Network training using gradient descent

Modify the weight values

to obtain better predictions



Network training using gradient descent

We need a way to measure the difference

between the predictions and the true species

(the cross-entropy error)



Network training using gradient descent

And our goal is to find the weights

that minimizes that error function

(using gradient descent)



Network training using gradient descent

Notation

he matrices W) and W®)

are combined as W



Network training using gradient descent

row features true species predictions
n SL.|SW. | PL. | PW. | T, o to ] Yol Yol Yo
4 46 | 3.1 1.5 | 0.2 1 0 0 1 0 0
5 50 | 36 | 14 | 0.2 1 0 0 | 0.94| 0.05]| 0.01

The cross-entropy error/loss function for the nth row:

3 frue species prediction
En(W) = — Z tnk log[ynk(W)]

k=1



Network training using gradient descent

row features true species predictions
n SL.|SW. | PL. | PW. | T, o to ] Yol Yol Yo
4 46 | 3.1 1.5 | 0.2 1 0 0 1 0 0
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The cross-entropy error/loss function for the nth row:

3 frue species prediction
En(W) = — Z tnk log[ynk(W)]

k=1

Example:

Eq(W) = —tp1 - log[ym (W)] = —log(1) =0



Network training using gradient descent

row features true species predictions
n SL.|SW. | PL. | PW. | T, o to ] Yol Yol Yo
4 46 | 3.1 1.5 | 0.2 1 0 0 1 0 0
5 50 | 36 | 14 | 0.2 1 0 0 | 0.94| 0.05]| 0.01

The cross-entropy error/loss function for the nth row:

3 frue species prediction
En(W) = — Z tnk log[ynk(W)]

k=1

Example:

Es(W) = —to1 - log[ym (W)] = —log(0.94) = 0.06



Network training using gradient descent

Find the weights W that minimize

the total cross-entropy error:

N
E(W) = En(W)
n=1



Network training using gradient descent

How to derive
the cross-entropy formula ?



Network training using gradient descent

The maximum likelihood method

Data:
X17"'7XN NN(:LLao-Z)

Point estimate of u:

N N

. 1

f = argmax,, £(u|X) = argmax,, | [ Ni(u. %) = N > X;
P

=1

Equivalently:
fi = argmin,, [ log £(1/ X))



Network training using gradient descent

The total cross-entropy error is defined

as the negative log-likelihood
E(W) = —log L(W|T); W = argmin,, E(W)

where

N K
cWIT)=]1] 1] vmw)

n=1 k=1

In RED: the probability for the correct class



Network training using gradient descent

How does
gradient descent work ?



Network training using gradient descent

» W




Network training using gradient descent

» W

E(w*)=min(E)



Network training using gradient descent

E(w*)=min(E)



Network training using gradient descent




Network training using gradient descent

Several iterations:

wo->w'!->w?->w3-——-- >W

E(w*)=min(E)



Network training using gradient descent




Network training using gradient descent

slope(w?°)
= VE(w?) .
Gradient Descent:
w'=w?-n* VE(W°)
5 VEW*)=0; n>0
oo W n = learning parameter




Network training using gradient descent

Possible problems



Network training using gradient descent

n too small



Network training using gradient descent

E(w) E(w)

A A diverge

» W

WF W0

n too small n too large



Network training using gradient descent

E(w) E(w)

A A diverge

wrwo wr Wk we

n too small n too large local minimum at w*



Network training using gradient descent

Initialization 7 = 0: Choose the initial weights W° with N/(0, 52)



Network training using gradient descent

Initialization 7 = 0: Choose the initial weights W° with N/(0, 52)
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Network training using gradient descent

3 possibilities for the next steps



Network training using gradient descent

3 possibilities for the next steps

© Batch Gradient Descent
@ Mini-batch Gradient Descent

® Stochastic Gradient Descent



Network training using gradient descent

Batch Gradient Descent
@ Apply the NN to all the train set
@ Record all the errors

® Update the weights:

Wr=w"_n. VE(W™ )



Network training using gradient descent

Mini-batch Gradient Descent
@ Apply the NN to a batch of the train set
@ Record the corresponding errors

@ Update the weights:

W™ — WT—1 _n.v Z En(WT—1)

nebatch



Network training using gradient descent

Stochastic Gradient Descent
@ Apply the NN to one sample of the train set
@ Record the one sample error

