%                100%
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Bonus 2: K-fold cross-validation for model selection

For small datasets, one may not want to keep a separate
validation dataset:

train validation test

0                                                                         60%                   80%                100%

train test

0                                                                                                    80%                100%

Model selection: Evaluate the validation accuracy of
different models by using K-fold cross-validation.

Model assessment: Use the training set to fit the best
selected model and the test set to evaluate its accuracy.



Bonus 2: K-fold cross-validation for model selection

Estimate the validation accuracy of a model by K-fold
cross-validation (K=5):

temporary train validationi=1

i=2

i=3

i=4

i=5

Accuracy 1

Accuracy 2

Accuracy 3

Accuracy 4

Accuracy 5

original train

0                                                                                                                                    80%                 100%

test Hold-out a test set



Bonus 2: K-fold cross-validation for model selection

Estimate the validation accuracy of a model by K-fold
cross-validation (K=5):

temporary train validationi=1

i=2

i=3

i=4

i=5

Accuracy 1

Accuracy 2

Accuracy 3

Accuracy 4

Accuracy 5

original train

0                                                                                                                                    80%                 100%

test Hold-out a test set

The Cross-Validation accuracy rate:

CV =
1
K

K�

i=1

Accuracyi



Bonus 2: K-fold CV for model assessment

The best selected model (obtained by inner K-fold CV) and its
accuracy may depend on the particular training/test splitting.
One may check the stability of the best model and its prediction
accuracy by using outer K-fold CV (K=5):

original train testi=1

i=2

i=3

i=4

i=5

Test Accuracy 1

Test Accuracy 2

Test Accuracy 3

Test Accuracy 4

Test Accuracy 5

The Cross-Validation Test accuracy rate:

CV Test =
1
K

K�

i=1

Test Accuracyi



Bonus 3: Dropout nodes

Dropout is a regularization technique for reducing overfitting in
neural networks. One drops out units (both hidden and visible)
during training according to a random distribution. This
prevents units from co-adapting too much.



Bonus 3: Dropout nodes

Training Phase: For each selected layer and for each
training iteration, ignore a random fraction 1-p of nodes.
Different nodes will be dropped at each iteration.



Bonus 3: Dropout nodes

Training Phase: For each selected layer and for each
training iteration, ignore a random fraction 1-p of nodes.
Different nodes will be dropped at each iteration.

Testing Phase: Use all nodes but make normalization (to
account for the missing nodes during training).



Bonus 4: Back-propagation

The error function:

En(W ) = −
3�

k=1

tnk · log ynk (W )

The weights are updated with the gradient descent algorithm:

(w (1)
ij )τ = (w (1)

ij )τ−1 − η · ∂En

∂w (1)
ij

(w (2)
ij )τ = (w (2)

ij )τ−1 − η · ∂En

∂w (2)
ij



Bonus 4: Back-propagation

The error function:

En(W ) = −
3�

k=1

tnk · log ynk (W )

The weights are updated with the gradient descent algorithm:

(w (1)
ij )τ = (w (1)

ij )τ−1 − η · ∂En

∂w (1)
ij

(w (2)
ij )τ = (w (2)

ij )τ−1 − η · ∂En

∂w (2)
ij

The gradients are computed by back-propagation:

(1)
∂En

∂w (2)
ij

(2)
∂En

∂w (1)
ij



Bonus 4: Back-propagation

After some analytical computations:

∂En

∂w (2)
ij

= Δ
(2)
ni · z(2)

nj

∂En

∂w (1)
ij

= Δ
(1)
ni · xnj

with errors:

Δ
(2)
ni = (yni − tni)

Δ
(1)
ni = ReLU �(z(1)

ni )
3�

p=1

w (2)
pi Δ

(2)
np



Bonus 4: Back-propagation

Relations between layer k and k + 1:

I(k) O(k) I(k+1) O(k+1)

Δ(k+1)
n1

Δ(k+1)
n2

Δ(k+1)
n3

Δ(k)
ni

w(k+1)
1i

The back-propagation equations:

