
Network training using gradient descent

Modify the weight values

to obtain better predictions

Network training using gradient descent

We need a way to measure the difference

between the predictions and the true species

(the cross-entropy error)

Network training using gradient descent

And our goal is to find the weights

that minimizes that error function

(using gradient descent)

Network training using gradient descent

Notation

The matrices W (1) and W (2)

are combined as W

Network training using gradient descent

n S.L. S.W. P.L. P.W. tn1 tn2 tn3
yn1 yn2 yn3

4 4.6 3.1 1.5 0.2 1 0 0 1 0 0

row features true species predictions

5 5.0 3.6 1.4 0.2 1 0 0 0.94 0.05 0.01

The cross-entropy error/loss function for the nth row:

En(W) = −
3�

k=1

true species����
tnk · log[

prediction� �� �
ynk (W)]

Network training using gradient descent

n S.L. S.W. P.L. P.W. tn1 tn2 tn3
yn1 yn2 yn3

4 4.6 3.1 1.5 0.2 1 0 0 1 0 0

row features true species predictions

5 5.0 3.6 1.4 0.2 1 0 0 0.94 0.05 0.01

The cross-entropy error/loss function for the nth row:

En(W) = −
3�

k=1

true species����
tnk · log[

prediction� �� �
ynk (W)]

Example:

E4(W) = −tn1 · log[yn1(W)] = − log(1) = 0

Network training using gradient descent

n S.L. S.W. P.L. P.W. tn1 tn2 tn3
yn1 yn2 yn3

4 4.6 3.1 1.5 0.2 1 0 0 1 0 0

row features true species predictions

5 5.0 3.6 1.4 0.2 1 0 0 0.94 0.05 0.01

The cross-entropy error/loss function for the nth row:

En(W) = −
3�

k=1

true species����
tnk · log[

prediction� �� �
ynk (W)]

Example:

E5(W) = −tn1 · log[yn1(W)] = − log(0.94) = 0.06

Network training using gradient descent

Find the weights W that minimize

the total cross-entropy error:

E(W) =
N�

n=1

En(W)

Network training using gradient descent

How to derive
the cross-entropy formula ?

Network training using gradient descent

The maximum likelihood method

Data:
X1, . . . ,XN ∼ N (µ,σ2)

Point estimate of µ:

µ̂ = argmaxµL(µ|X) = argmaxµ
N�

i=1

Ni(µ,σ
2) =

1
N

N�

i=1

Xi

Equivalently:
µ̂ = argminµ [− logL(µ|X)]

Network training using gradient descent

The total cross-entropy error is defined

as the negative log-likelihood

E(W) = − logL(W |T) ; Ŵ = argminW E(W)

where

L(W |T) =
N�

n=1

K�

k=1

ytnk
nk (W)

In RED: the probability for the correct class

Network training using gradient descent

How does
gradient descent work ?

Network training using gradient descent

w

E(w)

Network training using gradient descent

w

E(w)

E(w*)=min(E)

w*

Network training using gradient descent

w

E(w)

E(w*)=min(E)

w* w0

Network training using gradient descent

w

E(w)

E(w*)=min(E)

w* w0w1

Network training using gradient descent

w

E(w)

E(w*)=min(E)

w* w0w1

Several iterations:

w0 -> w1 -> w2 -> w3 -----> w*

Network training using gradient descent

w

E(w)

E(w*)=min(E)

w* w0w1 w

E(w)

E(w*)=min(E)

w* w0w1

slope(w0)
=

Δ

E(w0)

Network training using gradient descent

w

E(w)

E(w*)=min(E)

w* w0w1 w

E(w)

E(w*)=min(E)

w* w0w1

slope(w0)
=

Δ

E(w0)
Gradient Descent:

w1 = w0 - η *

Δ

E(w0)

Δ

E(w*) = 0; η > 0

η = learning parameter

Network training using gradient descent

Possible problems

Network training using gradient descent

w

E(w)

η too small

w* w0

slow

Network training using gradient descent

w

E(w)

η too small

w* w0 w

E(w)

w* w0

η too large

slow
diverge

Network training using gradient descent

w

E(w)