® Update the weights:

W™ = WT—1 —n- vEn(WT—1)



Network training using gradient descent

lteration

1 iteration (or pass) is one weight update



Network training using gradient descent

Epoch

1 epoch is reached

when the NN has passed through

all the training data



Network training using gradient descent

EXAMPLE

If you have 100 training samples,

and your batch size is 50,

then it will take 2 iterations to complete 1 epoch



Network training using gradient descent

Gradient Descent

© Batich Gradient Descent:
1 epoch = 1 iteration

@ Mini-batch Gradient Descent:
1 epoch = (N/batch) iterations

® Stochastic Gradient Descent:
1 epoch = N iterations



Performance metrics

What are

the performance metrics ?



Performance metrics

They may be used on

the training, validation and test sets



Performance metrics

Cross-entropy error/loss function

N 3

E=-) ) tw-logym

n=1 k=1



Performance metrics

Confusion matrix

predictions
actuals setosa versicolor virginilca
setosa 14 5 0
versicolor % 9 0

virglinlca % 2 10



Performance metrics

Accuracy rate = 1 - Error rate

Number of correct predictions 33 _ 949,

Accuracy rate = Total number of predictions 35

~ Number of wrong predictions 2
Errorrate = Total number of predictions 35 6%




Performance metrics

EXAMPLES



Performance metrics

Training and validation datasets:

acc

loss

1.0-
0.5-
0.0- ' ' ' ‘
0 50 100 150 200
epoch
1 50 100

data
=&= training

&~ validation

BGD:
Number of
weight updates



Performance metrics

Training and validation datasets:
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Performance metrics

Training and validation datasets:
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Performance metrics

Test set



Performance metrics

Test set

Accuracy=0.91 and cross-entropy loss=0.22



Performance metrics

Test set

Accuracy=0.91 and cross-entropy loss=0.22

THE END



Optimum number of epochs
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Optimum number of epochs

What is the optimum

number of epochs 7



Optimum number of epochs

The answer is related to the problem of

under-fitting and over-fitting



Optimum number of epochs

Degree 1

— Model
—  True function
e®e Samples

Degree 4

— Model
——  True function
e®e Samples

Underfitting

Ref: scikit-learn 0.18 documentation

Balanced

Degree 15

— Model
—  True function
e®e Samples

Overfitting
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overfitting

training error

validation error
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Number of epochs

Ref: www.jeremyjordan.me
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Conclusion on neural network

Can one reach 100% accuracy ?



Conclusion on neural network

Short answer

It is possible only if

there is enough information in the input X

to predict Y uniquely



Conclusion on neural network

EXAMPLE

If two plants have the same four attributes
(X1 = Xo)

but belong to two different species
(Y1 # Y2),

then we need additional features

to characterize uniquely the three iris species



Conclusion on neural network

If two people have the same gender and age
(X1 = X5)

but only one has a specific disease
(Y1 # Y2),

then we need additional features
(physical activity, smoking, genetics)

to characterize uniquely the risk of this disease



Conclusion on neural network

IN GENERAL

Y = f(X) + error



Conclusion on neural network

Hyperparameters

Number of layers, number of nodes,
initial weight values, activation function,

error/loss function, number of epochs,

learning rate, batch size, bias node



Conclusion on neural network

How to choose them ?



Conclusion on neural network

Trial and Error

Select the combination that performs best

(highest validation accuracy)



Conclusion on neural network

Trial and Error

The goal is to predict

(and not really to explain)



Conclusion on neural network

Main advantage:

@ Works well on a whole range of problems including image
and signal recognitions.



Conclusion on neural network

Main advantage:

@ Works well on a whole range of problems including image
and signal recognitions.

Main disadvantage:

@ Black box: difficult to understand what are the main
features that the neural network uses to make prediction.
Decision trees are better suited for interpretation.



QUESTIONS ?