∂En

∂w (k)
ij

= Δ
(k)
ni · I(k)nj

Δ
(k)
ni = ReLU �(O(k)

ni )
3�

p=1

w (k+1)
pi Δ

(k+1)
np
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Bonus 4: Back-propagation

Relations between layer k and k + 1:

I(k) O(k) I(k+1) O(k+1)

Δ(k+1)
n1

Δ(k+1)
n2

Δ(k+1)
n3

Δ(k)
ni

w(k+1)
1i

The back-propagation equations:

∂En

∂w (k)
ij

= Δ
(k)
ni · I(k)nj

Δ
(k)
n = ReLU �(O(k)

n ) ◦
�

W (k+1)
�T

Δ
(k+1)
n



Bonus 5: Neural Network for Regression

Two modifications to go

from NN classification to NN regression



Bonus 5: Neural Network for Regression

Modification 1

Remove the SoftMax function



Bonus 5: Neural Network for Regression

Modification 2

Replace the cross-entropy error by

the sum-of-squares error:

E(W ) =
1
2

N�

n=1

K�

k=1

|tnk − ynk (W )|2



QUESTIONS ?



Coffee break

COFFEE BREAK



The iris decision tree

The iris decision tree



The iris decision tree

Sepal length Sepal width Petal length Petal width Species

5.1 3.5 1.4 0.2 setosa

7.0 3.2 4.7 1.4 versicolor

6.3 3.3 6.0 2.5 virginica

input output



The iris decision tree

A decision tree is a model

that predicts the output

by answering questions on the input



The iris decision tree

EXAMPLE



The iris decision tree

Is Petal Length 
< 2.5 cm ?

YES
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NO
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The iris decision tree

Sepal length Sepal width Petal length Petal width Species

5.1 3.5 1.4 0.2 setosa

7.0 3.2 4.7 1.4 versicolor

6.3 3.3 6.0 2.5 virginica

input output

Is Petal Length 
< 2.5 cm ?

YES

setosa

NO

Is Petal Width 
< 1.8 cm ?

YES NO

versicolor virginica



How to choose the splitting features ?

How to choose

the questions ?



How to choose the splitting features ?

One wants to answer

as few as possible questions

to determine which species

a given plant belongs to



The iris decision tree

Is Petal Length 
< 2.5 cm ?

YES

setosa

NO

Is Petal Width 
< 1.8 cm ?

YES NO

versicolor virginica

#splits=2
#leaves=3



How to choose the splitting features ?

This is a global optimization problem

that cannot be handled computationally



How to choose the splitting features ?

We start with all the training data

and choose a locally optimal question

that splits the data at each stage



How to choose the splitting features ?

Information

Information content of a leaf

If I take randomly a sample from the leaf,

how much do I know about its class



The iris decision tree

EXAMPLE



The iris decision tree

50   50   50



The iris decision tree

50   50   50 Info=0



The iris decision tree
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The iris decision tree

Is Petal Length 
< 2.5 cm ?

YES

50   0   0

NO

50   50   50

0   50   50 Info=50%Info=100%



The iris decision tree

Is Petal Length 
< 2.5 cm ?

YES

50   0   0

NO

Is Petal Width 
< 1.8 cm ?

YES NO

0   49   5 0   1   45

50   50   50

0   50   50



The iris decision tree

Is Petal Length 
< 2.5 cm ?

YES

50   0   0

NO

Is Petal Width 
< 1.8 cm ?

YES NO

0   49   5 0   1   45

50   50   50

0   50   50

Info=90% Info=95%



How to choose the splitting features ?

We start at the root

and split the training data on the feature

that results in the largest information gain

IG = Info(Dchildren)− Info(Dparent)



How to choose the splitting features ?

Is Petal Length 
< 2.5 cm ?

YES

50   0   0

NO

Is Petal Width 
< 1.8 cm ?

YES NO

0   49   5 0   1   45

50   50   50

0   50   50

Info=90% Info=95%

Info=0

Info=50%Info=100%

IG=75%

IG=20%



How to choose the splitting features ?