η too small

w* w0 w

E(w)

w* w0

η too large

w

E(w)

local minimum at wL

w* w0wL

slow
diverge

Network training using gradient descent

Initialization τ = 0: Choose the initial weights W 0 with N (0,σ2)

Network training using gradient descent

Initialization τ = 0: Choose the initial weights W 0 with N (0,σ2)

W (1) =




0.5 0.1 −0.2 −0.4
−0.4 1.0 0.5 1.0
−0.2 −0.2 −0.5 −0.1
0.2 0.7 0.3 0.2
0.6 0.6 0.1 −0.4




W (2) =




0.6 0.1 0.9 −0.2 −0.5
0.3 −0.3 0.3 −0.9 −0.9
0.3 0.2 0.4 −1.0 0.6




Network training using gradient descent

3 possibilities for the next steps

Network training using gradient descent

3 possibilities for the next steps

1 Batch Gradient Descent

2 Mini-batch Gradient Descent

3 Stochastic Gradient Descent

Network training using gradient descent

Batch Gradient Descent

1 Apply the NN to all the train set

2 Record all the errors

3 Update the weights:

W τ = W τ−1 − η ·∇E(W τ−1)

Network training using gradient descent

Mini-batch Gradient Descent

1 Apply the NN to a batch of the train set

2 Record the corresponding errors

3 Update the weights:

W τ = W τ−1 − η ·∇
�

n∈batch

En(W τ−1)

Network training using gradient descent

Stochastic Gradient Descent

1 Apply the NN to one sample of the train set

2 Record the one sample error

3 Update the weights:

W τ = W τ−1 − η ·∇En(W τ−1)

Network training using gradient descent

Iteration

1 iteration (or pass) is one weight update

Network training using gradient descent

Epoch

1 epoch is reached

when the NN has passed through

all the training data

Network training using gradient descent

EXAMPLE

If you have 100 training samples,

and your batch size is 50,

then it will take 2 iterations to complete 1 epoch

Network training using gradient descent

Gradient Descent

1 Batch Gradient Descent:
1 epoch = 1 iteration

2 Mini-batch Gradient Descent:
1 epoch = (N/batch) iterations

3 Stochastic Gradient Descent:
1 epoch = N iterations

Performance metrics

What are

the performance metrics ?

Performance metrics

They may be used on

the training, validation and test sets

Performance metrics

Cross-entropy error/loss function

E = −
N�

n=1

3�

k=1

tnk · log ynk

Performance metrics

Confusion matrix

Performance metrics

Accuracy rate = 1 - Error rate

Accuracy rate =
Number of correct predictions

Total number of predictions
=

33
35

= 94%

Error rate =
Number of wrong predictions
Total number of predictions

=
2
35

= 6%

Performance metrics

EXAMPLES

Performance metrics

Training and validation datasets:

BGD:
Number of
weight updates1 50 100

Performance metrics

Training and validation datasets:

MGD: (batch=50)
Number of
weight updates2 100 200

Performance metrics

Training and validation datasets:

SGD: (batch=1)
Number of
weight updates100 5’000 10’000

Performance metrics

Test set

Performance metrics

Test set

Accuracy=0.91 and cross-entropy loss=0.22

Performance metrics

Test set

Accuracy=0.91 and cross-entropy loss=0.22

THE END

Optimum number of epochs

BGD:
Number of
weight updates1 50 100

Optimum number of epochs

What is the optimum

number of epochs ?

Optimum number of epochs

The answer is related to the problem of

under-fitting and over-fitting

Optimum number of epochs

Ref: scikit-learn 0.18 documentation

Optimum number of epochs

Number of epochs

Ref: www.jeremyjordan.me

Optimum number of epochs

Number of epochsSTOP

Ref: www.jeremyjordan.me

Conclusion on neural network

Can one reach 100% accuracy ?

Conclusion on neural network

Short answer

It is possible only if

there is enough information in the input X

to predict Y uniquely

Conclusion on neural network

EXAMPLE

If two plants have the same four attributes

(X1 = X2)

but belong to two different species

(Y1 �= Y2),

then we need additional features

to characterize uniquely the three iris species

Conclusion on neural network

If two people have the same gender and age

(X1 = X2)

but only one has a specific disease

(Y1 �= Y2),

then we need additional features

(physical activity, smoking, genetics)

to characterize uniquely the risk of this disease

Conclusion on neural network

IN GENERAL

Y = f (X) + error

Conclusion on neural network

Hyperparameters

Number of layers, number of nodes,

initial weight values, activation function,

error/loss function, number of epochs,

learning rate, batch size, bias node

Conclusion on neural network

How to choose them ?