Applications

Applications



Application 1

Predict the 1-year mortality rate

of elderly patients

with intertrochanteric fractures

Ref: Artificial neural network models for predicting 1-year mortality in elderly patients with intertrochanteric fractures

in China, L. Shi, X.C. Wang and Y.S. Wang, Brazilian Journal of Medical and Biological Research (2013)



Application 1

Some older people fall

and break one of their hips



Application 1

50% of hip fractures

are intertrochanteric fractures



Application 1

Transcervical
fracture

Intertrochanteric %
fracture

Subtrochanteric
fracture



Application 1

There I1s an increase of death

after intertrochanteric fractures

(because of reduced mobility)



Application 1

1-year mortality rate = D/N

D = number of deaths occurring within 1 year

N = the size of the population
(all patients with intertrochanteric fractures)



Application 1

Data

2150 patients with intertrochanteric fractures:

/0% In the training group
30% patients in the testing group



Application 1

After some trial and error
with different hyperparameters

(number of layers and nodes)

they end up with the following neural network



Application 1
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Figure 2 Schematic representation showing the structure of the artificial neural network models, which have 8 input nodes, 6
nodes in hidden layer, and 1 output node, which represents 1-year mortality in elderly patients with intertrochanteric fracture.
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Application 1

Accuracy

92% for the training group
86% for the testing group



Application 2

Predict if there is a residual tumor

after bladder cancer treatment

Ref: Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning, Kenny H. Cha,
Lubomir Hadjiiski, Heang-Ping Chan, Alon Z. Weizer, Ajjai Alva, Richard H. Cohan, Elaine M. Caoili, Chintana

Paramagul and Ravi K. Samala, Scientific Reports volume 7, Article number: 8738 (2017)



Application 2

They take X-ray images of the bladder and

use an algorithm to localise the cancer region

before and after treatment



Application 2

BEFORE AFTER BEFORE AFTER
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Bladder lesion segmentations. Two segmented bladder cancers are illustrated. The lesions in the pre- and post-treatment

l
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scan pairs shown in (a,b) are segmented using AI-CALS, as shown in (e,d), respectively. The pre-treatment scan is on the left

and the post-treatment scan is located on the right of each pair.



Application 2

BEFORE AFTER BEFORE AFTER

(d)

Bladder lesion segmentations. Two segmented bladder cancers are illustrated. The lesions in the pre- and post-treatment

scan pairs shown in (a,b) are segmented using AI-CALS, as shown in (e,d), respectively. The pre-treatment scan is on the left

and the post-treatment scan is located on the right of each pair.



Application 1

Data

6700 pre-post-treatment paired images

with located cancer region



Application 1

Data

They combined the paired images

into Region Of Interest (ROI) images



Application 2

Kernel Maps

Input ROI

Fully-connected

Convolution Layer

Kernels

Convolution Locally-connected
Layers Layers



Application 2

EXTRACT IMPORTANT FEATURES
AND REDUCE DIMENSION

Kernel Maps

=

Input ROI

Convolution
Layers

Locally-connected
Layers




Application 2

Table 2 Number of correctly predicted bladder cancer treatment

response assessment of the test set at an operating point determined
using the training set.

From: Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning

DL-CNN RF-SL RF-ROI Radiologist 1 Radiologist 2
Complete Response (Sensitivity) 6/12 (50%) 6/12 (50%) 8/12 (66.7%) 11/12 (91.7%) 11/12 (91.7%)
Non-complete Response (Specificity) 34/42 (81.0%) 33/42 (78.6%) 23/42 (54.8%) 18/42 (42.9%) 16/42 (38.1%)

DL-CNN: Deep-learning convolution neural network. RF-SL: Radiomics features extracted from segmented lesions. RF-

ROI: Radiomics features extracted from pre- and post-treatment paired ROIs.

Complete response = No residual cancer

Non-complete response = Residual cancer
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Application 2

Table 2 Number of correctly predicted bladder cancer treatment

response assessment of the test set at an operating point determined
using the training set.

From: Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning

RF-SL RF-ROI Radiologist 2
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ROI: Radiomics features extracted from pre- and post-treatment paired ROISs.