Assume Info(Dparent) ∈ [0, 1]:

IG = Info(Dchildren)− Info(Dparent)

= [1 − Info(Dparent)]− [1 − Info(Dchildren)]

= LackInfo(Dparent)− LackInfo(Dchildren)



How to choose the splitting features ?

LackInfo is called the impurity index I:

IG = I(Dparent)−
�

Nleft child

Nparent
I(Dleft child) +

Nright child

Nparent
I(Dright child)

�



How to choose the splitting features ?

The impurity index:

IE(D�) = 1 − max
c=1,2,3

{p�c} (Misclassification error)

IH(D�) = −
3�

c=1

p�c log2(p�c) (Entropy or Deviance)

IG(D�) = 1 −
3�

c=1

p2
�c (Gini index)

where p�c is the proportion of data points at leaf � that belongs
to class c = 1, 2, 3.



How to choose the splitting features ?

In the case of 2 classes:

Conclusion: we want info=MAX or I=MIN at the children leaves
Ref: The Elements of Statistical Learning



How to choose the splitting features ?

EXAMPLE



How to choose the splitting features ?

50 50 50

0 50 5050 0 0

YES
Petal.Length<2.5

NO

IH=1.58

IH=0 IH=1

IG=1.58-[(50/150)*0+(100/150)*1]
    =0.92

Case A Information Gain:



How to choose the splitting features ?

50 50 50

0 50 5050 0 0

YES
Petal.Length<2.5

NO

IH=1.58

IH=0 IH=1

IG=1.58-[(50/150)*0+(100/150)*1]
    =0.92

Case A

50 50 50

0 2 4450 48 6

YES
Petal.Length<5

NO

IH=1.58

IH=1.26 IH=0.26

IG=1.58-[(104/150)*1.26+(46/150)*0.26]
    =0.63

Case B

Information Gain:



How to choose the splitting features ?

50 50 50

0 50 5050 0 0

YES
Petal.Length<2.5

NO

IH=1.58

IH=0 IH=1

IG=1.58-[(50/150)*0+(100/150)*1]
    =0.92

Case A

50 50 50

0 2 4450 48 6

YES
Petal.Length<5

NO

IH=1.58

IH=1.26 IH=0.26

IG=1.58-[(104/150)*1.26+(46/150)*0.26]
    =0.63

Case B

Information Gain:

IG(Case A) > IG(Case B)



How to choose the splitting features ?

How many splitting features

should be tested ?



How to choose the splitting features ?

Order the values from smallest to biggest:

n

1.0

1

Petal Length
150
6.91.1

2 149
6.7

...

...

4.3

0.1

Sepal Length
2.5
7.94.4

0.1 2.5
7.7

...

...
Petal Width

2.0Sepal Width 4.42.2 4.2...

There are 4x150=600 possible questions (splitting features)



When to stop splitting features ?

When to stop splitting features ?



When to stop splitting features ?

The answer is related to the problem of

under-fitting and over-fitting



When to stop splitting features ?

Ref: scikit-learn 0.18 documentation



When to stop splitting features ?

If the tree is too small

(too few splits),

it may under-fit the data



When to stop splitting features ?

If the tree is too big

(too many splits),

it may over-fit the data



When to stop splitting features ?

Method 1

Use stopping rules

that will prevent any node being split

if those conditions are not met



When to stop splitting features ?

minsplit

The minimum number of samples

that must exist in a node

in order for a split to be attempted



When to stop splitting features ?

5   5   5

minsplit=10

QuestionYES

5   0   0

NO

0   5   5

number=15



When to stop splitting features ?

5   0   4

minsplit=10

number=9

DO NOT SPLIT



When to stop splitting features ?

minbucket

The minimum number of samples

in any terminal leaf



When to stop splitting features ?

5   5   5

minbucket=5

QuestionYES

5   0   0

NO

0   5   5n=5 n=10



When to stop splitting features ?

5   5   5

minbucket=5

QuestionYES

2   0   0

NO

3   5   5n=2 n=13



When to stop splitting features ?

5   5   5

minbucket=5

QuestionYES

2   0   0

NO

3   5   5n=2 n=13



When to stop splitting features ?

Method 2

Prune the biggest tree from bottom-up:

stop when reaching minimum validation error



When to stop splitting features ?