Conclusion on neural network

Trial and Error

Select the combination that performs best

(highest validation accuracy)

Conclusion on neural network

Trial and Error

The goal is to predict

(and not really to explain)

Conclusion on neural network

Main advantage:
Works well on a whole range of problems including image
and signal recognitions.

Conclusion on neural network

Main advantage:
Works well on a whole range of problems including image
and signal recognitions.

Main disadvantage:
Black box: difficult to understand what are the main
features that the neural network uses to make prediction.
Decision trees are better suited for interpretation.

QUESTIONS ?

Applications

Applications

Application 1

Predict the 1-year mortality rate

of elderly patients

with intertrochanteric fractures

Ref: Artificial neural network models for predicting 1-year mortality in elderly patients with intertrochanteric fractures

in China, L. Shi, X.C. Wang and Y.S. Wang, Brazilian Journal of Medical and Biological Research (2013)

Application 1

Some older people fall

and break one of their hips

Application 1

50% of hip fractures

are intertrochanteric fractures

Application 1

Application 1

There is an increase of death

after intertrochanteric fractures

(because of reduced mobility)

Application 1

1-year mortality rate = D/N

D = number of deaths occurring within 1 year

N = the size of the population

(all patients with intertrochanteric fractures)

Application 1

Data

2150 patients with intertrochanteric fractures:

70% in the training group

30% patients in the testing group

Application 1

After some trial and error

with different hyperparameters

(number of layers and nodes)

they end up with the following neural network

Application 1

Application 1

Probability that
a patient will die
within 1 year after
the hip fracture

Application 1

Accuracy

92% for the training group

86% for the testing group

Application 2

Predict if there is a residual tumor

after bladder cancer treatment

Ref: Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning, Kenny H. Cha,

Lubomir Hadjiiski, Heang-Ping Chan, Alon Z. Weizer, Ajjai Alva, Richard H. Cohan, Elaine M. Caoili, Chintana

Paramagul and Ravi K. Samala, Scientific Reports volume 7, Article number: 8738 (2017)

Application 2

They take X-ray images of the bladder and

use an algorithm to localise the cancer region

before and after treatment

Application 2

BEFORE BEFOREAFTER AFTER

CANCER CANCER

Application 2

BEFORE BEFOREAFTER AFTER

STILL
CANCER ? STILL

CANCER ?

Application 1

Data

6700 pre-post-treatment paired images

with located cancer region

Application 1

Data

They combined the paired images

into Region Of Interest (ROI) images

Application 2

Application 2

EXTRACT IMPORTANT FEATURES
AND REDUCE DIMENSION

NN

Application 2

Complete response = No residual cancer

Non-complete response = Residual cancer

Application 2

Complete response = No residual cancer

Non-complete response = Residual cancer

Application 2

Complete response = No residual cancer

Non-complete response = Residual cancer

Application 3

Diagnose irregular heart rhythms (arrhythmias)

from single-lead electrocardiography signals

Ref: Cardiologist-Level Arrhythmia Detection With Convolutional Neural Networks, Pranav Rajpurkar, Awni Hannun,

Masoumeh Haghpanahi, Codie Bourn, and Andrew Ng, arXiv:1707.01836

Application 3

Data

60’000 electrocardiography records

(annotated by experts with 14 classes)

from 30’000 patients

Application 3

Application 3

GOAL

Application 3

The model outputs a new prediction once every second

Application 3

33 layers of convolution followed by a fully connected layer

Application 3

The model outperforms the cardiologist

Application 3

The model outperforms the cardiologist

Every second:
prediction vs truth
Sequence F1 = average

Look in 30 seconds:
prediction vs truth
Set F1 = average

Application 4

QUESTIONS ?

BONUS

Bonus 1: Bias node

A simple linear regression model:

yi = α+ β · xi + εi

where α is called the intercept parameter

Bonus 1: Bias node

In neural network,

the intercept parameter α

is introduced via the bias node