Complete response = No residual cancer

Non-complete response = Residual cancer



Application 3

Diagnose irregular heart rnythms (arrhythmias)

from single-lead electrocardiography signals

Ref: Cardiologist-Level Arrhythmia Detection With Convolutional Neural Networks, Pranav Rajpurkar, Awni Hannun,

Masoumeh Haghpanahi, Codie Bourn, and Andrew Ng, arXiv:1707.01836



Application 3

Data

60°000 electrocardiography records

(annotated by experts with 14 classes)

from 30°000 patients



Application 3

Rhythm

Train + Val Test
Class Description Example Patients Patients
AFIB Atrial Fibrilla- J 4638 m
tion .
AFL Atrial Flutter 3805 20
Second  degree
AVB.TYPE2 AV Block Type 1905 b3
2 (Mobitz IT)
BIGEMINY ~ Ventricular 2855 n
. Bigeminy = -
CHB Complete Heart 843 2%
Block
- Ectopic  Atrial ‘ A l} I ‘ ‘ - .
EAR Rhythm 2623 -
IVR Idioventricular WLW\MK 1962 H

Train + Val Test
Class Description Example Patients Patients
Junctional
2
JUNCTIONAL Rhythm HW 2030 36
NOISE Noise WWM 9940 41
SINUS Sinus Rhythm M}l’/ 22156 215
Supraventricular 4
SVT Tachycardia W 6301 34
TRIGEMINY ~ yemricular AA Mﬂ’“ AJ(*/W 2864 21
rigeminy
Ventricular
VT Tachycardia 4827 17
v d
Wenckebach
WENCKEBACH Mobitz T) 2051 29

=
————
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Application 3

The model outputs a new prediction once every second
o |

N AA

W P A

|

34-layer Convolutional
Neural Network

SINUS | SINUS | SINUS | SINUS | AFIB AFIB AFIB AFIB

Figure 1. Our trained convolutional neural network correctly de-
tecting the sinus rhythm (SINUS) and Atrial Fibrillation (AFIB)
from this ECG recorded with a single-lead wearable heart moni-
tor.
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Application 3

The model outperforms the cardiologist

Sequence F1

Metric

Set F1

Model 0.5 0.6 0.7 0.8

Cardiologist Score

Figure 3. Evaluated on the test set, the model outperforms the
average cardiologist score on both the Sequence and the Set F1

metrics.



Application 3

The model outperforms the cardiologist

Every second:
prediction vs truth

Sequence F1
Sequence F1 = average

L
@
=
Look in 30 seconds:
Set F1 prediction vs truth
Set F1 = average
Model 0.5 0.6 0.7 0.8
Cardiologist Score

Figure 3. Evaluated on the test set, the model outperforms the
average cardiologist score on both the Sequence and the Set F1

metrics.



Application 4

14 Buzr

Algorithm
que les de

LOGICIEL Une machine g
€té capable de détecter
95% des mélanomes

Sur une série de Photos,
contre 89% pour I'humain.
———— 2% PoUr 'humain.

es plus doués
Fmatologues

decins ont correctement iden-
tifié 87% des mélanomes qui
leur étaient présentés. Quand
ils obtenaient des images en
plus gros plan et des infos plus
détaillées (age, sexe du pa-
tient, position de la lésion cu-
tanée, par exemple), ce taux
montait a 89%. Mais la ma-
chine a fait mieux, avec 95%
de mélanomes détectés dés la
premiére série de photos.
Pour les chercheurs, la
question n'est pas de se pas-

Les dermatologues ont du
souci a se faire. Un ordinateur
} a réussi a étre meilleyr queux
pour repérer les cancers de Ia
beau sur des clichés, rapporte
la revue «Annals of Onco-
logy». Une équipe germano-
franco-américaine a entrainé
un systéme d’intelligence arti-

ficielle a distinguer des lésions
de la peau et grains de beauté
selon qu’ils étaient bénins ou
alarmants, en lui montrant
plus de 100000 images. Les
performances de la machine
(un réseau neuronal convolu-

Chaque année, 5000 personnes décédent d'un mélanome malin, .

tif) ont ensuite été comparées
a celles de 58 médecins spécia-
listes de 17 pays. Résultat: «La
plupart des dermatologues ont

STOCK
fait moins bien», écrivent les
chercheurs.

Confrontés i 100 photos de
cas jugés compliqués, les mé-

ser des médecins au profit de
intelligence artificielle, mais
de faire d’elle «un outil sup-
plémentaire». «Aujourd’hui
rien ne remplace un examen
clinique approfondi», ont
rappelé dans I'étude deux
professeurs australiens en
dermatologie. -ars




QUESTIONS ?



BONUS



Bonus 1: Bias node

A simple linear regression model:

Yi=oa+ [ Xi+e

where « Is called the intercept parameter



Bonus 1: Bias node

In neural network,

the intercept parameter o

IS Introduced via the bias node