EXAMPLE



When to stop splitting features ?

Bigest Tree

Petal.Length < 2.5

Petal.Width < 1.8

Petal.Length < 5

Petal.Width < 1.6 Petal.Width >= 1.6

Sepal.Length < 7

Petal.Length < 4.8

Sepal.Width >= 3.1

setosa
50  50  50

100%

setosa
50  0  0

33%

versicolor
0  50  50

67%

versicolor
0  49  5

36%

versicolor
0  47  1

32%

versicolor
0  47  0

31%

virginica
0  0  1

1%

virginica
0  2  4

4%

versicolor
0  2  1

2%

versicolor
0  2  0

1%

virginica
0  0  1

1%

virginica
0  0  3

2%

virginica
0  1  45

31%

virginica
0  1  2

2%

versicolor
0  1  0

1%

virginica
0  0  2

1%

virginica
0  0  43

29%

yes no

setosa
versicolor
virginica



When to stop splitting features ?

Bigest Tree
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31%
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0  1  2

2%

versicolor
0  1  0

1%

virginica
0  0  2

1%

virginica
0  0  43

29%

yes no

setosa
versicolor
virginica

xerror = 1.20

xerror = 0.10

xerror = 0.10

xerror = 0.10

xerror = 0.10

xerror = 0.82



When to stop splitting features ?

Bigest Tree

Petal.Length < 2.5
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When to stop splitting features ?

Bigest Tree

Petal.Length < 2.5

Petal.Width < 1.8

Petal.Length < 5

Petal.Width < 1.6 Petal.Width >= 1.6

Sepal.Length < 7

Petal.Length < 4.8

Sepal.Width >= 3.1

setosa
50  50  50

100%

setosa
50  0  0

33%

versicolor
0  50  50

67%

versicolor
0  49  5

36%

versicolor
0  47  1

32%

versicolor
0  47  0

31%

virginica
0  0  1

1%

virginica
0  2  4

4%

versicolor
0  2  1

2%
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0  2  0

1%
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0  0  1
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0  1  45

31%

virginica
0  1  2

2%

versicolor
0  1  0

1%

virginica
0  0  2

1%

virginica
0  0  43

29%

yes no

setosa
versicolor
virginica

xerror = 1.20

xerror = 0.10

xerror = 0.10

xerror = 0.10

xerror = 0.10

xerror = 0.82



When to stop splitting features ?

Pruned Tree

Petal.Length < 2.5

Petal.Width < 1.8

setosa
50  50  50

100%

setosa
50  0  0

33%

versicolor
0  50  50

67%

versicolor
0  49  5

36%

virginica
0  1  45

31%

yes no

setosa
versicolor
virginica



How to evaluate the decision tree performances ?

How to evaluate

the decision tree performances ?



How to evaluate the decision tree performances ?

At first we apply the majority class rule at each end node:

setosa49  11  5

versicolor1  39  13

virginica10  3  29



How to evaluate the decision tree performances ?

Apply the decision tree to test data to get confusion matrix:

Use the following performance metrics:

Accuracy rate =
Number of correct predictions

Total number of predictions
=

33
35

= 94%

Error rate =
Number of wrong predictions
Total number of predictions

=
2
35

= 6%



Weakness

A decision tree is sensitive

to small data modifications

(a small change may give a very different tree)



Weakness

We perturb the data with ±0.1 random numbers



Conclusion on decision tree

Hyperparameters:
Splitting rule: impurity index
Stopping rule: minsplit, minbucket, prune
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Conclusion on decision tree

Hyperparameters:
Splitting rule: impurity index
Stopping rule: minsplit, minbucket, prune

Main advantage:
Easy to visualise graphically and to interpret

Main disadvantage:
Sensitive to training data (a small change in data may give
a very different tree). This may be solved partially using a
random forest, which is an ensemble of decision trees.



QUESTIONS ?



Random forest

Random Forest



Random forest

A decision tree has an important weakness:

a small change in the training dataset

may give a very different tree



Random forest

EXAMPLE

If we split randomly the training data

into two parts and fit a DT to both halves,

they may be very different



Random forest

Decision tree has high variance



Random forest

How to reduce variance ?



Random forest

Average over a set of predictions



Random forest

Probabilistic setting

1 tree: X and Y are random variables with V (Y ) = σ2



Random forest

Probabilistic setting

1 tree: X and Y are random variables with V (Y ) = σ2

Random forest with M trees:

Y =
1
M

M�

i=1

Yi Corr(Yi ,Yj) = �

Then
V (Y ) =

1
M

σ2 +
M − 1

M
�σ2

If M is large and � is small, the RF output has small variance



Random forest

How to generate

many uncorrelated trees ?



Random forest

Generate many training datasets



Random forest

Generate many training datasets

Build a decision tree for each training dataset



Random forest

Generate many training datasets

Build a decision tree for each training dataset

Apply the majority rule for the prediction



How to choose the splitting features ?

EXAMPLE



Random forest with 3 decision trees

Training Set



Random forest with 3 decision trees

Training subset

Training Set

Training subset Training subset



Random forest with 3 decision trees

Training subset

Training Set

TREE #1

Training subset

TREE #2

Training subset

TREE #3



Random forest with 3 decision trees

Training subset

Training Set

TREE #1

CLASS A

Training subset

TREE #2

CLASS B

Training subset

TREE #3

CLASS A



Random forest with 3 decision trees

Training subset

Training Set

TREE #1

CLASS A

Training subset

TREE #2

CLASS B

Training subset

TREE #3

CLASS A

MAJORITY  VOTE

CLASS A



Generate many training datasets

Algorithm: Draw B bootstrap samples of size n < N with or
without replacement (B = 4, n = 4,N = 10, no replacement):

Plant 1
Plant 2
Plant 3
Plant 4
Plant 5
Plant 6
Plant 7
Plant 8
Plant 9
Plant 10
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Generate many training datasets

Algorithm: Draw B bootstrap samples of size n < N with or
without replacement (B = 4, n = 4,N = 10, no replacement):

Plant 1
Plant 2
Plant 3
Plant 4
Plant 5
Plant 6
Plant 7
Plant 8
Plant 9
Plant 10

Plant 1
Plant 2
Plant 3
Plant 4
Plant 5
Plant 6
Plant 7
Plant 8
Plant 9
Plant 10

Plant 1
Plant 2
Plant 3
Plant 4
Plant 5
Plant 6
Plant 7
Plant 8
Plant 9
Plant 10

Plant 1
Plant 2
Plant 3
Plant 4
Plant 5
Plant 6
Plant 7
Plant 8
Plant 9
Plant 10



Build a decision tree for each training dataset

For each bootstrap sample:

1 Select randomly m variables from the p variables.
Important to obtain decorrelated trees
Typically m =

√
p (p = 4 so m = 2 for iris)

2 Split the node into two daughter nodes based on the m
variables (the value m is same at each node)

3 Continue until no more split is possible



Build a decision tree for each training dataset

Training subset

Training Set

TREE #1

Training subset

TREE #2

Training subset

TREE #3



What is the importance of each variable ?

PROBLEM



What is the importance of each variable ?

It is not clear in a random forest

which variables are important in predicting

the species a given plant belongs to



What is the importance of each variable ?

SOLUTION



What is the importance of each variable ?

The importance of a given predictor

may be computed by adding up

the information gain increases averaged

over all splits in the random forest involving

the predictor in question



Build a decision tree for each training dataset

Training subset

Training Set

TREE #1

Training subset

TREE #2

Training subset

TREE #3

P.L. P.L.

P.L.

IG1

IG2

IG3

Importance=(IG1+IG2+IG3)/3



Build a decision tree for each training dataset

Training subset

Training Set

TREE #1

Training subset

TREE #2

Training subset

TREE #3

P.W. P.W.

P.W.

IG1

IG2

IG4

IG3

Importance=(IG1+IG2+IG3+IG4)/3

P.W.



What is the importance of each variable ?



Conclusion on random forest

New hyperparameters compared to decision tree:
Number of trees, size of train subset (with or without
replacement), number of variables used at each split
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Conclusion on random forest

New hyperparameters compared to decision tree:
Number of trees, size of train subset (with or without
replacement), number of variables used at each split

Main advantage compared to decision tree:
Robust to training data change

Main disadvantage compared to decision tree:
Not easy to visualise graphically and to interpret



QUESTIONS ?



Applications

Applications



Application 1

Predict the risk of

kidney transplantation rejection

Ref: Decision tree and random forest models for outcome prediction in antibody incompatible kidney transplantation,

Torgyn Shaikhina, DaveLowe, Sunil Dagade, David Briggs, Robert Higgins, Natasha Khovanov, Biomedical Signal

Processing and Control (2017)



Application 1

Some kidney diseases require transplantation

to save the life of the patient



Application 1

But the kidney may be rejected



Application 1

What are the risk factors
associated with rejection ?



Application 1

They used 6 predictors in a decision tree

(data: 80 patients)



Application 1

0 = No Kidney Rejection Impurity index: Gini

1 = Kidney Rejection minsplit=10, minbucket=1



Application 1

Decision Tree:



Application 1

Random Forest (600 trees):



Application 2

Predict the risk of

type 2 diabetes

Ref: Type 2 Diabetes Mellitus Screening and Risk Factors Using Decision Tree: Results of Data Mining, Shafi

Habibi, Maryam Ahmadi, and Somayeh Alizadeh, Glob J Health Sci. (2015)



Application 2

DATA

20’000 patient records

(age, gender, BMI, etc)

are classified as diabetic or healthy



Application 2

Rem: Gender was used but does not appear in the tree



Application 2

PREDICTION

TRUE

Accuracy = 98 %



Application 2

PREDICTION

TRUE

Accuracy = 98 % You may want to minimize FNR



QUESTIONS ?



BONUS



Bonus 1: The best learning algorithm

Which is

the best learning algorithm ?



Bonus 1: The best learning algorithm

No universal machine learning algorithm:
No free lunch theorem: In a nutshell, it states that there is
no learning algorithm that works best for all problems.
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measure to select the best one.



Bonus 1: The best learning algorithm

No universal machine learning algorithm:
No free lunch theorem: In a nutshell, it states that there is
no learning algorithm that works best for all problems.

As a consequence, one should try several reasonable
learning algorithms based on the nature of the problem,
type and amount of data, error function, etc.

And use the validation set accuracy as a performance
measure to select the best one.

Example: Let us put aside the interpretability and robustness.
Then, the accuracy for the iris data:

NN= 0.94, Tree= 0.94, RF= 0.91 –> Best: NN=Tree



Bonus 2: Decision Tree versus Linear Model



Bonus 3: Decision Tree for Regression

Decision Tree for Classification:



Bonus 3: Decision Tree for Regression

Decision Tree for Classification:



Bonus 3: Decision Tree for Regression

Decision Tree for Regression:

Hours Played



Bonus 3: Decision Tree for Regression

Decision Tree for Regression:



Bonus 3: Decision Tree for Regression

Two modifications to go

from DT classification to DT regression



Bonus 3: Decision Tree for Regression

Modification 1

Information Gain

becomes

Standard Deviation Reduction



Bonus 3: Decision Tree for Regression

Modification 2

Most commonly occurring class in each leaf

becomes

Mean response of the training output values



Bonus 3: Decision Tree for Regression

1 Standard Deviation Reduction:



Bonus 3: Decision Tree for Regression

1 Standard Deviation Reduction:



Bonus 3: Decision Tree for Regression

1 Standard Deviation Reduction:



Bonus 3: Decision Tree for Regression

1 Standard Deviation Reduction:



Bonus 3: Decision Tree for Regression

2 Mean response of the training output values:



Bonus 4: Multicollinearity

Multicollinearity

occurs when two or more predictor variables

are intercorrelated



Bonus 4: Multicollinearity

Is multicollinearity a problem ?



Bonus 4: Multicollinearity

Yes for interpretation

(to know which variables are important)

(or to know the effects of individual predictors)

No really for prediction

(more variables may give better accuracy)



THANK YOU

FOR YOUR ATTENTION


